1
|
Neerkattil A, Bijeesh MM, Ghosh KK, Padmanabhan P, Gulyás B, Murukeshan VM, Bhattacharyya J. Polarity-sensitive dual emissive fluorescent carbon dots as highly specific targeting probes for lipid droplets in live cells. NANOSCALE ADVANCES 2025; 7:2686-2694. [PMID: 40151574 PMCID: PMC11938281 DOI: 10.1039/d5na00061k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Polarity-sensitive fluorescent nanoparticles with intrinsic dual emission are invaluable tools for investigating microenvironmental polarity. Ratiometric fluorescent sensors, with their built-in self-calibration characteristics, offer higher sensitivity and more obvious visual detection in qualitative and quantitative analysis. In this context, we report the synthesis of polarity-sensitive, dual-emitting carbon dots via a solvothermal method and demonstrate their application in ratiometric polarity sensing. These carbon dots exhibit characteristic solvatochromic effects with emissions in both the blue and red spectral regions. Notably, we observed a remarkable 30-fold enhancement in the red-to-blue emission intensity ratio as the solvent polarity shifted from 0.245 to 0.318. The dual-emitting carbon dots demonstrate the highly sensitive and inherently reliable (self-calibration) polarity dependence of the emission spectra, facilitating their application in ratiometric polarity sensing. These dual-emitting carbon dots exhibited a strong affinity for lipid droplets in live cells, demonstrating their potential as highly specific targeting probes for imaging lipid droplets in live cells, without the need for additional targeting ligands. The characteristics of excellent biocompatibility, photostability, and good cellular imaging capabilities make these dual-emitting carbon dots highly promising for biomedical and sensing applications.
Collapse
Affiliation(s)
- Aminakutty Neerkattil
- Department of Physics, Indian Institute of Technology Madras Chennai Tamil Nadu India
| | - M M Bijeesh
- Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University Singapore
| | - K K Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore
- Cognitive Neuroimaging Centre, Nanyang Technological University Singapore
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore
- Cognitive Neuroimaging Centre, Nanyang Technological University Singapore
| | - V M Murukeshan
- Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University Singapore
| | - Jayeeta Bhattacharyya
- Department of Physics, Indian Institute of Technology Madras Chennai Tamil Nadu India
| |
Collapse
|
2
|
Zhang S, He W, Dong J, Chan YK, Lai S, Deng Y. Tailoring Versatile Nanoheterojunction-Incorporated Hydrogel Dressing for Wound Bacterial Biofilm Infection Theranostics. ACS NANO 2025; 19:10922-10942. [PMID: 40071724 DOI: 10.1021/acsnano.4c15743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Wound-infected bacterial biofilms are protected by self-secreted extracellular polymer substances (EPS), which can confer them with formidable resistance to the host's immune responses and antibiotics, and thus delays in diagnosis and treatment can cause stubborn infections and life-threatening complications. However, tailoring an integrated theranostic platform with the capability to promptly diagnose and treat wound biofilm infection still remains a challenge. Herein, a versatile erbium-doped carbon dot-encapsulated zeolitic imidazolate framework-8 (Er:CDs@ZIF-8) nanoheterojunction (C@Z nano-HJ) is tailored and incorporated into gelatin methacrylate/poly(N-hydroxyethyl acrylamide) (GelMA/PHEAA)-based tough and sticky hydrogel dressing (GH-C@Z) to achieve wound biofilm infection-integrated theranostic application. Stimulated by the acidic microenvironment of the biofilm, the turn-on response of the C@Z in the dressing assists the biofilm infection monitoring by exhibiting cyan fluorescence. Meanwhile, C@Z can effectively destroy the EPS barrier and accomplish photothermal-photodynamic-ion interference synergistic antibacterial therapy under near-infrared light. Furthermore, after the effective eradication of biofilm, the potent antioxidant properties of released Er:CDs allow the dressing to attenuate reactive oxygen species and mitigate inflammatory responses, which finally promote collagen deposition and neovascularization to accelerate wound healing. Overall, this tailored wound dressing provides insight into the development of versatile diagnostic and therapeutic platforms for bacterial biofilm infections.
Collapse
Affiliation(s)
- Shuting Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenxuan He
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jianwen Dong
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Shuangquan Lai
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
3
|
Qiao L, Ma B, Jiang Y, Pan X, Mao Z, Zhang Y, Sheldon RA, Wang A. Turning the band alignment of carbon dots for visible-light-driven enzymatic asymmetric reduction of aromatic ketone. Int J Biol Macromol 2025; 295:139444. [PMID: 39761903 DOI: 10.1016/j.ijbiomac.2024.139444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Keto reductases are crucial NAD(P)H-dependent enzymes used for the enantioselective synthesis of alcohols from prochiral ketones. Typically, the NADPH cofactor is regenerated through a second enzyme and/or substrate. However, photocatalytic cofactor regeneration using water as a sacrificial electron and hydrogen donor presents a promising alternative, albeit a challenging one. Herein we fabricated several nitrogen-doped carbon dots (CDs) with visible light absorption properties, good water solubility and biocompatibility for photocatalytic regeneration of NADPH. The CD with a smaller size and suitable redox potential gave the highest NADPH yield (55.7 %). Based on this, NADPH-dependent aldo-keto reductase crosslinked aggregates (AKR-CLEs) were initially applied as a stable biocatalyst to reduce the prochiral ketone. (S)-1-(2-Chlorophenyl) ethanol, an intermediate for LPA1R antagonists, was obtained in 65.3 % yield and 99.99 % enantiomeric excess (ee) under visible light irradiation. The isotope tracer experiment confirmed that water is the hydrogen donor in this light-driven, photo-enzymatic asymmetric hydrogenation system. This method is useful for the sustainable synthesis of chiral alcohols. Moreover, the general principle of utilizing water as the sacrificial hydrogen and electron donor holds potential for application in other redox cofactor regeneration systems.
Collapse
Affiliation(s)
- Li Qiao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Bianqin Ma
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yongjian Jiang
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaoting Pan
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhili Mao
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050 Johannesburg, South Africa; Department of Biotechnology, Section BOC, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| | - Anming Wang
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
4
|
Efimova AA, Badrieva ZF, Brui EA, Miruschenko MD, Aleinik IA, Mitroshin AM, Volina OV, Koroleva AV, Zhizhin EV, Liang Y, Qu S, Ushakova EV, Stepanidenko EA, Rogach AL. Effect of Gadolinium Doping on the Optical and Magnetic Properties of Red-Emitting Dual-Mode Carbon Dot-Based Probes for Magnetic Resonance Imaging. ACS APPLIED BIO MATERIALS 2025; 8:1493-1502. [PMID: 39885776 DOI: 10.1021/acsabm.4c01705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Bioimaging probes based on carbon dots (CDs) can become a useful replacement for existing commercial probes, benefiting clinical diagnostics. While the development of dual-mode CD-based probes for magnetic resonance imaging (MRI), which provides the ability for photoluminescence (PL) detection at the same time, is ongoing, several challenges have to be addressed. First, most of the CD-based probes still emit at shorter wavelengths (blue/green spectral range), which is harmful to biological objects or have very low PL intensity in the biological window of tissue transparency (red/near-infrared spectral range). Second, the relaxation characteristics of the proposed CD-based probes are still similar or only slightly larger than those of commercial contrast agents. Herein, we introduce a dual-mode probe allowing for simultaneous PL detection and MRI analysis, based on CDs doped with gadolinium ions (Gd3+) with a PL peak in the red (640 nm), a PL quantum yield up to 24%, and high longitudinal and transverse relaxivities reaching 25.76 and 40.57 L mmol-1 s-1, respectively. Moreover, Gd-doped CDs show good biocompatibility, which was studied on H9c2 and 4T1 cell lines with a cell viability above 70%. The developed Gd-doped red-emissive CDs can be utilized as efficient and nontoxic dual-mode probes for PL and MRI measurements carried out simultaneously.
Collapse
Affiliation(s)
- Arina A Efimova
- PhysNano Department, ITMO University, Saint Petersburg 197101, Russia
| | - Zilya F Badrieva
- School of Physics and Engineering, Department of Physics, ITMO University, Saint Petersburg 197101, Russia
| | - Ekaterina A Brui
- School of Physics and Engineering, Department of Physics, ITMO University, Saint Petersburg 197101, Russia
| | | | - Ivan A Aleinik
- PhysNano Department, ITMO University, Saint Petersburg 197101, Russia
| | - Alexander M Mitroshin
- PhysNano Department, ITMO University, Saint Petersburg 197101, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint Petersburg 199004, Russia
| | - Olga V Volina
- Research Park, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | | | - Evgeniy V Zhizhin
- Research Park, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Yingqi Liang
- Joint Key Laboratory of Ministry of Education, Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, Taipa, Macau SAR 999067, P. R. China
| | - Songnan Qu
- Joint Key Laboratory of Ministry of Education, Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, Taipa, Macau SAR 999067, P. R. China
| | - Elena V Ushakova
- PhysNano Department, ITMO University, Saint Petersburg 197101, Russia
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | | | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR 999077, P. R. China
- IT4Innovations, VSB─Technical University of Ostrava, 17. Listopadu 2172/15, Poruba, Ostrava 70800, Czech Republic
| |
Collapse
|
5
|
Hu J, Zheng Z, Yang Y, Chen L, Kang W. Advance of Near-Infrared Emissive Carbon Dots in Diagnosis and Therapy: Synthesis, Luminescence, and Application. Adv Healthc Mater 2024; 13:e2401513. [PMID: 39091058 DOI: 10.1002/adhm.202401513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/14/2024] [Indexed: 08/04/2024]
Abstract
Carbon dots (CDs) with good optical properties, biocompatibility, easy functionalization, and small size have attracted more and more attention and laid a good foundation for their applications in the biomedicine field. CDs emitted in near-infrared regions (NIR-CDs) can achieve high penetration depth imaging and produce high cytotoxic substance for disease treatment. Therefore, NIR-CDs are promising materials to realize high-quality imaging-guided diagnostic and therapeutic integration. This review first introduces the current mainstream synthesis methods of NIR-CDs by "top-down" and "bottom-up". Second, the luminescence modes of NIR-CDs are introduced, and the luminescence mechanisms based on carbon core state, surface state, molecular state, and crosslinking enhanced emission are summarized. Third, the applications and principles of NIR-CDs in imaging, drug delivery, and non-invasive therapeutics are introduced from a view of diagnosis and therapy. Finally, their prospects and challenges in biomedical and biotechnological applications are outlined.
Collapse
Affiliation(s)
- Jing Hu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Ziliang Zheng
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Weiwei Kang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
6
|
Zhang T, Wang B, Cheng Q, Wang Q, Zhou Q, Li L, Qu S, Sun H, Deng C, Tang Z. Polaron engineering promotes NIR-II absorption of carbon quantum dots for bioimaging and cancer therapy. SCIENCE ADVANCES 2024; 10:eadn7896. [PMID: 38968361 PMCID: PMC11225785 DOI: 10.1126/sciadv.adn7896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024]
Abstract
Recent years have witnessed a surge of interest in tuning the optical properties of organic semiconductors for diverse applications. However, achieving control over the optical bandgap in the second near-infrared (NIR-II) window has remained a major challenge. To address this, here we report a polaron engineering strategy that introduces diverse defects into carbon quantum dots (CQDs). These defects induce lattice distortions resulting in the formation of polarons, which can absorb the near-field scattered light. Furthermore, the formed polarons in N-related vacancies can generate thermal energy through the coupling of lattice vibrations, while the portion associated with O-related defects can return to the ground state in the form of NIR-II fluorescence. On the basis of this optical absorption model, these CQDs have been successfully applied to NIR-II fluorescence imaging and photothermal therapy. This discovery could open a promising route for the polarons of organic semiconductor materials as NIR-II absorbers in nanomedical applications.
Collapse
Affiliation(s)
- Tesen Zhang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, China
| | - Bingzhe Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, China
| | - Quansheng Cheng
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, China
| | - Qingcheng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, China
| | - Qingqing Zhou
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lingyun Li
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, China
| | - Songnan Qu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, China
| | - Handong Sun
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontier Science Center for Precision Oncology, Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zikang Tang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, China
- MOE Frontier Science Center for Precision Oncology, Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
7
|
Yang L, An Y, Xu D, Dai F, Shao S, Lu Z, Liu G. Comprehensive Overview of Controlled Fabrication of Multifunctional Fluorescent Carbon Quantum Dots and Exploring Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309293. [PMID: 38342681 DOI: 10.1002/smll.202309293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/24/2024] [Indexed: 02/13/2024]
Abstract
In recent years, carbon dots (CDs) have garnered increasing attention due to their simple preparation methods, versatile performances, and wide-ranging applications. CDs can manifest various optical, physical, and chemical properties including quantum yield (QY), emission wavelength (Em), solid-state fluorescence (SSF), room-temperature phosphorescence (RTP), material-specific responsivity, pH sensitivity, anti-oxidation and oxidation, and biocompatibility. These properties can be effectively regulated through precise control of the CD preparation process, rendering them suitable for diverse applications. However, the lack of consideration given to the precise control of each feature of CDs during the preparation process poses a challenge in obtaining the requisite features for various applications. This paper is to analyze existing research and present novel concepts and ideas for creating CDs with different distinct features and applications. The synthesis methods of CDs are discussed in the first section, followed by a comprehensive overview of the important properties of CDs and the modification strategy. Subsequently, the application of CDs and their requisite properties are reviewed. Finally, the paper outlines the current challenges in controlling CDs properties and their applications, discusses potential solutions, and offers suggestions for future research.
Collapse
Affiliation(s)
- Lijuan Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yibo An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Dazhuang Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Fan Dai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shillong Shao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhixiang Lu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
8
|
Li P, Xue S, Sun L, Ma X, Liu W, An L, Liu Y, Qu D, Sun Z. Formation and Fluorescent Mechanism of Multiple Color Emissive Carbon Dots from o-Phenylenediamine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310563. [PMID: 38757918 DOI: 10.1002/smll.202310563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/30/2024] [Indexed: 05/18/2024]
Abstract
Carbon dots (CDs) have received considerable attention in many application areas owing to their unique optical properties and potential applications; however, the fluorescent mechanism is an obstacle to their applications. Herein, three-color emissive CDs are prepared from single o-phenylenediamine (oPD) by regulating the ratio of ethanol and dimethylformamide (DMF). Fluorescent mechanism of these CDs is proposed as molecular state fluorescence. Reaction intermediates are identified using liquid chromatrography-mass spectroscopy (LC-MS) and 1H nuclear magnetic resonance (NMR) spectra. 1H-Benzo[d]imidazole (BI), 2,3-diaminophenazine (DAP), and 5,14-dihydroquinoxalino[2,3-b] phenazine (DHQP) are proposed to be the fluorophores of blue, green, and red emissive CDs by comparing their optical properties. As per the LC-MS and 1H-NMR analysis, DHQP with red emission tends to form from DAP and oPD in pure ethanol. By adding DMF, BI formation is enhanced and DHQP formation is suppressed. The prepared CDs exhibit green emission with DAP. When the DMF amount is >50%, BI formation is considerably promoted, resulting in DAP formation being suppressed. BI with blue emission then turns into the fluorophore of CDs. This result provides us an improved understanding of the fluorescent mechanism of oPD-based CDs, which guides us in designing the structure and optical properties of CDs.
Collapse
Affiliation(s)
- Pengfei Li
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Shanshan Xue
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Lu Sun
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Xiaobao Ma
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Wenning Liu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Li An
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yichang Liu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Dan Qu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Zaicheng Sun
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
9
|
Li J, Ma X. Preparation of lignin-based full-color carbon quantum dots and their multifunctionalization with waterborne polyurethanes. Int J Biol Macromol 2024; 265:130860. [PMID: 38490397 DOI: 10.1016/j.ijbiomac.2024.130860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Lignin is a popular material for energy transition and high-value utilization due to its low cost, non-toxicity, renewability, and widespread availability. However, its complex structure has hindered its application. Waterborne polyurethane (WPU) uses water as a dispersion medium, which is safer for humans and the environment but also leads to disadvantages such as poor mechanical properties and water resistance. In this study, we prepared multicolor photoluminescent carbon quantum dots (CQDs) in a wide range of wavelengths from lignin. We successfully prepared panchromatic CQDs by additive mixing. The redshift of the emission wavelength is attributed to the synergistic effect of the sp2 conjugated structure and the surface functional groups. The full-color solid-state luminescence of the CQDs was successfully achieved, and most importantly, the application of full-color CQDs in light-emitting diodes was realized. Moreover, the embedding of the multicolor CQDs in WPU not only makes WPU luminescent but also improves the water resistance and mechanical properties of WPUs. The hydrogen-bonding interactions between the functional groups on the surface of the CQDs and the urethane were responsible for the high performance of the composite. We investigated the UV and strong blue light shielding abilities of WPU/yellow CQDs films, which resulted from the unique absorption peaks of yellow CQDs in the UV region and the strong blue light region. This work provides an efficient method for the high-value utilization of biomass materials and paves the way for the multifunctional application of WPU.
Collapse
Affiliation(s)
- Jianfeng Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xingyuan Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
10
|
Kang C, Tao S, Yang F, Zheng C, Qu Z, Yang B. Enabling Carbonized Polymer Dots with Color-tunable Time-dependent Room Temperature Phosphorescence through Confining Carboxyl Dimer Association. Angew Chem Int Ed Engl 2024; 63:e202316527. [PMID: 37983665 DOI: 10.1002/anie.202316527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Developing a facile strategy to realize fine-tuning of phosphorescence color in time-dependent room temperature phosphorescence (RTP) materials is essential but both theoretically and practically rarely exploited. Through simultaneously confining carboxyl dimer association and isolated carboxyl into the particle via a simple hydrothermal treatment of polyacrylic acid, a dual-peak emission of red phosphorescence (645 nm) and green phosphorescence (550 nm) was observed from carbonized polymer dots (CPDs). The ratio of the two luminescent species can be well regulated by hydrochloric acid inhibiting the dissociation of carboxyl to promote hydrogen bond. Due to comparable but different lifetimes, color-tunable time-dependent RTP with color changing from yellow to green or orange to green were obtained. Based on the crosslinking enhanced emission effect, the phosphorescence visible time was even extended to 7 s through introducing polyethylenimide. This study not only proposes a novel and facile method for developing CPDs with color-tunable time-dependent RTP, but also provides a bran-new non-conjugated red phosphorescence unit and its definite structure.
Collapse
Affiliation(s)
- Chunyuan Kang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
| | - Songyuan Tao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
| | - Fan Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
| | - Chengyu Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
| | - Zexing Qu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
| |
Collapse
|
11
|
Stepanidenko EA, Vedernikova AA, Miruschenko MD, Dadadzhanov DR, Feferman D, Zhang B, Qu S, Ushakova EV. Red-Emissive Center Formation within Carbon Dots Based on Citric Acid and Formamide. J Phys Chem Lett 2023; 14:11522-11528. [PMID: 38091348 DOI: 10.1021/acs.jpclett.3c02837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The formation of red-emissive optical centers in carbon dots based on citric acid and formamide was investigated by varying the synthesis parameters with focus on finding optimal─necessary and sufficient─amount of precursors to decrease byproduct amount and to increase the chemical yield of red-emissive carbon dots. The emission is observed at 640 nm excited at 590 nm and quantum yield reaches up 19%. A high chemical yield of carbon dots of 26% was achieved at an optimal molar ratio of citric acid to formamide of 1:4.
Collapse
Affiliation(s)
- Evgeniia A Stepanidenko
- International Research and Education Center for Physics of Nanostructures, ITMO University, 197101 Saint Petersburg, Russia
| | - Anna A Vedernikova
- International Research and Education Center for Physics of Nanostructures, ITMO University, 197101 Saint Petersburg, Russia
| | - Mikhail D Miruschenko
- International Research and Education Center for Physics of Nanostructures, ITMO University, 197101 Saint Petersburg, Russia
| | - Daler R Dadadzhanov
- International Research and Education Center for Physics of Nanostructures, ITMO University, 197101 Saint Petersburg, Russia
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniel Feferman
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Bohan Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, China
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, China
| | - Elena V Ushakova
- International Research and Education Center for Physics of Nanostructures, ITMO University, 197101 Saint Petersburg, Russia
| |
Collapse
|
12
|
Bartolomei B, Sbacchi M, Rosso C, Günay-Gürer A, Zdražil L, Cadranel A, Kralj S, Guldi DM, Prato M. Synthetic Strategies for the Selective Functionalization of Carbon Nanodots Allow Optically Communicating Suprastructures. Angew Chem Int Ed Engl 2023:e202316915. [PMID: 38059678 DOI: 10.1002/anie.202316915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/08/2023]
Abstract
The surface of Carbon Nanodots (CNDs) stands as a rich chemical platform, able to regulate the interactions between particles and external species. Performing selective functionalization of these nanoscale entities is of practical importance, however, it still represents a considerable challenge. In this work, we exploited the organic chemistry toolbox to install target functionalities on the CND surface, while monitoring the chemical changes on the material's outer shell through nuclear magnetic resonance spectroscopy. Following this, we investigated the use of click chemistry to covalently connect CNDs of different nature en-route towards covalent suprastructures with unprecedent molecular control. The different photophysical properties of the connected particles allowed their optical communication in the excited state. This work paves the way for the development of selective and addressable CND building blocks which can act as modular nanoscale synthons that mirror the long-established reactivity of molecular organic synthesis.
Collapse
Affiliation(s)
- Beatrice Bartolomei
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Maria Sbacchi
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Cristian Rosso
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
- Current address: Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Ayse Günay-Gürer
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Lukáš Zdražil
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 78371, Olomouc, Czech Republic
| | - Alejandro Cadranel
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de Materiales, Medio Ambiente y Energía, (INQUIMAE), C1428EHA, Buenos Aires, Argentina
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
- Centre for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain
- Basque Fdn Sci, Ikerbasque, 48013, Bilbao, Spain
| |
Collapse
|
13
|
Rao L, Sun B, Liu Y, Zhang Q, Zhong G, Wen M, Zhang J, Fu T, Niu X. Precise regulation of the multicolor spectrum of carbon dots based on the bionic leaf vein ultrasonic microreactor. ULTRASONICS SONOCHEMISTRY 2023; 101:106674. [PMID: 37924614 PMCID: PMC10656244 DOI: 10.1016/j.ultsonch.2023.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Carbon dots (CDs) are a fascinating new type of fluorescent carbon nanomaterial with excellent photoelectric properties. However, preparing long-wavelength and multicolor-emitting CDs has been challenging, limiting their large-scale applications. Fortunately, a new efficient method has been proposed to co-regulate CDs' multicolor spectra using an ultrasonic microreactor. Inspired by plant leaves, a bionic vein microchannel was designed with good fluidity and high energy transfer efficiency. The optimal microchannel structural parameters were determined after investigating the effects of fractal angle, depth-to-width ratio, and inlet angle on the flow uniformity of the microchannel using numerical simulations. The efficiency of ultrasonic energy transfer was improved by directly coupling the microreactor and the sandwich transducer to fabricate the ultrasonic microreactor. Simulation results showed that the ultrasonic microreactor's vibration resonated along the longitudinal direction, and the ultrasonic intensity of the microreactor was maximal and uniform. A high-efficiency and controllable ultrasonic microreactor system was built to synthesize the CDs in situ. The influence of the ultrasound field intensity on CDs' preparation in a microreactor was simultaneously investigated to verify the ultrasound enhancement, and the PLQY of the high-performance CDs was found to be 83.1%. The CDs' multicolor spectra from the blue to the red region can be precisely tuned by adjusting key reaction parameters such as reaction temperature, flow rate, and precursor concentration. This new method shows promising applications in lighting, display, and other fields, making CDs a versatile and exciting new material to explore.
Collapse
Affiliation(s)
- Longshi Rao
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China; Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China; Guangdong Provincial Key Laboratory of Automotive Display and Touch Technologies, Shantou Ultrasonic Display Technology Co., Ltd., Shantou 515041, China.
| | - Bin Sun
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China; Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Yang Liu
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China; Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Qing Zhang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China; Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Guisheng Zhong
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China; Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China.
| | - Mingfu Wen
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China; Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Jiayang Zhang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China; Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Ting Fu
- Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaodong Niu
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China; Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| |
Collapse
|
14
|
Shi Y, Su W, Yuan F, Yuan T, Song X, Han Y, Wei S, Zhang Y, Li Y, Li X, Fan L. Carbon Dots for Electroluminescent Light-Emitting Diodes: Recent Progress and Future Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210699. [PMID: 36959751 DOI: 10.1002/adma.202210699] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Carbon dots (CDs), as emerging carbon nanomaterials, have been regarded as promising alternatives for electroluminescent light-emitting diodes (LEDs) owing to their distinct characteristics, such as low toxicity, tuneable photoluminescence, and good photostability. In the last few years, despite remarkable progress achieved in CD-based LEDs, their device performance is still inferior to that of well-developed organic, heavy-metal-based QDs, and perovskite LEDs. To better exploit LED applications and boost device performance, in this review, a comprehensive overview of currently explored CDs is presented, focusing on their key optical characteristics, which are closely related to the structural design of CDs from their carbon core to surface modifications, and to macroscopic structural engineering, including the embedding of CDs in the matrix or spatial arrangement of CDs. The design of CD-based LEDs for display and lighting applications based on the fluorescence, phosphorescence, and delayed fluorescence emission of CDs is also highlighted. Finally, it is concluded with a discussion regarding the key challenges and plausible prospects in this field. It is hoped that this review inspires more extensive research on CDs from a new perspective and promotes practical applications of CD-based LEDs in multiple directions of current and future research.
Collapse
Affiliation(s)
- Yuxin Shi
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wen Su
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Fanglong Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ting Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xianzhi Song
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuyi Han
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Shuyan Wei
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yang Zhang
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yunchao Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiaohong Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Louzhen Fan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
15
|
Wang X, Hu J, Wei H, Li Z, Liu J, Zhang J, Yang S. Ultra-fast solvent-free protocol remodels the large-scale synthesis of carbon dots for nucleolus-targeting and white light-emitting diodes. J Colloid Interface Sci 2023; 649:785-794. [PMID: 37385043 DOI: 10.1016/j.jcis.2023.06.171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/05/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Carbon dots (CDs) provides unprecedented opportunities for optical applications due its unique properties, but the energy-extensive consumption, high-risk factor and time-consuming synthesis procedure greatly hinders its industrialization process. Herein, we proposed an ultra-low energy consumption solvent-free synthetic strategy for fast preparing green/red fluorescence carbon dots (G-/R-CDs) using m-/o-phenylenediamine and primary amine hydrochloride. The involvement of primary amine hydrochloride can improve the formation rate of G-CDs/R-CDs through effectively absorbing microwave energy and providing acid react environment. The developed CDs exhibit good fluorescence efficiency, optical stability and membrane permeability for dexterous bioimaging in vivo. Based on inherently high nitrogen content, the G-CDs/R-CDs possess excellent nuclear/nucleolus targeting ability, and were successfully applied for screening cancer and normal cells. Furthermore, the G-CDs/R-CDs were further applied for fabricating high-safety and high-color rendering index white light-emitting diodes, providing a perfect candidate for indoor lighting. This study opens up new horizons for advancing practical applications of CDs in related fields of biology and optics.
Collapse
Affiliation(s)
- Xin Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jinshuang Hu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Hua Wei
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zihan Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jian Liu
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Shenghong Yang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
16
|
Yang Z, Xu T, Li H, She M, Chen J, Wang Z, Zhang S, Li J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem Rev 2023; 123:11047-11136. [PMID: 37677071 DOI: 10.1021/acs.chemrev.3c00186] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
17
|
Molkenova A, Serik L, Ramazanova A, Zhumanova K, Duisenbayeva B, Zhussupbekova A, Zhussupbekov K, Shvets IV, Kim KS, Han DW, Atabaev TS. Terbium-doped carbon dots (Tb-CDs) as a novel contrast agent for efficient X-ray attenuation. RSC Adv 2023; 13:14974-14979. [PMID: 37200699 PMCID: PMC10187046 DOI: 10.1039/d3ra00958k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
Metal-doped carbon dots have attracted considerable attention in nanomedicine over the last decade owing to their high biocompatibility and great potential for bioimaging, photothermal therapy, and photodynamic therapy. In this study, we prepared, and for the first time, examined terbium-doped CDs (Tb-CDs) as a novel contrast agent for computed tomography. A detailed physicochemical analysis revealed that the prepared Tb-CDs have small sizes (∼2-3 nm), contain relatively high terbium concentration (∼13.3 wt%), and exhibit excellent aqueous colloidal stability. Furthermore, preliminary cell viability and CT measurements suggested that Tb-CDs exhibit negligible cytotoxicity toward L-929 cells and demonstrate high X-ray absorption performance (∼48.2 ± 3.9 HU L g-1). Based on these findings, the prepared Tb-CDs could serve as a promising contrast agent for efficient X-ray attenuation.
Collapse
Affiliation(s)
- Anara Molkenova
- Institute of Advanced Organic Materials, Pusan National University Busan 46241 Republic of Korea
| | - Lazzat Serik
- Department of Chemistry, Nazarbayev University Astana 010000 Kazakhstan
| | | | - Kamila Zhumanova
- Department of Chemistry, Nazarbayev University Astana 010000 Kazakhstan
| | - Bakyt Duisenbayeva
- Department of Radiology, Republican Diagnostic Center Astana 010000 Kazakhstan
| | - Ainur Zhussupbekova
- School of Physics, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin Dublin Ireland
| | - Kuanysh Zhussupbekov
- School of Physics, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin Dublin Ireland
| | - Igor V Shvets
- School of Physics, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin Dublin Ireland
| | - Ki Su Kim
- Institute of Advanced Organic Materials, Pusan National University Busan 46241 Republic of Korea
- School of Chemical Engineering, College of Engineering, Pusan National University 2 Busandaehak-ro 63beon-gil, Geumjeong-gu Busan 46241 Republic of Korea
- Department of Organic Material Science & Engineering, Pusan National University 2 Busandaehak-ro 63beon-gil, Geumjeong-gu Busan 46241 Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University Busan 46241 Republic of Korea
| | - Timur Sh Atabaev
- Department of Chemistry, Nazarbayev University Astana 010000 Kazakhstan
| |
Collapse
|
18
|
Song J, Gao X, Yang M, Hao W, Ji DK. Recent Advances of Photoactive Near-Infrared Carbon Dots in Cancer Photodynamic Therapy. Pharmaceutics 2023; 15:pharmaceutics15030760. [PMID: 36986621 PMCID: PMC10051950 DOI: 10.3390/pharmaceutics15030760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Photodynamic therapy (PDT) is a treatment that employs exogenously produced reactive oxygen species (ROS) to kill cancer cells. ROS are generated from the interaction of excited-state photosensitizers (PSs) or photosensitizing agents with molecular oxygen. Novel PSs with high ROS generation efficiency is essential and highly required for cancer photodynamic therapy. Carbon dots (CDs), the rising star of carbon-based nanomaterial family, have shown great potential in cancer PDT benefiting from their excellent photoactivity, luminescence properties, low price, and biocompatibility. In recent years, photoactive near-infrared CDs (PNCDs) have attracted increasing interest in this field due to their deep therapeutic tissue penetration, superior imaging performance, excellent photoactivity, and photostability. In this review, we review recent progress in the designs, fabrication, and applications of PNCDs in cancer PDT. We also provide insights of future directions in accelerating the clinical progress of PNCDs.
Collapse
Affiliation(s)
- Jinxing Song
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiaobo Gao
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Mei Yang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Weiju Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ding-Kun Ji
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Correspondence:
| |
Collapse
|
19
|
Yao X, Lewis RE, Haynes CL. Synthesis Processes, Photoluminescence Mechanism, and the Toxicity of Amorphous or Polymeric Carbon Dots. Acc Chem Res 2022; 55:3312-3321. [PMID: 36417545 DOI: 10.1021/acs.accounts.2c00533] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fluorescence is the emission of light following photon absorption. This optical phenomenon has many applications in daily life, such as in LED lamps, forensics, and bioimaging. Traditionally, small-molecule fluorophores were most common, but the types of molecules and particles with compelling fluorescence properties have expanded. For example, green fluorescent protein (GFP) was isolated from jellyfish and won the Nobel prize in 2008 due to its significant utility as a fluorescent biomarker. Using the intrinsic fluorescence of GFP, many previously invisible biological processes and substances can now be observed and studied. Other fluorescent materials have also been developed, greatly expanding the potential applications. Semiconductor quantum dots (QDs), which have bright fluorescence and a narrow bandwidth, are a popular choice for display technologies. However, QDs are made of heavy metal elements such as Cd and Se, which pose potential safety concerns to the environment and human health. Thus, new fluorescent organic materials are being developed to mitigate the toxicological concerns while maintaining the QD advantages.One type of new material attracting great attention as an environmentally friendly substitute for semiconductor QDs is carbon dots (CDs). CDs have been developed with strong fluorescence, good photostability, and low toxicity using a variety of precursors, and some synthesis processes have good potential for scale-up. However, since they are made of a variety of materials and through different methods, the structure and properties of CDs can differ from preparation to preparation. There are three major types of CDs: graphene quantum dots (GQDs), carbon quantum dots (CQDs), and amorphous or polymeric carbon dots (PCDs). This Account focuses on PCDs and their unique properties by comparing it with other types of CDs. The synthesis processes, fluorescence properties, fluorescence mechanisms, and toxicity are discussed below with an emphasis on the distinct attributes of PCDs.PCDs can be synthesized from small molecules or polymers. They have an amorphous or cross-linked polymer structure with bright fluorescence. This fluorescence is possibly due to cross-link-enhanced emission or clusteroluminescence that arises from the through-space interactions of heteroatomic-rich functional groups. Other fluorescence mechanisms of CDs, including distinct contributions from the carbon core and surface states, may also contribute. The toxicological profiles of CDs are influenced by the chemical composition, surface functionalization, and light illumination. CDs are generally thought to be of low toxicity, and this can be further improved by removing toxic byproducts, functionalizing the surface, and reducing light exposure to minimize the generation of reactive oxygen species.
Collapse
Affiliation(s)
- Xiaoxiao Yao
- Department of Chemistry, University of Minnesota, Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Riley E Lewis
- Department of Chemistry, University of Minnesota, Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|