1
|
Zhang D, Zhou L, Wu Y, Yang C, Zhang H. Triboelectric Nanogenerator for Self-Powered Gas Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406964. [PMID: 39377767 DOI: 10.1002/smll.202406964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Indexed: 10/09/2024]
Abstract
With the continuous acceleration of industrialization, gas sensors are evolving to become portable, wearable and environmentally friendly. However, traditional gas sensors rely on external power supply, which severely limits their applications in various industries. As an innovative and environmentally adaptable power generation technology, triboelectric nanogenerators (TENGs) can be integrated with gas sensors to leverage the benefits of both technologies for efficient and environmentally friendly self-powered gas sensing. This paper delves into the basic principles and current research frontiers of the TENG-based self-powered gas sensor, focusing particularly on innovative applications in environmental safety monitoring, healthcare, as well as emerging fields such as food safety assurance and smart agriculture. It emphasizes the significant advantages of TENG-based self-powered gas sensor systems in promoting environmental sustainability, achieving efficient sensing at room temperature, and driving technological innovations in wearable devices. It also objectively analyzes the technical challenges, including issues related to performance enhancement, theoretical refinement, and application expansion, and provides targeted strategies and future research directions aimed at paving the way for continuous progress and widespread applications in the field of self-powered gas sensors.
Collapse
Affiliation(s)
- Dongzhi Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Lina Zhou
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yan Wu
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Chunqing Yang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hao Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
2
|
Yue X, Wang J, Yang H, Li Z, Zhao F, Liu W, Zhang P, Chen H, Jiang H, Qin N, Tao TH. A Drosophila-inspired intelligent olfactory biomimetic sensing system for gas recognition in complex environments. MICROSYSTEMS & NANOENGINEERING 2024; 10:153. [PMID: 39468005 PMCID: PMC11520895 DOI: 10.1038/s41378-024-00752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 10/30/2024]
Abstract
The olfactory sensory system of Drosophila has several advantages, including low power consumption, high rapidity and high accuracy. Here, we present a biomimetic intelligent olfactory sensing system based on the integration of an 18-channel microelectromechanical system (MEMS) sensor array (16 gas sensors, 1 humidity sensor and 1 temperature sensor), a complementary metal‒oxide‒semiconductor (CMOS) circuit and an olfactory lightweight machine-learning algorithm inspired by Drosophila. This system is an artificial version of the biological olfactory perception system with the capabilities of environmental sensing, multi-signal processing, and odor recognition. The olfactory data are processed and reconstructed by the combination of a shallow neural network and a residual neural network, with the aim to determine the noxious gas information in challenging environments such as high humidity scenarios and partially damaged sensor units. As a result, our electronic olfactory sensing system is capable of achieving comprehensive gas recognition by qualitatively identifying 7 types of gases with an accuracy of 98.5%, reducing the number of parameters and the difficulty of calculation, and quantitatively predicting each gas of 3-5 concentration gradients with an accuracy of 93.2%; thus, these results show superiority of our system in supporting alarm systems in emergency rescue scenarios.
Collapse
Affiliation(s)
- Xiawei Yue
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiachuang Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heng Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zening Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangyu Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyuan Liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pingping Zhang
- Suzhou Huiwen Nanotechnology Co. Ltd., Jiangsu, 215004, China
| | - Hong Chen
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, China
| | - Hanjun Jiang
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, China
| | - Nan Qin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Neuroxess Co. Ltd. (Jiangxi), Nanchang, Jiangxi, 330029, China.
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China.
- Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai, China.
| |
Collapse
|
3
|
Li R, Wang Q, Wang Y, An B, Yang Y, Wu Z, Wang P, Zhang T, Han R, Xie E. Unraveling the Effect of Oxygen Vacancy on WO 3 Surface for Efficient NO 2 Detection at Low Temperature. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51738-51747. [PMID: 39263994 DOI: 10.1021/acsami.4c11801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Oxygen vacancies (VO) in metal oxide semiconductors play an important role in improving gas-sensing performance of chemiresistive gas sensors. Nonetheless, there is still a lack of clear understanding of the inherent mechanism of the influence of oxygen vacancies on gas sensing due to generally focusing on the concentration of VO. Herein, oxygen vacancies were rationally modulated in WO3 nanoflower structures via an annealing process, resulting in a transformation of VO from neutral (VO0) to a doubly ionized (VO2+) state. Density functional theory (DFT) calculations indicate that VO2+ is significantly more efficient than VO0 for NO2 detection in competition with atmospheric O2. Benefiting from a high concentration of VO2+, the WO3-450 (WO3 annealed at 450 °C) sensor exhibits excellent sensing performance with an ultrahigh sensitivity (3674.1 to 5 ppm NO2), superior selectivity, and long-term stability (one month). Furthermore, the sensor with the wide range of concentration detection not only can detect NO2 gas with parts per million (ppm) but also can detect NO2 with parts per billion (ppb) level concentration, with a high sensibility reaching 2.8 to 25 ppb NO2 and over 100 to 100 ppb NO2. This study elucidates the oxygen vacancy mediated sensing mechanism toward NO2 and provides an effective strategy for the rational design of gas sensors with high sensing performance.
Collapse
Affiliation(s)
- Ruixia Li
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qiao Wang
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yanrong Wang
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Beixi An
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yifan Yang
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhengkun Wu
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peizhe Wang
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tingyu Zhang
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ruiqi Han
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Erqing Xie
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
4
|
Song Z, Fang W, Zhu B, Yan J. Nano-Schottky-junction-engineered Pd/SnO 2 nanotube array for ultrasensitive hydrogen sensing at room temperature. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5954-5958. [PMID: 39188154 DOI: 10.1039/d4ay00988f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Detecting H2 at low concentrations is important due to it being a major safety concern in practical applications. However, semiconductor chemiresistive gas sensors always suffer from high operating temperatures and power consumption, as well as a limited concentration detection range, which restricts their widespread use. Herein, we developed a 3D nanostructured gas sensor employing a Pd-nanocluster-decorated SnO2 nanotube array as the sensing layer. The sensor showed sensitive and selective properties for detecting low concentrations of H2 at room temperature, with a low limit of detection of 1.6 ppb. It also showed good long-term stability, as long as 100 days. Moreover, systematical characterizations were performed in conjunction with density functional theory (DFT) calculations to determine the ability of Pd/SnO2 junctions to improve the gas-sensing properties. The engineering of the nano-Schottky junction allows us to expand the library for designing low-power-consumption H2 sensors for widespread applications.
Collapse
Affiliation(s)
- Zhilong Song
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Weihao Fang
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bingchen Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jia Yan
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
5
|
Park J, Shin H, Jung G, Hong S, Park M, Hwang J, Bae J, Kim J, Lee J. On-Chip Annealing Using Embedded Micro-Heater for Highly Sensitive and Selective Gas Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401821. [PMID: 38738755 PMCID: PMC11267278 DOI: 10.1002/advs.202401821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Indexed: 05/14/2024]
Abstract
The demand for gas sensing systems that enable fast and precise gas recognition is growing rapidly. However, substantial challenges arise from the complex fabrication process of sensor arrays, time-consuming data transmission to an external processor, and high energy consumption in multi-stage data processing. In this study, a gas sensing system using on-chip annealing for fast and power-efficient gas detection is proposed. By utilizing a micro-heater embedded in the gas sensor, the sensing material of adjacent sensors in the same substrate can be easily varied without further fabrication steps. The response to oxidizing gas is constrained in metal oxide (MOX) sensing material with small grain sizes, as the depletion width of grain cannot extend beyond the grain size during the gas reaction. On the other hand, the response to reducing gases and humidity, which decrease the depletion width, is less affected by grain sizes. A readout circuit integrating a differential amplifier and dual FET-type gas sensors effectively emphasizes the response to oxidizing gases by canceling the response to reducing gases and humidity. The selective on-chip annealing method is applicable to various MOX sensing materials, demonstrating its potential for application in commercial fields due to its simplicity and expandability.
Collapse
Affiliation(s)
- Jinwoo Park
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Hunhee Shin
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Gyuweon Jung
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Seongbin Hong
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Min‐Kyu Park
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Joon Hwang
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Jong‐Ho Bae
- School of Electrical EngineeringKookmin UniversitySeoul02707Republic of Korea
| | - Jae‐Joon Kim
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Jong‐Ho Lee
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
6
|
Wang T, Xing Q, Zhai R, Huang T, Song P. Defect Engineering for SnO 2 Improves NO 2 Gas Sensitivity by Plasma Spraying. ACS Sens 2024; 9:3178-3186. [PMID: 38778734 DOI: 10.1021/acssensors.4c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Large emissions of nitrogen dioxide (NO2) pose a significant threat to human health, Monitoring its content and implementing timely measures are crucial. Utilizing oxide semiconductors, such as tin dioxide (SnO2), has proven to be an effective way to detect and analyze NO2. The design and preparation of sensing materials with high sensitivity and excellent selectivity is the key to improve the detection efficiency. SnO2 nanopowders with small and uniform particle size, large specific surface area, adjustable defect content, and no impurities were prepared by a new plasma spraying method. The SnO2 nanopowders exhibit outstanding performance in detecting NO2 at a low temperature of 100 °C, the response to 5 ppm of NO2 reaches 48, and the material demonstrates rapid response and recovery times, coupled with excellent selectivity. The exceptional gas-sensitive properties can be attributed to the superior morphology and structure of SnO2. It provides more reaction sites for gas sensitive reactions, fast electron transport, a large number of charge carriers, and improved adsorption of the material to the target gas. This study provides valuable insights into nanomaterial preparation and the enhancement of gas-sensitive properties for SnO2.
Collapse
Affiliation(s)
- Tao Wang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Quan Xing
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Ruixiong Zhai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Taihong Huang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Peng Song
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
7
|
Jiang F, Xie W, Deng Y, Chen K, Li J, Huang XY, Yu H, Li Y, Wu L, Deng Y. Maillard Reaction Inspired Microexplosion toward Fast Synthesis of Two-Dimensional Mesoporous Tin Oxides for Efficient Chemiresistive Gas Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28928-28937. [PMID: 38795031 DOI: 10.1021/acsami.4c06072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
Two-dimensional (2D) mesoporous transition metal oxides are highly desired in various applications, but their fast and low-cost synthesis remains a great challenge. Herein, a Maillard reaction inspired microexplosion approach is applied to rapidly synthesize ultrathin 2D mesoporous tin oxide (mSnO2). During the microexplosion between granular ammonia nitrate with melanoidin at high temperature, the organic species can be carbonized and expanded rapidly due to the instantaneous release of gases, thus producing ultrathin carbonaceous templates with rich functional groups to effectively anchor SnO2 nanoparticles on the surface. The subsequent removal of carbonaceous templates via calcination in air results in the formation of 2D mSnO2 due to the confinement effect of the templates. Pd nanoparticles are controllably deposited on the surface of 2D mSnO2 via in situ reduction, forming ultrathin 2D Pd/mSnO2 nanocomposites with thicknesses of 6-8 nm. Owing to the unique 2D mesoporous structure with rich oxygen defects and highly exposed metal-metal oxide interfaces, 2D Pd/mSnO2 exhibits excellent sensing performance toward acetone with high sensitivity, a short response time, and good selectivity under low working temperature (100 °C). This fast and convenient microexplosion synthesis strategy opens up the possibility of constructing 2D porous functional materials for various applications including high-performance gas sensors.
Collapse
Affiliation(s)
- Fengluan Jiang
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iCHEM, Fudan University, Shanghai 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Wenhe Xie
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iCHEM, Fudan University, Shanghai 200433, China
| | - Yu Deng
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iCHEM, Fudan University, Shanghai 200433, China
| | - Keyu Chen
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iCHEM, Fudan University, Shanghai 200433, China
| | - Jichun Li
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iCHEM, Fudan University, Shanghai 200433, China
| | - Xin-Yu Huang
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iCHEM, Fudan University, Shanghai 200433, China
| | - Hongxiu Yu
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iCHEM, Fudan University, Shanghai 200433, China
| | - Yaobang Li
- Zhejiang Fulai New Materials, Co. Ltd., Jiaxing, Zhejiang Province 314103, China
| | - Limin Wu
- Institute of Energy and Materials Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Yonghui Deng
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iCHEM, Fudan University, Shanghai 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
8
|
Kumar P, Chandel M, Kataria S, Swami K, Kaur K, Sahu BK, Dadhich A, Urkude RR, Subaharan K, Koratkar N, Shanmugam V. Handheld Crop Pest Sensor Using Binary Catalyst-Loaded Nano-SnO 2 Particles for Oxidative Signal Amplification. ACS Sens 2024; 9:81-91. [PMID: 38113168 DOI: 10.1021/acssensors.3c01669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In agriculture, pest management is a major challenge. Crop releases volatiles in response to the pest; hence, sensing these volatile signals at a very early stage will ease pest management. Here, binary catalyst-loaded SnO2 nanoparticles of <5 nm were synthesized for the repeated capture and oxidation of the signature volatile and its products to amplify the chemoresistive signal to detect concentrations as low as ≈120 ppb. The sensitivity may be due to the presence of the elements in the Sn-Fe-Pt bond evidenced by extended X-ray absorption fine-structure spectroscopy (EXAFS) that captures and oxidize the volatile without escaping. This strong catalyst may oxidize nontarget volatiles and can cause false signals; hence, a molecular sieve filter has been coupled to ensure high selectivity for the detection ofTuta absolutainfestation in tomato. Finally, with the support of a mobile power bank, the optimized sensor has been assembled into a lightweight handheld device.
Collapse
Affiliation(s)
- Prem Kumar
- Institute of Nano Science and Technology, Mohali 140306, India
| | - Mahima Chandel
- Institute of Nano Science and Technology, Mohali 140306, India
| | - Sarita Kataria
- Institute of Nano Science and Technology, Mohali 140306, India
| | - Kanchan Swami
- Institute of Nano Science and Technology, Mohali 140306, India
| | - Kamaljit Kaur
- Institute of Nano Science and Technology, Mohali 140306, India
| | | | - Ankita Dadhich
- Institute of Nano Science and Technology, Mohali 140306, India
| | - Rajashri R Urkude
- Accelerator Physics & Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
| | - Kesavan Subaharan
- ICAR - National Bureau of Agricultural Insect Resources, Bangalore 560064, India
| | - Nikhil Koratkar
- Materials Science Department, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | |
Collapse
|
9
|
Shen Z, Huang W, Li L, Li H, Huang J, Cheng J, Fu Y. Research Progress of Organic Field-Effect Transistor Based Chemical Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302406. [PMID: 37271887 DOI: 10.1002/smll.202302406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Indexed: 06/06/2023]
Abstract
Due to their high sensitivity and selectivity, chemical sensors have gained significant attention in various fields, including drug security, environmental testing, food safety, and biological medicine. Among them, organic field-effect transistor (OFET) based chemical sensors have emerged as a promising alternative to traditional sensors, exhibiting several advantages such as multi-parameter detection, room temperature operation, miniaturization, flexibility, and portability. This review paper presents recent research progress on OFET-based chemical sensors, highlighting the enhancement of sensor performance, including sensitivity, selectivity, stability, etc. The main improvement programs are improving the internal and external structures of the device, as well as the organic semiconductor layer and dielectric structure. Finally, an outlook on the prospects and challenges of OFET-based chemical sensors is presented.
Collapse
Affiliation(s)
- Zhengqi Shen
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China
| | - Li Li
- Interdisciplinary Materials Research Center School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Huizi Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia Huang
- Interdisciplinary Materials Research Center School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Fu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Xue L, Ren Y, Li Y, Xie W, Chen K, Zou Y, Wu L, Deng Y. Pt-Pd Nanoalloys Functionalized Mesoporous SnO 2 Spheres: Tailored Synthesis, Sensing Mechanism, and Device Integration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302327. [PMID: 37259638 DOI: 10.1002/smll.202302327] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Methane (CH4 ), as the vital energy resource and industrial chemicals, is highly flammable and explosive for concentrations above the explosive limit, triggering potential risks to personal and production safety. Therefore, exploiting smart gas sensors for real-time monitoring of CH4 becomes extremely important. Herein, the Pt-Pd nanoalloy functionalized mesoporous SnO2 microspheres (Pt-Pd/SnO2 ) were synthesized, which show uniform diameter (≈500 nm), high surface area (40.9-56.5 m2 g-1 ), and large mesopore size (8.8-15.8 nm). The highly dispersed Pt-Pd nanoalloys are confined in the mesopores of SnO2 , causing the generation ofoxygen defects and increasing the carrier concentration of sensitive materials. The representative Pt1 -Pd4 /SnO2 exhibits superior CH4 sensing performance with ultrahigh response (Ra /Rg = 21.33 to 3000 ppm), fast response/recovery speed (4/9 s), as well as outstanding stability. Spectroscopic analyses imply that such an excellent CH4 sensing process involves the fast conversion of CH4 into formic acid and CO intermediates, and finally into CO2 . Density functional theory (DFT) calculations reveal that the attractive covalent bonding interaction and rapid electron transfer between the Pt-Pd nanoalloys and SnO2 support, dramatically promote the orbital hybridization of Pd4 sites and adsorbed CH4 molecules, enhancing the catalytic activation of CH4 over the sensing layer.
Collapse
Affiliation(s)
- Lingxiao Xue
- Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
- State Key Lab of Transducer Technology Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yuan Ren
- Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Yanyan Li
- Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Wenhe Xie
- Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Keyu Chen
- Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Yidong Zou
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Limin Wu
- Institute of Energy and Materials Chemistry, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Yonghui Deng
- Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| |
Collapse
|
11
|
Scott JI, Adams RL, Martinez-Gazoni RF, Carroll LR, Downard AJ, Veal TD, Reeves RJ, Allen MW. Looking Outside the Square: The Growth, Structure, and Resilient Two-Dimensional Surface Electron Gas of Square SnO 2 Nanotubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300520. [PMID: 37191281 DOI: 10.1002/smll.202300520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/31/2023] [Indexed: 05/17/2023]
Abstract
Nanotechnology has delivered an amazing range of new materials such as nanowires, tubes, ribbons, belts, cages, flowers, and sheets. However, these are usually circular, cylindrical, or hexagonal in nature, while nanostructures with square geometries are comparatively rare. Here, a highly scalable method is reported for producing vertically aligned Sb-doped SnO2 nanotubes with perfectly-square geometries on Au nanoparticle covered m-plane sapphire using mist chemical vapor deposition. Their inclination can be varied using r- and a-plane sapphire, while unaligned square nanotubes of the same high structural quality can be grown on silicon and quartz. X-ray diffraction measurements and transmission electron microscopy show that they adopt the rutile structure growing in the [001] direction with (110) sidewalls, while synchrotron X-ray photoelectron spectroscopy reveals the presence of an unusually strong and thermally resilient 2D surface electron gas. This is created by donor-like states produced by the hydroxylation of the surface and is sustained at temperatures above 400 °C by the formation of in-plane oxygen vacancies. This persistent high surface electron density is expected to prove useful in gas sensing and catalytic applications of these remarkable structures. To illustrate their device potential, square SnO2 nanotube Schottky diodes and field effect transistors with excellent performance characteristics are fabricated.
Collapse
Affiliation(s)
- Jonty I Scott
- School of Physical and Chemical Sciences and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, 8140, New Zealand
| | - Ryan L Adams
- Department of Electrical and Computer Engineering and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, 8140, New Zealand
| | - Rodrigo F Martinez-Gazoni
- School of Physical and Chemical Sciences and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, 8140, New Zealand
| | - Liam R Carroll
- School of Physical and Chemical Sciences and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, 8140, New Zealand
| | - Alison J Downard
- School of Physical and Chemical Sciences and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, 8140, New Zealand
| | - Tim D Veal
- Stephenson Institute for Renewable Energy and Department of Physics, University of Liverpool, Liverpool, L69 7ZF, UK
| | - Roger J Reeves
- School of Physical and Chemical Sciences and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, 8140, New Zealand
| | - Martin W Allen
- Department of Electrical and Computer Engineering and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, 8140, New Zealand
| |
Collapse
|