1
|
Maity A, Maidantchik VD, Weidenfeld K, Larisch S, Barkan D, Haick H. Chemical Tomography of Cancer Organoids and Cyto-Proteo-Genomic Development Stages Through Chemical Communication Signals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413017. [PMID: 39935131 PMCID: PMC11938034 DOI: 10.1002/adma.202413017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/13/2024] [Indexed: 02/13/2025]
Abstract
Organoids mimic human organ function, offering insights into development and disease. However, non-destructive, real-time monitoring is lacking, as traditional methods are often costly, destructive, and low-throughput. In this article, a non-destructive chemical tomographic strategy is presented for decoding cyto-proteo-genomics of organoid using volatile signaling molecules, hereby, Volatile Organic Compounds (VOCs), to indicate metabolic activity and development of organoids. Combining a hierarchical design of graphene-based sensor arrays with AI-driven analysis, this method maps VOC spatiotemporal distribution and generate detailed digital profiles of organoid morphology and proteo-genomic features. Lens- and label-free, it avoids phototoxicity, distortion, and environmental disruption. Results from testing organoids with the reported chemical tomography approach demonstrate effective differentiation between cyto-proteo-genomic profiles of normal and diseased states, particularly during dynamic transitions such as epithelial-mesenchymal transition (EMT). Additionally, the reported approach identifies key VOC-related biochemical pathways, metabolic markers, and pathways associated with cancerous transformations such as aromatic acid degradation and lipid metabolism. This real-time, non-destructive approach captures subtle genetic and structural variations with high sensitivity and specificity, providing a robust platform for multi-omics integration and advancing cancer biomarker discovery.
Collapse
Affiliation(s)
- Arnab Maity
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Vivian Darsa Maidantchik
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Keren Weidenfeld
- Department of Human Biology and Medical SciencesUniversity of HaifaHaifa3498838Israel
| | - Sarit Larisch
- Department of Human Biology and Medical SciencesUniversity of HaifaHaifa3498838Israel
| | - Dalit Barkan
- Department of Human Biology and Medical SciencesUniversity of HaifaHaifa3498838Israel
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
- Life Science Technology (LiST) GroupDanube Private UniversityFakultät Medizin/Zahnmedizin, Steiner Landstraße 124Krems‐Stein3500Austria
| |
Collapse
|
2
|
Sun J, Ahmed I, Brown J, Khosrotehrani K, Shafiee A. The empowering influence of air-liquid interface culture on skin organoid hair follicle development. BURNS & TRAUMA 2025; 13:tkae070. [PMID: 39822647 PMCID: PMC11736897 DOI: 10.1093/burnst/tkae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 01/19/2025]
Abstract
Background Rodent models have been widely used to investigate skin development, but do not account for significant differences in composition compared to human skin. On the other hand, two-dimensional and three-dimensional engineered skin models still lack the complex features of human skin such as appendages and pigmentation. Recently, hair follicle containing skin organoids (SKOs) with a stratified epidermis, and dermis layer have been generated as floating spheres from human-induced pluripotent stem cells (hiPSCs). Methods The current study aims to investigate the generation of hiPSCs-derived SKOs using an air-liquid interface (ALI) model on transwell membranes (T-SKOs) and compares their development with conventional floating culture in low-attachment plates (F-SKOs). Results Mature SKOs containing an epidermis, dermis, and appendages are created in both T-SKO and F-SKO conditions. It was found that the hair follicles are smaller and shorter in the F-SKO compared with T-SKOs. Additionally, the ALI conditions contribute to enhanced hair follicle numbers than conventional floating culture. Conclusions Together, this study demonstrates the significant influence of transwell culture on the morphogenesis of hair follicles within SKOs and highlights the potential for refinement of skin model engineering for advancing dermatology and skin research.
Collapse
Affiliation(s)
- Jane Sun
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102Australia
| | - Imaan Ahmed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102Australia
| | - Jason Brown
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Queensland Health, Brisbane, QLD, 4029Australia
- Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Queensland Health, Brisbane, QLD, 4029Australia
| | - Kiarash Khosrotehrani
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102Australia
| | - Abbas Shafiee
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Queensland Health, Brisbane, QLD, 4029Australia
- Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Queensland Health, Brisbane, QLD, 4029Australia
| |
Collapse
|
3
|
Wang Z, Zhao F, Lang H, Ren H, Zhang Q, Huang X, He C, Xu C, Tan C, Ma J, Duan S, Wang Z. Organoids in skin wound healing. BURNS & TRAUMA 2025; 13:tkae077. [PMID: 39759541 PMCID: PMC11697111 DOI: 10.1093/burnst/tkae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 01/07/2025]
Abstract
Stem cells (SCs) can self-replicate and differentiate into multiple lineages. Organoids, 3D cultures derived from SCs, can replicate the spatial structure and physiological characteristics of organs in vitro. Skin organoids can effectively simulate the physiological structure and function of skin tissue, reliably restoring the natural skin ecology in various in vitro environments. Skin organoids have been employed extensively in skin development and pathology research, offering valuable insights for drug screening. Moreover, they play crucial roles in skin regeneration and tissue repair. This in-depth review explores the construction and applications of skin organoids in wound healing, with a focus on their construction process, including skin appendage integration, and significant advancements in wound-healing research.
Collapse
Affiliation(s)
- Zitong Wang
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, No. 77 Puhe Road, Shenyang, Liaoning 110013, China
| | - Hongxin Lang
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, No. 77 Puhe Road, Shenyang, Liaoning 110013, China
| | - Haiyue Ren
- Department of Pathology, Wuhan Hospital of Traditional Chinese and Western Medicine (Wuhan No. 1 Hospital), No. 215 Zhongshan Street, Wuhan, Hubei 430022, China
| | - Qiqi Zhang
- Department of Pathology, Chengdu Third People's Hospital, No. 82 Qinglong Street, Chengdu, Sichuan 610031, China
| | - Xing Huang
- Department of Anaesthesiology, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yantaxi Road, Xi'an, Shanxi 710061, China
| | - Cai He
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Chengcheng Xu
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Chiyu Tan
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Jiajie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Shu Duan
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| |
Collapse
|
4
|
Jia YY, Atwood SX. Diversity of human skin three-dimensional organotypic cultures. Curr Opin Genet Dev 2024; 89:102275. [PMID: 39536613 DOI: 10.1016/j.gde.2024.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Recently, significant strides have been made in the development of high-fidelity skin organoids, encompassing techniques such as 3D bioprinting, skin-on-a-chip systems, and models derived from pluripotent stem cells (PSCs), replicating appendage structures and diverse skin cell types. Despite the emergence of these state-of-the-art skin engineering models, human organotypic cultures (OTCs), initially proposed in the 1970s, continue to reign as the predominant in vitro cultured three-dimensional skin model in the field of tissue engineering. This enduring prevalence is owed to their cost-effectiveness, straight forward setup, time efficiency, and faithful representation of native human skin. In this review, we systematically delineate recent advances in skin OTC models, aiming to inform future efforts to enhance in vitro skin model fidelity and reproducibility.
Collapse
Affiliation(s)
- Yunlong Y Jia
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Scott X Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Dermatology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
5
|
Ge JY, Wang Y, Li QL, Liu FK, Lei QK, Zheng YW. Trends and challenges in organoid modeling and expansion with pluripotent stem cells and somatic tissue. PeerJ 2024; 12:e18422. [PMID: 39619184 PMCID: PMC11608026 DOI: 10.7717/peerj.18422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/08/2024] [Indexed: 03/10/2025] Open
Abstract
The increasing demand for disease modeling, preclinical drug testing, and long waiting lists for alternative organ substitutes has posed significant challenges to current limitations in organoid technology. Consequently, organoid technology has emerged as a cutting-edge tool capable of accurately recapitulating the complexity of actual organs in physiology and functionality. To bridge the gaps between basic research and pharmaceutical as well as clinical applications, efforts have been made to develop organoids from tissue-derived stem cells or pluripotent stem cells. These developments include optimizing starting cells, refining culture systems, and introducing genetic modifications. With the rapid development of organoid technology, organoid composition has evolved from single-cell to multi-cell types, enhancing their level of biomimicry. Tissue structure has become more refined, and core challenges like vascularization are being addressed actively. These improvements are expected to pave the way for the construction of organoid atlases, automated large-scale cultivation, and universally compatible organoid biobanks. However, major obstacles remain to be overcome before urgently proof-of-concept organoids can be readily converted to practical applications. These obstacles include achieving structural and functional summarily to native tissue, remodeling the microenvironment, and scaling up production. This review aims to summarize the status of organoid development and applications, highlight recent progress, acknowledge existing limitations and challenges, and provide insights into future advancements. It is expected that this will contribute to the establishment of a reliable, scalable, and practical platform for organoid production and translation, further promoting their use in the pharmaceutical industry and regenerative medicine.
Collapse
Affiliation(s)
- Jian-Yun Ge
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
- Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Chinese Academy of Medical Sciences, Tianjin, China
- Innovation and Transformation Center, University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yun Wang
- Institute of Regenerative Medicine, and Department of Dermatology, Affilated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Dermatology, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Qi-Lin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fan-Kai Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Quan-Kai Lei
- Institute of Regenerative Medicine, and Department of Dermatology, Affilated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yun-Wen Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
- Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Chinese Academy of Medical Sciences, Tianjin, China
- Institute of Regenerative Medicine, and Department of Dermatology, Affilated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Rossi GR, Sun J, Lin CY, Wong JK, Alim L, Lam PY, Khosrotehrani K, Wolvetang E, Cheetham SW, Derrick EB, Amoako A, Lehner C, Brooks AJ, Beavis PA, Souza-Fonseca-Guimaraes F. A scalable, spin-free approach to generate enhanced induced pluripotent stem cell-derived natural killer cells for cancer immunotherapy. Immunol Cell Biol 2024; 102:924-934. [PMID: 39269338 DOI: 10.1111/imcb.12820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Natural killer (NK) cells play a vital role in innate immunity and show great promise in cancer immunotherapy. Traditional sources of NK cells, such as the peripheral blood, are limited by availability and donor variability. In addition, in vitro expansion can lead to functional exhaustion and gene editing challenges. This study aimed to harness induced pluripotent stem cell (iPSC) technology to provide a consistent and scalable source of NK cells, overcoming the limitations of traditional sources and enhancing the potential for cancer immunotherapy applications. We developed human placental-derived iPSC lines using reprogramming techniques. Subsequently, an optimized two-step differentiation protocol was introduced to generate high-purity NK cells. Initially, iPSCs were differentiated into hematopoietic-like stem cells using spin-free embryoid bodies (EBs). Subsequently, the EBs were transferred to ultra-low attachment plates to induce NK cell differentiation. iPSC-derived NK (iNK) cells expressed common NK cell markers (NKp46, NKp30, NKp44, CD16 and eomesodermin) at both RNA and protein levels. iNK cells demonstrated significant resilience to cryopreservation and exhibited enhanced cytotoxicity. The incorporation of a chimeric antigen receptor (CAR) construct further augmented their cytotoxic potential. This study exemplifies the feasibility of generating iNK cells with high purity and enhanced functional capabilities, their improved resilience to cryopreservation and the potential to have augmented cytotoxicity through CAR expression. Our findings offer a promising pathway for the development of potential cellular immunotherapies, highlighting the critical role of iPSC technology in overcoming challenges associated with traditional NK cell sources.
Collapse
Affiliation(s)
- Gustavo R Rossi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Jane Sun
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Cheng-Yu Lin
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Joshua Km Wong
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Louisa Alim
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Pui Yeng Lam
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Kiarash Khosrotehrani
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Seth W Cheetham
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
- BASE Facility, University of Queensland, St Lucia, QLD, Australia
| | - Emily B Derrick
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Akwasi Amoako
- The Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Christoph Lehner
- The Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Andrew J Brooks
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | | |
Collapse
|
7
|
Ahmed IA, Sun J, Kong MJ, Khosrotehrani K, Shafiee A. Generating Skin-Derived Precursor-Like Cells From Human-Induced Pluripotent Stem Cell-Derived Skin Organoids. Exp Dermatol 2024; 33:e70017. [PMID: 39582396 DOI: 10.1111/exd.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/20/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Skin-derived precursor (SKPs) cells are multipotent stem cells found in the dermis that contribute to wound healing and induce hair follicle neogenesis when transplanted. The clinical application of adult human SKPs, however, is hindered by their loss of potency after in vitro expansion. To overcome this challenge, we aimed to isolate SKPs from human-induced pluripotent stem cell-derived skin organoids (SKOs), to enable mass production of these cells for therapeutics. We developed a protocol to isolate skin-derived precursor-like cells (SKP-like cells) from human SKOs. SKP-like cells derived from SKOs exhibited characteristic spheroid morphology and were capable of self-renewal in defined SKP growth medium. Immunofluorescence analysis confirmed the expression of key markers, including SOX2, fibronectin and S100β, within the SKP-like cells. The findings of this pilot study shed light on the potential of SKO-derived SKP-like cells for future hair regenerative applications. Furthermore, this research highlights the application of human SKOs as a valuable source for isolating progenitor cells, aiming to advance hair regeneration and restore skin function.
Collapse
Affiliation(s)
- Imaan A Ahmed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jane Sun
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Min Jie Kong
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Kiarash Khosrotehrani
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Abbas Shafiee
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Queensland Health, Brisbane, Queensland, Australia
- Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Queensland Health, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Tang X, Wang J, Chen J, Liu W, Qiao P, Quan H, Li Z, Dang E, Wang G, Shao S. Epidermal stem cells: skin surveillance and clinical perspective. J Transl Med 2024; 22:779. [PMID: 39169334 PMCID: PMC11340167 DOI: 10.1186/s12967-024-05600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
The skin epidermis is continually influenced by a myriad of internal and external elements. At its basal layer reside epidermal stem cells, which fuels epidermal renovation and hair regeneration with powerful self-renewal ability, as well as keeping diverse signals that direct their activity under surveillance with quick response. The importance of epidermal stem cells in wound healing and immune-related skin conditions has been increasingly recognized, and their potential for clinical applications is attracting attention. In this review, we delve into recent advancements and the various physiological and psychological factors that govern distinct epidermal stem cell populations, including psychological stress, mechanical forces, chronic aging, and circadian rhythm, as well as providing an overview of current methodological approaches. Furthermore, we discuss the pathogenic role of epidermal stem cells in immune-related skin disorders and their potential clinical applications.
Collapse
Affiliation(s)
- Xin Tang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaqi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Wanting Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Huiyi Quan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Zhiguo Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| |
Collapse
|
9
|
Riabinin A, Pankratova M, Rogovaya O, Vorotelyak E, Terskikh V, Vasiliev A. Ideal Living Skin Equivalents, From Old Technologies and Models to Advanced Ones: The Prospects for an Integrated Approach. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9947692. [PMID: 39184355 PMCID: PMC11343635 DOI: 10.1155/2024/9947692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/18/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024]
Abstract
The development of technologies for the generation and transplantation of living skin equivalents (LSEs) is a significant area of translational medicine. Such functional equivalents can be used to model and study the morphogenesis of the skin and its derivatives, to test drugs, and to improve the healing of chronic wounds, burns, and other skin injuries. The evolution of LSEs over the past 50 years has demonstrated the leap in technology and quality and the shift from classical full-thickness LSEs to principled new models, including modification of classical models and skin organoids with skin derived from human-induced pluripotent stem cells (iPSCs) (hiPSCs). Modern methods and approaches make it possible to create LSEs that successfully mimic native skin, including derivatives such as hair follicles (HFs), sebaceous and sweat glands, blood vessels, melanocytes, and nerve cells. New technologies such as 3D and 4D bioprinting, microfluidic systems, and genetic modification enable achievement of new goals, cost reductions, and the scaled-up production of LSEs.
Collapse
Affiliation(s)
- Andrei Riabinin
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Maria Pankratova
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Olga Rogovaya
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Vorotelyak
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Vasiliy Terskikh
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey Vasiliev
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Moradikhah F, Farahani M, Shafiee A. Towards the development of sensation-enabled skin substitutes. Biomater Sci 2024; 12:4024-4044. [PMID: 38990154 DOI: 10.1039/d4bm00576g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Recent advances in cell and biofabrication technologies have contributed to the development of complex human organs. In particular, several skin substitutes are being generated using tissue engineering and regenerative medicine (TERM) technologies. However, recent studies mainly focus on the restoration of the dermis and epidermis layers rather than the regeneration of a fully functional innervated skin organ. Innervation is a critical step in functional tissue repair which has been overlooked in the current TERM studies. In the current study, we highlight the importance of sensation in the skin as the largest sensory organ in the human body. In large non-healing skin wounds, the skin sensation is severely diminished or completely lost and ultimately lead to chronic pain and wound healing process interruption. Current therapeutics for restoring skin sensation after trauma are limited. Recent regenerative medicine-based studies could successfully induce neural networks in skin substitutes, but the effectiveness of these technologies in enhancing sensory capability needs further investigation.
Collapse
Affiliation(s)
- Farzad Moradikhah
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mojtaba Farahani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
- Institute of Biomaterials, University of Tehran & Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran
| | - Abbas Shafiee
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
11
|
Tan CT, Lim CY, Lay K. Modelling Human Hair Follicles-Lessons from Animal Models and Beyond. BIOLOGY 2024; 13:312. [PMID: 38785794 PMCID: PMC11117913 DOI: 10.3390/biology13050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
The hair follicle is a specialized appendage of the skin that is critical for multiple functions, including thermoregulation, immune surveillance, and sebum production. Mammals are born with a fixed number of hair follicles that develop embryonically. Postnatally, these hair follicles undergo regenerative cycles of regression and growth that recapitulate many of the embryonic signaling pathways. Furthermore, hair cycles have a direct impact on skin regeneration in homeostasis, cutaneous wound healing, and disease conditions such as alopecia. Here, we review the current knowledge of hair follicle formation during embryonic development and the post-natal hair cycle, with an emphasis on the molecular signaling pathways underlying these processes. We then discuss efforts to capitalize on the field's understanding of in vivo mechanisms to bioengineer hair follicles or hair-bearing skin in vitro and how such models may be further improved to develop strategies for hair regeneration.
Collapse
Affiliation(s)
- Chew Teng Tan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Chin Yan Lim
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Kenneth Lay
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| |
Collapse
|
12
|
Ahmed I, Sun J, Brown J, Khosrotehrani K, Shafiee A. An optimized protocol for generating appendage-bearing skin organoids from human-induced pluripotent stem cells. Biol Methods Protoc 2024; 9:bpae019. [PMID: 38605978 PMCID: PMC11009018 DOI: 10.1093/biomethods/bpae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Organoid generation from pluripotent stem cells is a cutting-edge technique that has created new possibilities for modelling human organs in vitro, as well as opening avenues for regenerative medicine. Here, we present a protocol for generating skin organoids (SKOs) from human-induced pluripotent stem cells (hiPSCs) via direct embryoid body formation. This method provides a consistent start point for hiPSC differentiation, resulting in SKOs with complex skin architecture and appendages (e.g. hair follicles, sebaceous glands, etc.) across hiPSC lines from two different somatic sources.
Collapse
Affiliation(s)
- Imaan Ahmed
- The University of Queensland Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Jane Sun
- The University of Queensland Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Jason Brown
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
- Royal Brisbane and Women’s Hospital, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
| | - Abbas Shafiee
- The University of Queensland Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
- Royal Brisbane and Women’s Hospital, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
| |
Collapse
|