1
|
Dai K, Cao S, Yuan J, Wang Z, Li H, Yuan C, Yan X, Xing R. Recent Advances of Sustainable UV Shielding Materials: Mechanisms and Applications. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40372797 DOI: 10.1021/acsami.5c04539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
The escalating global threat of ultraviolet (UV) radiation is manifested through multifaceted damage pathways including cutaneous carcinogenesis, photodegradation of organic substrates, marine ecosystem destabilization, and infrastructure weathering. These urgent challenges have catalyzed sustained interdisciplinary efforts toward advanced UV-shielding technologies spanning biomedical, environmental, and industrial domains. Current material arsenals include melanin, lignin, tannin, polydopamine, zinc oxide and titanium dioxide, etc. These materials can be applied to diverse fields such as food packaging, sunscreen fabrics, sunscreen creams, eyeglasses, and sunscreen films through tailored processing techniques and employing distinct photoprotective mechanisms. Notwithstanding significant progress, the development of an integrated selection framework that reconciles efficiency, durability, and environmental compatibility persists as a critical knowledge gap. In this context, the main mechanisms of various types of UV shielding materials and their applications in different fields are described systematically. Subsequently, a comparative analysis of the advantages and shortcomings of different materials is presented, focusing on their UV shielding efficiency and stability impact. Moreover, the review delves into their unique value in specific scenarios. Finally, building on these analyses, current challenges and future development prospects of UV shielding materials are further discussed, with emphasis on scalability, eco-friendly alternatives, and multifunctional integration, providing valuable insights and guidance for advancing research and promoting sustainable and functional innovations in this field.
Collapse
Affiliation(s)
- Ke Dai
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Shuai Cao
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiewei Yuan
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Zhiwei Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Hong Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Chengqian Yuan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuehai Yan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruirui Xing
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Kenawy ER, Tenhu H, Azaam MM, Khattab SA, Kenawy ME, Radwan AM, Abosharaf HA. Schiff bases of cellulose: Synthesis, characterization, and anticancer potency against hepatocellular carcinoma. Int J Biol Macromol 2025; 302:140506. [PMID: 39889996 DOI: 10.1016/j.ijbiomac.2025.140506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
The development of innovative anticancer agents with minimal side effects is crucial. Polymeric Schiff bases have unique features that make them a promising option for therapeutic uses. They are well known for their biological properties, especially anticancer activity. Therefore, the current report describes the synthesis of Schiff bases derived from microcrystalline cellulose. Cellulose Schiff bases were synthesized through three steps. First, cellulose was periodate oxidized to produce dialdehyde cellulose (DAC). Afterwards, DAC was grafted with hyper-branched polyethylenimine (hPEI) to obtain aminated cellulose. Schiff bases were obtained by reacting hPEI-cellulose with various aldehydes. The final products were characterized by spectroscopic and thermal methods. The cellulose Schiff bases were evaluated for their anticancer activities, and it was observed that they were able to inhibit the growth of different types of cells. Importantly, one of the cellulose derivatives (SB4), which contains trimethoxy benzaldehyde moieties, was capable of inducing cell cycle arrest and apoptosis in hepatocellular carcinoma cells (Hep G2). Interestingly, SB4 could act as a pro-oxidant by inducing reactive oxygen species and oxidative stress with notable decline in the antioxidant system within Hep G2 cells. The results displayed that cellulose-based Schiff bases may offer a new strategy for liver cancer therapy.
Collapse
Affiliation(s)
- El-Refaie Kenawy
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Heikki Tenhu
- Department of Chemistry, University of Helsinki, PB 55, FI-00014 Helsinki, Finland
| | - Mohamed M Azaam
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Samar A Khattab
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt; Department of Chemistry, University of Helsinki, PB 55, FI-00014 Helsinki, Finland
| | - Marwa E Kenawy
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Aliaa M Radwan
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Hamed A Abosharaf
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
3
|
Zhang H, Chen Y, Wei Y, Zhang X, Ma H. Construction of a CuO 2@PDA Nanozyme with Switchable Dual Enzyme-Mimic Activities for Colorimetric Sensing of Catechol and Hydroquinone. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15886-15895. [PMID: 39999381 DOI: 10.1021/acsami.5c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The development of metal-based redox nanozymes represents a new frontier in pollutant sensing. In this field, designing highly active nanozymes and precisely regulating their enzymatic activity are key challenges. In this work, we report the construction of a copper peroxide@polydopamine (CuO2@PDA) nanozyme with dual enzyme-like activity, mimicking the active centers of laccase and peroxidase. Here, CuO2 acts as the catalytic center, while PDA serves as a carrier to prevent CuO2 aggregation and promotes conversion of CuII/CuI active sites via the reduction effect of its surface catechol groups to complete the catalytic cycle. As expected, the obtained CuO2@PDA nanozyme exhibits significant laccase- and peroxidase-mimetic activities. Moreover, its dual enzymatic activity can be systematically switched by adjusting pH and temperature. Specifically, laccase activity dominates near neutral pH, while CuO2 decomposition into Cu ions and H2O2 at acidic pH triggers peroxidase activity. Similarly, CuO2@PDA exhibits temperature-dependent dual enzymatic activity with peroxidase activity prevailing at low temperatures and laccase activity at high temperatures. According to enzymatic performance and XPS results, a possible catalytic mechanism of the dual enzymatic activity of CuO2@PDA has been proposed. Then, based on the pH-dependent dual enzymatic activity of CuO2@PDA, we constructed a detection system for the isomers of organic pollutants, catechol (CC) and hydroquinone (HQ). The laccase-like activity of CuO2@PDA enables direct oxidation of CC into yellow o-benzoquinone, while HQ discolors the preoxidized substrate generated via the peroxidase-like activity of CuO2@PDA. Moreover, selective sensing for CC and HQ with high sensitivity was achieved in real water samples. This approach can guide the design of nanozymes with multienzymatic activity and unveil their potential uses in environmental pollutant discrimination.
Collapse
Affiliation(s)
- Haiyan Zhang
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yitong Chen
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yanhui Wei
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiaokang Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Hongchao Ma
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| |
Collapse
|
4
|
Li F, An Y, Xue J, Fu H, Wang H, Cao P, Zhang M, Fei P, Liu M, Zhao F. Cellulose Acetate Membranes: Antibacterial Strategy and Application-A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409728. [PMID: 39679825 DOI: 10.1002/smll.202409728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/30/2024] [Indexed: 12/17/2024]
Abstract
Developing antibacterial and biodegradable cellulose acetate (CA) membrane materials is one of the main challenges in multiple application fields. CA membrane materials are widely used in gas purification, water purification, and biomedical fields due to their environmental friendliness, high chemical and mechanical stability, excellent processability, and low cost. However, antibacterial modification of CA membrane materials to enhance their utilization value in the application process has always been the direction of researchers' efforts. This review focuses on the preparation and application of antibacterial CA and its derivatives membranes, especially the types and introduction methods of antibacterial agents. First, a brief introduction of CA-based polymer membranes is presented, followed by an overview of the antibacterial agent types and their introduction methods, and antibacterial mechanisms. After that, various membranes prepared using CA-based polymers as the main matrix or as additives are discussed. Then, specific applications of antibacterial CA-based membrane materials in water purification, gas purification, biomedical, food packaging, and other fields are outlined.
Collapse
Affiliation(s)
- Fu Li
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Yaxin An
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Jinhong Xue
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Hui Fu
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Hongbo Wang
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Puzhi Cao
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Man Zhang
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Pengfei Fei
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Mei Liu
- College of Textiles and Apparel, Quanzhou Normal University, No. 398 Donghai, Quanzhou City, Fujian, 362000, P. R. China
| | - Fulai Zhao
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| |
Collapse
|
5
|
Chen T, Lai C, Zhao H, Yang J, Huang K, Hong XJ, Cai Y, Dong R. MOF-Based Biomimetic Enzyme Microrobots for Efficient Detection of Total Antioxidant Capacity of Fruits and Vegetables. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408231. [PMID: 39723718 DOI: 10.1002/smll.202408231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Green and efficient total antioxidant capacity (TAC) detection is significant for healthy diet and disease prevention. This work first proposed the concept of TAC colorimetric detection based on microrobots. A novel metal-organic framework (MOF)-based biomimetic enzyme microrobot (MIL-88A@Fe3O4) is developed that can efficiently and accurately detect the TAC of real fruits and vegetables. Unlike the previous colorimetric detection method to measure TAC which often requires the addition of toxic hydrogen peroxide (H2O2) or light, the microrobots strategy can realize efficient TAC detection without any additional chemicals or stimuli. This is attributed to the oxidase-like activity from MIL-88A, which is discovered and confirmed for the first time by experiments and theoretical calculations. In addition, the microrobots can significantly accelerate the color reaction, resulting in a significant improvement in the detection efficiency of TAC in the motion state owing to their self-stirring effect. More importantly, the results of the MOF-based biomimetic enzyme microrobots strategy for detecting TAC in real fruits and vegetables are comparable to those tested by commonly used quantitative detection kits, in addition to low cost, excellent stability, and anti-interference ability. This attractive MOF-based biomimetic enzyme microrobot holds great prospects for future applications in catalytic sensing and promoting a healthy diet.
Collapse
Affiliation(s)
- Ting Chen
- School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, China
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Bio-refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Caiyan Lai
- School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, China
| | - He Zhao
- School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, China
| | - Jie Yang
- School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, China
| | - Kai Huang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Bio-refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Xu-Jia Hong
- The Affiliated Traditional Chinese Medicine Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuepeng Cai
- School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, China
| | - Renfeng Dong
- School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Qiu Y, Cheng T, Yuan B, Yip TY, Zhao C, Lee JH, Chou SW, Chen JL, Zhao Y, Peng YK. One-Pot and Gram-Scale Synthesis of Fe-Based Nanozymes with Tunable O 2 Activation Pathway and Specificity Between Associated Enzymatic Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408609. [PMID: 39676381 DOI: 10.1002/smll.202408609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/30/2024] [Indexed: 12/17/2024]
Abstract
Nanozymes have recently gained attention for their low cost and high stability. However, unlike natural enzymes, they often exhibit multiple enzyme-like activities, complicating their use in selective bioassays. Since H2O2 and O2 are common substrates in these reactions, controlling their activation-and thus reaction specificity-is crucial. Recent advances in tuning the chemical state of cerium have enabled control over H2O2 activation pathways for tunable peroxidase/haloperoxidase-like activities. In contrast, the control of O2 activation on an element in oxidase/laccase nanozymes and the impact of its chemical state on these activities remains unexplored. Herein, a facile one-pot method is presented for the gram-scale synthesis of Fe-based nanozymes with tunable compositions of Fe3O4 and Fe3C by adjusting preparation temperatures. The Fe3O4-containing samples exhibit superior laccase-like activity, while the Fe3C-containing counterparts demonstrate better oxidase-like activity. This divergent O2 activation behavior is linked to their surface Fe species: the abundant reactive Fe2+ in Fe3O4 promotes laccase-like activity via Fe3+-superoxo formation, whereas metallic Fe in Fe3C facilitates OH radical generation for oxidase-like activity. Controlled O2 activation pathways in these Fe-based nanozymes demonstrate improved sensitivity in the corresponding biomolecule detection, which should inform the design of nanozymes with enhanced activity and specificity.
Collapse
Affiliation(s)
- Yuwei Qiu
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, 0000, China
| | - Tianqi Cheng
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, 0000, China
| | - Bo Yuan
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, 0000, China
| | - Tsz Yeung Yip
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, SAR, 0000, China
| | - Chao Zhao
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, 0000, China
| | - Jung-Hoon Lee
- Department of Chemistry, Soonchunhyang University, Asan, 31538, South Korea
| | - Shang-Wei Chou
- Instrumentation Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Jian Lin Chen
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, SAR, 0000, China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, 0000, China
- City University of Hong Kong Chengdu Research Institute, Chengdu, 610203, China
| |
Collapse
|
7
|
Li H, Jia Y, Bai S, Peng H, Li J. Metal-chelated polydopamine nanomaterials: Nanoarchitectonics and applications in biomedicine, catalysis, and energy storage. Adv Colloid Interface Sci 2024; 334:103316. [PMID: 39442423 DOI: 10.1016/j.cis.2024.103316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/13/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Polydopamine (PDA)-based materials inspired by the adhesive proteins of mussels have attracted increasing attention owing to the universal adhesiveness, antioxidant activity, fluorescence quenching ability, excellent biocompatibility, and especially photothermal conversion capability. The high binding ability of PDA to a variety of metal ions offers a paradigm for the exploration of metal-chelated polydopamine nanomaterials with fantastic properties and functions. This review systematically summarizes the latest progress of metal-chelated polydopamine nanomaterials for the applications in biomedicine, catalysis, and energy storage. Different fabrication strategies for metal-chelated polydopamine nanomaterials with various composition, structure, size, and surface chemistry, such as the pre-functionalization method, the one-pot co-assembly method, and the post-modification method, are summarized. Furthermore, emerging applications of metal-chelated polydopamine nanomaterials in the fields ranging from cancer therapy, theranostics, antibacterial, catalysis to energy storage are highlighted. Additionally, the critical remaining challenges and future directions of this area are discussed to promote the further development and practical applications of PDA-based materials.
Collapse
Affiliation(s)
- Hong Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China..
| |
Collapse
|
8
|
Wang P, Chen R, Jia Y, Xu Y, Bai S, Li H, Li J. Cu-chelated polydopamine nanozymes with laccase-like activity for photothermal catalytic degradation of dyes. J Colloid Interface Sci 2024; 669:712-722. [PMID: 38735253 DOI: 10.1016/j.jcis.2024.04.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
The industrial applications of enzymes are usually hindered by the high production cost, intricate reusability, and low stability in terms of thermal, pH, salt, and storage. Therefore, the de novo design of nanozymes that possess the enzyme mimicking biocatalytic functions sheds new light on this field. Here, we propose a facile one-pot synthesis approach to construct Cu-chelated polydopamine nanozymes (PDA-Cu NPs) that can not only catalyze the chromogenic reaction of 2,4-dichlorophenol (2,4-DP) and 4-aminoantipyrine (4-AP), but also present enhanced photothermal catalytic degradation for typical textile dyes. Compared with natural laccase, the designed mimic has higher affinity to the substrate of 2,4-DP with Km of 0.13 mM. Interestingly, PDA-Cu nanoparticles are stable under extreme conditions (temperature, ionic strength, storage), are reusable for 6 cycles with 97 % activity, and exhibit superior substrate universality. Furthermore, PDA-Cu nanozymes show a remarkable acceleration of the catalytic degradation of dyes, malachite green (MG) and methylene blue (MB), under near-infrared (NIR) laser irradiation. These findings offer a promising paradigm on developing novel nanozymes for biomedicine, catalysis, and environmental engineering.
Collapse
Affiliation(s)
- Peizhi Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Rong Chen
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yang Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China; Xi'an Key Laboratory of Low-Carbon Utilization for High-Carbon Resources, Xi'an Shiyou University, Xi'an 710065, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
9
|
Fang X, Pu X, Xie W, Yang W, Jia L. Poly(3,4-dihydroxyphenylalanine)-modified cellulose paper for the extraction of deoxyribonucleic acid by a laboratory-built automated extraction device. J Chromatogr A 2024; 1731:465199. [PMID: 39053252 DOI: 10.1016/j.chroma.2024.465199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The success of polymerase chain reaction (PCR) depends on the quality of deoxyribonucleic acid (DNA) templates. This study developed a cost-effective and eco-friendly DNA extraction system utilizing poly(3,4-dihydroxyphenylalanine)-modified cellulose paper (polyDOPA@paper). PolyDOPA@paper was prepared by oxidatively self-polymerizing DOPA under weak alkaline conditions and utilizing the adhesive property of polyDOPA on different materials. Compared to the uncoated cellulose paper, polyDOPA coating significantly enhances DNA adsorption owing to its abundant amino, carboxyl, and hydroxyl moieties. The DNA extraction mechanism using polyDOPA@paper was discussed. The maximum adsorption capacity of polyDOPA@paper for DNA was 20.7 μg cm-2. Moreover, an automated extraction system was designed and fabricated using 3D printing technology. The device simplifies the operation and ensures the reproducibility and consistency of the results. More importantly, it eliminates the need for specialized training of operators. The feasibility of the polyDOPA@paper-based automated extraction system was evaluated by quantitatively detecting Escherichia coli in spiked milk samples via a real-time PCR. The detection limit was 102 cfu mL-1. The results suggest that the system would have significant potential in detecting pathogens.
Collapse
Affiliation(s)
- Xun Fang
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoxiao Pu
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wenting Xie
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wenjuan Yang
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
10
|
Lu J, Xu X, Chen J. Polyoxometalate-based nanozyme with laccase-mimicking activity for kanamycin detection based on colorimetric assay. Mikrochim Acta 2024; 191:544. [PMID: 39158765 DOI: 10.1007/s00604-024-06621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
As a kind of aminoglycoside antibiotics, kanamycin (KAN) is widely applied to animal husbandry and aquaculture. However, the abuse of KAN causes the large-scale discharge of it into rivers, lakes and groundwater, which threatens environmental safety and human health. Therefore, it is imperative to develop a method that is applicable to detect KAN in an efficient and accurate way. The colorimetric method based on enzymes provides a feasible solution for the detection of organic pollutants. However, the extensive application of natural enzymes is constrained by high cost and low stability. Herein, a polyoxometalate-based nanozyme, namely [H7SiW9V3O40(DPA)3]·4H2O (SiW9V3/DPA) (DPA = dipyridylamine), is synthesized. As a low-cost nanozyme with high stability compared to natural enzymes, SiW9V3/DPA performs well in laccase-mimicking activity. It can be used to induce chromogenic reaction between 2,4-dichlorophenol (2,4-DP) and 4-aminoantipyrine (4-AP), which generates red products. With the addition of KAN, the color fades. That is to say, KAN can be detected with colorimetric assay in the concentration range 0.1 to 100 μM with high selectivity and low limit of detection (LOD) of 6.28 μM. Moreover, SiW9V3/DPA is applied to KAN detection in lake and river water and milk with satisfactory results. To sum up, polyoxometalate-based nanozyme is expected to provide a promising solution to the detection of organic pollutants in the aquatic environment.
Collapse
Affiliation(s)
- Junjun Lu
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Xinxin Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, Liaoning, China.
| | - Jin Chen
- Key Laboratory of Electromagnetic Processing of Materials, MOE, Northeastern University, Shenyang, 110819, Liaoning, China
| |
Collapse
|
11
|
Falsafi SR, Topuz F, Rostamabadi H. Dialdehyde carbohydrates - Advanced functional materials for biomedical applications. Carbohydr Polym 2023; 321:121276. [PMID: 37739495 DOI: 10.1016/j.carbpol.2023.121276] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 09/24/2023]
Abstract
Dialdehyde carbohydrates (DCs) have found applications in a wide range of biomedical field due to their great versatility, biocompatibility/biodegradability, biological properties, and controllable chemical/physical characteristics. The presence of dialdehyde groups in carbohydrate structure allows cross-linking of DCs to form versatile architectures serving as interesting matrices for biomedical applications (e.g., drug delivery, tissue engineering, and regenerative medicine). Recently, DCs have noticeably contributed to the development of diverse physical forms of advanced functional biomaterials i.e., bulk architectures (hydrogels, films/coatings, or scaffolds) and nano/-micro formulations. We underline here the current scientific knowledge on DCs, and demonstrate their potential and newly developed biomedical applications. Specifically, an update on the synthesis approach and functional/bioactive attributes is provided, and the selected in vitro/in vivo studies are reviewed comprehensively as examples of the latest progress in the field. Moreover, safety concerns, challenges, and perspectives towards the application of DCs are deliberated.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fuat Topuz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Sariyer, 34469 Istanbul, Turkey
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| |
Collapse
|
12
|
Li D, Fan T, Mei X. A comprehensive exploration of the latest innovations for advancements in enhancing selectivity of nanozymes for theranostic nanoplatforms. NANOSCALE 2023; 15:15885-15905. [PMID: 37755133 DOI: 10.1039/d3nr03327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Nanozymes have captured significant attention as a versatile and promising alternative to natural enzymes in catalytic applications, with wide-ranging implications for both diagnosis and therapy. However, the limited selectivity exhibited by many nanozymes presents challenges to their efficacy in diagnosis and raises concerns regarding their impact on the progression of disease treatments. In this article, we explore the latest innovations aimed at enhancing the selectivity of nanozymes, thereby expanding their applications in theranostic nanoplatforms. We place paramount importance on the critical development of highly selective nanozymes and present innovative strategies that have yielded remarkable outcomes in augmenting selectivities. The strategies encompass enhancements in analyte selectivity by incorporating recognition units, refining activity selectivity through the meticulous control of structural and elemental composition, integrating synergistic materials, fabricating selective nanomaterials, and comprehensively fine-tuning selectivity via approaches such as surface modification, cascade nanozyme systems, and manipulation of external stimuli. Additionally, we propose optimized approaches to propel the further advancement of these tailored nanozymes while considering the limitations associated with existing techniques. Our ultimate objective is to present a comprehensive solution that effectively addresses the limitations attributed to non-selective nanozymes, thus unlocking the full potential of these catalytic systems in the realm of theranostics.
Collapse
Affiliation(s)
- Dan Li
- College of Pharmacy, Jinzhou Medical University, 40 Songpo Rd, Jinzhou 121000, China.
| | - Tuocen Fan
- Jinzhou Medical University, 40 Songpo Rd, Jinzhou 121000, China.
| | - Xifan Mei
- Jinzhou Medical University, 40 Songpo Rd, Jinzhou 121000, China.
| |
Collapse
|
13
|
Liu T, Guo C, Xu S, Hu G, Wang L. A Novel Strategy to Improve Tumor Targeting of Hydrophilic Drugs and Nanoparticles for Imaging Guided Synergetic Therapy. Adv Healthc Mater 2023; 12:e2300883. [PMID: 37437241 DOI: 10.1002/adhm.202300883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/12/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
The fast renal clearance of hydrophilic small molecular anticancer drugs and ultrasmall nanoparticles (NPs) results in the low utilization rate and certain side effects, thus improving the tumor targeting is highly desired but faces great challenges. A novel and general β-cyclodextrin (CD) aggregation-induced assembly strategy to fabricate doxorubicin (DOX) and CD-coated NPs (such as Au) co-encapsulated pH-responsive nanocomposites (NCs) is proposed. By adding DOX×HCl and reducing pH in a reversed microemulsion system, hydrophilic CD-coated AuNPs rapidly assemble into large NCs. Then in situ polymerization of dopamine and sequentially coordinating with Cu2+ on the surface of NCs provide extra weak acid responsiveness, chemodynamic therapy (CDT), and improved biocompatibility as well as stability. The subsequent tumor microenvironment responsive dissociation notably improves their passive tumor targeting, bioavailability, imaging, and therapeutic capabilities, as well as facilitates their internalization by tumor cells and metabolic clearance, thereby reducing side effects. The combination of polymerized dopamine and assembled AuNPs reinforces photothermal capability, thus further boosting CDT through thermally amplifying Cu-catalyzed Fenton-like reaction. Both in vitro and in vivo studies confirm the desirable outcomes of these NCs as photoacoustic imaging guided trimodal (thermally enhanced CDT, photothermal therapy, and chemotherapy) synergistic tumor treatment agents with minimal systemic toxicity.
Collapse
Affiliation(s)
- Taoxia Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chang Guo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gaofei Hu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
14
|
Chen C, Zhou T, Wan Z, Xu Z, Jin Y, Li D, Rojas OJ. Insulative Biobased Glaze from Wood Laminates Obtained by Self-Adhesion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301472. [PMID: 37218011 DOI: 10.1002/smll.202301472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/07/2023] [Indexed: 05/24/2023]
Abstract
The combination of optical transparency and mechanical strength is a highly desirable attribute of wood-based glazing materials. However, such properties are typically obtained by impregnation of the highly anisotropic wood with index-matching fossil-based polymers. In addition, the presence of hydrophilic cellulose leads to a limited water resistance. Herein, this work reports on an adhesive-free lamination that uses oxidation and densification to produce transparent all-biobased glazes. The latter are produced from multilayered structures, free of adhesives or filling polymers, simultaneously displaying high optical clarity and mechanical strength, in both dry and wet conditions. Specifically, high values of optical transmittance (≈85.4%), clarity (≈20% with low haze) at a thickness of ≈0.3 mm, and highly isotropic mechanical strength and water resistance (wet strength of ≈128.25 MPa) are obtained for insulative glazes exhibiting low thermal conductivity (0.27 W m-1 K-1 , almost four times lower than glass). The proposed strategy results in materials that are systematically tested, with the leading effects of self-adhesion induced by oxidation rationalized by ab initio molecular dynamics simulation. Overall, this work demonstrates wood-derived materials as promising solutions for energy-efficient and sustainable glazing applications.
Collapse
Affiliation(s)
- Chuchu Chen
- College of Materials Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, P. R. China
- College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Tong Zhou
- College of Materials Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Zhangmin Wan
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Zhaoyang Xu
- College of Materials Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Yongcan Jin
- College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Dagang Li
- College of Materials Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
15
|
Li R, Fan H, Zhou H, Chen Y, Yu Q, Hu W, Liu GL, Huang L. Nanozyme-Catalyzed Metasurface Plasmon Sensor-Based Portable Ultrasensitive Optical Quantification Platform for Cancer Biomarker Screening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301658. [PMID: 37358326 PMCID: PMC10460869 DOI: 10.1002/advs.202301658] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/24/2023] [Indexed: 06/27/2023]
Abstract
Developing plasmonic biosensors that are low-cost, portable, and relatively simple to operate remains challenging. Herein, a novel metasurface plasmon-etch immunosensor is described, namely a nanozyme-linked immunosorbent surface plasmon resonance biosensor, for the ultrasensitive and specific detection of cancer biomarkers. Gold-silver composite nano cup array metasurface plasmon resonance chip and artificial nanozyme-labeled antibody are used in two-way sandwich analyte detection. Changes in the biosensor's absorption spectrum are measured before and after chip surface etching, which can be applied to immunoassays without requiring separation or amplification. The device achieved a limit of alpha-fetoprotein (AFP) detection < 21.74 fM, three orders of magnitude lower than that of commercial enzyme-linked immunosorbent assay kits. Additionally, carcinoembryonic antigen (CEA) and carbohydrate antigen 125 (CA125) are used for quantitative detection to verify the universality of the platform. More importantly, the accuracy of the platform is verified using 60 clinical samples; compared with the hospital results, the three biomarkers achieve high sensitivity (CEA: 95.7%; CA125: 90.9%; AFP: 86.7%) and specificity (CEA: 97.3%; CA125: 93.9%; AFP: 97.8%). Due to its rapidity, ease of use, and high throughput, the platform has the potential for high-throughput rapid detection to facilitate cancer screening or early diagnostic testing in biosensing.
Collapse
Affiliation(s)
- Rui Li
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Hongli Fan
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Hanlin Zhou
- Biosensor R&D DepartmentLiangzhun (Wuhan) Life Technology Co., Ltd.666 Gaoxin AvenueWuhan430070P. R. China
| | - Youqian Chen
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Qingcai Yu
- School of Life and Health ScienceAnhui Science and Technology UniversityFengyang233100P. R. China
| | - Wenjun Hu
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Gang L. Liu
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Liping Huang
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
- Biosensor R&D DepartmentLiangzhun (Wuhan) Life Technology Co., Ltd.666 Gaoxin AvenueWuhan430070P. R. China
| |
Collapse
|
16
|
Zhang X, Wang H, Jia X, Yan H, Tian N. Photophysical and Photochemical Properties of Heterocyclic Analogs of 1,4-Cyclohexadiene: Experimental and Theoretical Studies. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|