1
|
Bhowmik KC, Rahman MA, Ahmed Y, Hai TB. MXenes: Are They Ready for Direct Air Capture of CO 2? Chem Asian J 2025; 20:e202401822. [PMID: 39908449 DOI: 10.1002/asia.202401822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
Although Direct Air Capture (DAC) of CO2 is a potential technology for climate change mitigation, the cost, scalability, and efficiency of existing materials and techniques are severely limited. MXenes, a type of two-dimensional materials, have drawn interest due to their remarkable conductivity, enormous surface area, and adjustable chemistry, however, their potential for DAC has not yet been thoroughly investigated. Recent developments in MXene synthesis and functionalization are comprehensively reviewed, with an emphasis on how these characteristics might be used to enhance improve CO2 adsorption and capture efficiency. In addition, the difficulties of stability, scalability, and economic feasibility for real-world applications are evaluated. Our findings demonstrate the great potential of MXenes for DAC and offer fresh perspectives on how their special qualities might overcome current constraints. This study presents a new viewpoint on MXenes as a feasible CO2 capture option, indicating new avenues for future research and development, even though further optimization is required.
Collapse
Affiliation(s)
- Konok Chandra Bhowmik
- Department of Mechanical Engineering, Chittagong University of Engineering & Technology, Chittagong, 4349, Bangladesh
| | - Md Arafat Rahman
- Department of Mechanical Engineering, Chittagong University of Engineering & Technology, Chittagong, 4349, Bangladesh
| | - Yunus Ahmed
- Department of Chemistry, Chittagong University of Engineering & Technology, Chittagong, 4349, Bangladesh
| | - Tasmia Binte Hai
- Department of Mechatronics and Industrial Engineering, Chittagong University of Engineering & Technology, Chittagong, 4349, Bangladesh
| |
Collapse
|
2
|
Paul TK, Khaleque MA, Ali MR, Aly Saad Aly M, Bacchu MS, Rahman S, Khan MZH. MXenes from MAX phases: synthesis, hybridization, and advances in supercapacitor applications. RSC Adv 2025; 15:8948-8976. [PMID: 40129646 PMCID: PMC11931508 DOI: 10.1039/d5ra00271k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
MXenes, which are essentially 2D layered structures composed of transition metal carbides and nitrides obtained from MAX phases, have gained substantial interest in the field of energy storage, especially for their potential as electrodes in supercapacitors due to their unique properties such as high electrical conductivity, large surface area, and tunable surface chemistry that enable efficient charge storage. However, their practical implementation is hindered by challenges like self-restacking, oxidation, and restricted ion transport within the layered structure. This review focuses on the synthesis process of MXenes from MAX phases, highlighting the different etching techniques employed and how they significantly influence the resulting MXene structure and subsequent electrochemical performance. It further highlights the hybridization of MXenes with carbon-based materials, conducting polymers, and metal oxides to enhance charge storage capacity, cyclic stability, and ion diffusion. The influence of dimensional structuring (1D, 2D, and 3D architectures) on electrochemical performance is critically analyzed, showcasing their role in optimizing electrolyte accessibility and energy density. Additionally, the review highlights that while MXene-based supercapacitors have seen significant advancements in terms of energy storage efficiency through various material combinations and fabrication techniques, key challenges like large-scale production, long-term stability, and compatibility with electrolytes still need to be addressed. Future research should prioritize developing scalable synthesis methods, optimizing hybrid material interactions, and investigating new electrolyte systems to fully realize the potential of MXene-based supercapacitors for commercial applications. This comprehensive review provides a roadmap for researchers aiming to bridge the gap between laboratory research and commercial supercapacitor applications.
Collapse
Affiliation(s)
- Tamal K Paul
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Md Abdul Khaleque
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
- Department of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Md Romzan Ali
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
- Department of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Mohamed Aly Saad Aly
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
- School of Electrical and Computer Engineering, Georgia Institute of Technology Atlanta GA 30332 USA
- Department of Electrical and Computer Engineering at Georgia Tech Shenzhen Institute (GTSI) Shenzhen Guangdong 518052 China
| | - Md Sadek Bacchu
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
- Department of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Saidur Rahman
- Research Centre for Nano-Materials and Energy Technology, School of Engineering and Technology, Sunway University Bandar Sunway Malaysia
- Department of Engineering, Lancaster University Lancaster UK
| | - Md Zaved H Khan
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
- Department of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
| |
Collapse
|
3
|
Javaherchi P, Zarepour A, Khosravi A, Heydari P, Iravani S, Zarrabi A. Innovative applications of MXenes in dialysis: enhancing filtration efficiency. NANOSCALE 2025; 17:4301-4327. [PMID: 39810585 DOI: 10.1039/d4nr04329d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
MXenes, a family of two-dimensional transition metal carbides and nitrides, exhibit exceptional properties such as high electrical conductivity, large surface area, and chemical versatility, making them ideal candidates for various dialysis applications. One prominent application of MXenes lies in the efficient removal of toxic metals and harmful dyes from wastewater. Their unique structure allows for rapid adsorption and selective separation, significantly improving purification processes. MXenes show great promise in the therapeutic management of acute kidney injury, where their biocompatibility and ability to facilitate toxin removal can mitigate damage to renal tissues. In hemodialysis, MXenes can enhance membrane performance through improved permeability and selectivity, leading to more effective clearance of waste products. Despite the potential of MXene-based composites in dialysis applications, several challenges loom large on the horizon. The stability of MXenes in physiological environments is a critical concern, as they can undergo oxidation or degradation, which may compromise their functionality over time. The scalability of synthesis processes remains a significant barrier; producing high-quality MXene materials in sufficient quantities for clinical use is not yet fully realized. Moreover, ensuring biocompatibility is paramount, as any adverse reactions could lead to inflammation or other complications in patients. The integration of MXenes into existing dialysis systems requires meticulous engineering to maintain optimal filtration properties while avoiding clogging or fouling. The future of MXenes and their composites in dialysis presents a promising horizon, teeming with potential innovations. The development of hybrid materials that utilize MXenes alongside other nanomaterials can lead to multifunctional systems, capable of addressing multiple challenges faced in dialysis treatments. Advancements in fabrication techniques may allow for tailored porosity, enabling customized dialysis solutions for individual patients. Research into surface modifications and composites can enhance their stability and functionality, potentially overcoming current limitations. The purpose of this review is to provide a comprehensive understanding of the current landscape of MXenes in dialysis, highlighting their applications, challenges, and future directions. This review explores the diverse applications of MXenes in the field of dialysis, focusing on their roles in the removal of toxic metals and dyes, therapy for acute kidney injury, and hemodialysis enhancement.
Collapse
Affiliation(s)
- Pouya Javaherchi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye
| | - Parisa Heydari
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| |
Collapse
|
4
|
Wang Z, Dong Z, Wu B, Wang Z, Qiu Z, Wang D, Zeng Q, Liu X, Nam Hui K, Liu Z, Zhang Y. Unlocking the critical roles of N, P Co-Doping in MXene for Lithium-Oxygen Batteries: Elevated d-Band center and expanded interlayer spacing. J Colloid Interface Sci 2024; 676:368-377. [PMID: 39032419 DOI: 10.1016/j.jcis.2024.07.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The design and fabrication of bifunctional catalysts with high electrocatalytic activity and stability are critical for developing highly reversible Li-O2 batteries (LOBs). Herein, the N, P co-doped MXene (NP-MXene) is prepared by one-step annealing method and evaluated as bifunctional catalyst for LOBs. The results suggest that the P doping plays a crucial role in increasing interlayer distance of MXene, thereby effectively providing more active sites, fast mass transfer, and ample space for the deposition/decomposition of Li2O2. Moreover, the N doping can significantly elevate the d-band center of Ti, thereby remarkably improving the adsorption of reaction intermediates and accelerating the deposition/decomposition of Li2O2 films. Consequently, the MXene-based LOBs deliver an ultrahigh specific capacity of 13,995 mAh/g at 500 mA g-1, a discharge/charge voltage gap of 0.89 V, and a cycle life up to 523 cycles with a limited capacity of 1000 mAh/g at 500 mA g-1. Impressively, the as-fabricated flexible LOBs with NP-MXene cathode display excellent cycling stability and ability to continuously power LEDs even after bending. Our findings pave the road of heteroatom doped MXenes as next-generation electrodes for high-performance energy storage and conversion systems.
Collapse
Affiliation(s)
- Zhonghua Wang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Zhen Dong
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Bangjun Wu
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Zhongquan Wang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Zhenping Qiu
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Da Wang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Qingguang Zeng
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Xiaolu Liu
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China; Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China
| | - Kwun Nam Hui
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China
| | - Zheng Liu
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China.
| | - Yelong Zhang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China.
| |
Collapse
|
5
|
Younas H, Ahmad H, Baig N, Aljundi IH. Improved Efficiency and Stability of MXene Membranes via Interlayer Space Tuning for Oily Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20452-20463. [PMID: 39178141 DOI: 10.1021/acs.langmuir.4c01887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Surfactant-stabilized oil-in-water emulsions are a major environmental concern due to their severe consequences for aquatic organisms and humans. Two-dimensional materials, particularly MXenes, are widely used in various applications and could be used in designing advanced membranes. The narrow interlayer spacing and intrinsic oxidation severely limit mass diffusion and induce poor stability, respectively, of MXene-based separating layers on the membrane support, rendering it challenging to use for oil-water separation. Herein, a high-performing, minimally defective MXene membrane with large d-spacing was fabricated. The d-spacing of the MXene sheets was controlled using Si-based species as the intercalating agents. The modified MXene-based membrane (ultrasonication-assisted exfoliated MXene with Si pillars) (U-MX-Si) exhibited an enlarged interlayer spacing of 11 Å, increased surface energy of 41 mJ·m-2, and less defective separating layer compared to that of pristine MXene, which was due to enhanced interlayer spacing. This phenomenon induced a higher degree of exfoliated sheets that facilitated better MXene sheet self-assembly on the membrane support, thereby resulting in high separation efficiency (99%). An increase in the surface energy of the U-MX-Si membrane caused a constant permeate flux during operation, which demonstrated their practical implications. This study presents an important pathway for designing MXene-based membranes for separation applications.
Collapse
|
6
|
Protyai MIH, Bin Rashid A. A comprehensive overview of recent progress in MXene-based polymer composites: Their fabrication processes, advanced applications, and prospects. Heliyon 2024; 10:e37030. [PMID: 39319124 PMCID: PMC11419932 DOI: 10.1016/j.heliyon.2024.e37030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
MXenes are a group of 2D transition metal carbonitrides, nitrides and carbides that have become widely recognized as useful materials since they were first discovered in 2011. MXenes, with their exceptional layered structures and splendid external chemistries, have excellent electrical, optical, and thermal properties, making them suitable for catalysis, biomedical uses, environmental remediation, energy storage, and EMI shielding. Over forty MXene compounds with surface terminations like hydroxyl, oxygen, or fluorine are hydrophilic and easily integrated into various applications. Advanced synthesis methods, including selective etching and etchant modifications, have broadened MXene surface chemistries for customized mechanical, thermal, and electrical applications. Integrating MXenes into polymer composites has demonstrated notable promise, enhancing the host polymers' electrical conductivity, thermal stability and mechanical strength. The MXene-polymer composites demonstrate remarkable prospective on behalf of advanced purposes, including flexible electronics, high-performance EMI shielding materials, and lightweight structural components. MXenes have the desirable characteristic of being able to create flexible and translucent films, as well as improve the properties of polymer matrices. This makes them very suitable for use in advanced technological applications. This review summarizes MXene research, methods, and insights, highlighting key discoveries and future directions. This also highlights the importance of ongoing research to fill in the gaps in current knowledge and improve the practical uses of MXenes.
Collapse
Affiliation(s)
- Md Injamamul Haque Protyai
- Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| | - Adib Bin Rashid
- Department of Mechanical Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
| |
Collapse
|
7
|
Sandhu ZA, Imtiaz K, Raza MA, Ashraf A, Tubassum A, Khan S, Farwa U, Bhalli AH, Al-Sehemi AG. Beyond graphene: exploring the potential of MXene anodes for enhanced lithium-sulfur battery performance. RSC Adv 2024; 14:20032-20047. [PMID: 38911835 PMCID: PMC11191053 DOI: 10.1039/d4ra02704c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024] Open
Abstract
The high theoretical energy density of Li-S batteries makes them a viable option for energy storage systems in the near future. Considering the challenges associated with sulfur's dielectric properties and the synthesis of soluble polysulfides during Li-S battery cycling, the exceptional ability of MXene materials to overcome these challenges has led to a recent surge in the usage of these materials as anodes in Li-S batteries. The methods for enhancing anode performance in Li-S batteries via the use of MXene interfaces are thoroughly investigated in this study. This study covers a wide range of techniques such as surface functionalization, heteroatom doping, and composite structure design for enhancing MXene interfaces. Examining challenges and potential downsides of MXene-based anodes offers a thorough overview of the current state of the field. This review encompasses recent findings and provides a thorough analysis of advantages and disadvantages of adding MXene interfaces to improve anode performance to assist researchers and practitioners working in this field. This review contributes significantly to ongoing efforts for the development of reliable and effective energy storage solutions for the future.
Collapse
Affiliation(s)
- Zeshan Ali Sandhu
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Kainat Imtiaz
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Muhammad Asam Raza
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Adnan Ashraf
- Department of Chemistry, The University of Lahore Lahore Pakistan
| | - Areej Tubassum
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Sajawal Khan
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Umme Farwa
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Ali Haider Bhalli
- Department of Physics, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Abdullah G Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University Abha 61413 Saudi Arabia
| |
Collapse
|
8
|
Hu X, Zhou S, Zhang X, Zeng H, Guo Y, Xu Y, Liang Q, Wang J, Jiang L, Kong B. Superassembled MXene-carboxymethyl chitosan nanochannels for the highly sensitive recognition and detection of copper ions. Analyst 2024; 149:1464-1472. [PMID: 38284827 DOI: 10.1039/d3an02190d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Copper ions (Cu2+), as a crucial trace element, play a vital role in living organisms. Thus, the detection of Cu2+ is of great significance for disease prevention and diagnosis. Nanochannel devices with an excellent nanoconfinement effect show great potential in recognizing and detecting Cu2+ ions. However, these devices often require complicated modification and treatment, which not only damages the membrane structure, but also induces nonspecific, low-sensitivity and non-repeatable detection. Herein, a 2D MXene-carboxymethyl chitosan (MXene/CMC) freestanding membrane with ordered lamellar channels was developed by a super-assembly strategy. The introduction of CMC provides abundant space charges, improving the nanoconfinement effect of the nanochannel. Importantly, the CMC can chelate with Cu2+ ions, endowing the MXene/CMC with the ability to detect Cu2+. The formation of CMC-Cu2+ complexes decreases the space charges, leading to a discernible variation in the current signal. Therefore, MXene/CMC can achieve highly sensitive and stable Cu2+ detection based on the characteristics of nanochannel composition. The linear response range for Cu2+ detection is 10-9 to 10-5 M with a low detection limit of 0.095 nM. Notably, MXene/CMC was successfully applied for Cu2+ detection in real water and fetal bovine serum samples. This work provides a simple, highly sensitive and stable detection platform based on the properties of the nanochannel composition.
Collapse
Affiliation(s)
- Xiaomeng Hu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Shan Zhou
- College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xin Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Hui Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Yaxin Guo
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Yeqing Xu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Qirui Liang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266400, P. R. China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, P. R. China
| |
Collapse
|
9
|
Zhang TQ, Hao S, Zhao JK, Jia ZQ, Tan HW, Yang Y, Hou LA. Exfoliated MXene/poly-melamine-formaldehyde composite membranes for removal of heavy metals and organics from aqueous solutions. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132866. [PMID: 37918074 DOI: 10.1016/j.jhazmat.2023.132866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
Heavy metal ions and organic pollutants discharged into various water bodies have caused serious water pollution, and the efficient removal of these contaminants remains a challenge. Here, we report a novel MXene/poly-melamine-formaldehyde (PMF) composite membrane, in which the PMF particles serve as spacers, and the -NH2 groups of PMF and the hydroxyl groups of MXene nanosheets have a synergistic effect on the adsorption of pollutants, and the crosslinking of glutaraldehyde inhibits the swelling of the composite membrane. The MXene/PMF composite membrane with 83.7% PMF particle loading displays a water permeability of 381.2 L m-2 h-1 bar-1 (405% that of MXene membrane) and excellent adsorption ability. In static adsorption, the removal rates of Zn2+, Pb2+, phenol, and crystal violet reach 96.2%, 91.7%, 99.1%, and 96.4% respectively, 20∼100% higher than those of MXene membranes. In dynamic adsorption, the breakthrough volumes of the membrane for 2 ppm p-nitrophenol solution and methyl blue solution reach 75 mL (about 8500 times membrane volume) and 350 mL (about 39800 times membrane volume), and the saturation volumes are 1500 mL and 5000 mL, respectively. After cyclic adsorption/desorption for four times, the removal rate of the membranes still maintains above 90%. This work provides an efficient composite membrane for removing pollutants from wastewater.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China; Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, PR China
| | - Shuang Hao
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Jun-Kai Zhao
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Zhi-Qian Jia
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China.
| | - Hong-Wei Tan
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China.
| | - Yu Yang
- School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Li-An Hou
- School of Environment, Beijing Normal University, Beijing 100875, PR China; High Tech. Inst. Beijing, Beijing 100000, PR China
| |
Collapse
|
10
|
Huang L, Ding L, Caro J, Wang H. MXene-based Membranes for Drinking Water Production. Angew Chem Int Ed Engl 2023; 62:e202311138. [PMID: 37615530 DOI: 10.1002/anie.202311138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
The soaring development of industry exacerbates the shortage of fresh water, making drinking water production an urgent demand. Membrane techniques feature the merits of high efficiency, low energy consumption, and easy operation, deemed as the most potential technology to purify water. Recently, a new type of two-dimensional materials, MXenes as the transition metal carbides or nitrides in the shape of nanosheets, have attracted enormous interest in water purification due to their extraordinary properties such as adjustable hydrophilicity, easy processibility, antifouling resistance, mechanical strength, and light-to-heat transformation capability. In pioneering studies, MXene-based membranes have been evaluated in the past decade for drinking water production including the separation of bacteria, dyes, salts, and heavy metals. This review focuses on the recent advancement of MXene-based membranes for drinking water production. A brief introduction of MXenes is given first, followed by descriptions of their unique properties. Then, the preparation methods of MXene membranes are summarized. The various applications of MXene membranes in water treatment and the corresponding separation mechanisms are discussed in detail. Finally, the challenges and prospects of MXene membranes are presented with the hope to provide insightful guidance on the future design and fabrication of high-performance MXene membranes.
Collapse
Affiliation(s)
- Lingzhi Huang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Li Ding
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstrasse 3A, 30167, Hannover, Germany
| | - Haihui Wang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Goossens N, Lambrinou K, Tunca B, Kotasthane V, Rodríguez González MC, Bazylevska A, Persson POÅ, De Feyter S, Radovic M, Molina-Lopez F, Vleugels J. Upscaled Synthesis Protocol for Phase-Pure, Colloidally Stable MXenes with Long Shelf Lives. SMALL METHODS 2023:e2300776. [PMID: 37806774 DOI: 10.1002/smtd.202300776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/22/2023] [Indexed: 10/10/2023]
Abstract
MXenes are electrically conductive 2D transition metal carbides/nitrides obtained by the etching of nanolaminated MAX phase compounds, followed by exfoliation to single- or few-layered nanosheets. The mainstream chemical etching processes have evolved from pure hydrofluoric acid (HF) etching into the innovative "minimally intensive layer delamination" (MILD) route. Despite their current popularity and remarkable application potential, the scalability of MILD-produced MXenes remains unproven, excluding MXenes from industrial applications. This work proposes a "next-generation MILD" (NGMILD) synthesis protocol for phase-pure, colloidally stable MXenes that withstand long periods of dry storage. NGMILD incorporates the synergistic effects of a secondary salt, a richer lithium (Li) environment, and iterative alcohol-based washing to achieve high-purity MXenes, while improving etching efficiency, intercalation, and shelf life. Moreover, NGMILD comprises a sulfuric acid (H2 SO4 ) post-treatment for the selective removal of the Li3 AlF6 impurity that commonly persists in MILD-produced MXenes. This work demonstrates the upscaled NGMILD synthesis of (50 g) phase-pure Ti3 C2 Tz MXene clays with high extraction yields (>22%) of supernatant dispersions. Finally, NGMILD-produced MXene clays dry-stored for six months under ambient conditions experience minimal degradation, while retaining excellent redispersibility. Overall, the NGMILD protocol is a leap forward toward the industrial production of MXenes and their subsequent market deployment.
Collapse
Affiliation(s)
- Nick Goossens
- Department of Materials Engineering, KU Leuven, Leuven, BE-3001, Belgium
| | - Konstantina Lambrinou
- School of Computing and Engineering, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Bensu Tunca
- Department of Materials Engineering, KU Leuven, Leuven, BE-3001, Belgium
| | - Vrushali Kotasthane
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX-77843, USA
| | | | | | - Per O Å Persson
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | | | - Miladin Radovic
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX-77843, USA
| | | | - Jozef Vleugels
- Department of Materials Engineering, KU Leuven, Leuven, BE-3001, Belgium
| |
Collapse
|
12
|
Massoumılari Ş, Velioǧlu S. Can MXene be the Effective Nanomaterial Family for the Membrane and Adsorption Technologies to Reach a Sustainable Green World? ACS OMEGA 2023; 8:29859-29909. [PMID: 37636908 PMCID: PMC10448662 DOI: 10.1021/acsomega.3c01182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/29/2023] [Indexed: 08/29/2023]
Abstract
Environmental pollution has intensified and accelerated due to a steady increase in the number of industries, and exploring methods to remove hazardous contaminants, which can be typically divided into inorganic and organic compounds, have become inevitable. Therefore, the development of efficacious technology for the separation processes is of paramount importance to ensure the environmental remediation. Membrane and adsorption technologies garnered attention, especially with the use of novel and high performing nanomaterials, which provide a target-specific solution. Specifically, widespread use of MXene nanomaterials in membrane and adsorption technologies has emerged due to their intriguing characteristics, combined with outstanding separation performance. In this review, we demonstrated the intrinsic properties of the MXene family for several separation applications, namely, gas separation, solvent dehydration, dye removal, separation of oil-in-water emulsions, heavy metal ion removal, removal of radionuclides, desalination, and other prominent separation applications. We highlighted the recent advancements used to tune separation potential of the MXene family such as the manipulation of surface chemistry, delamination or intercalation methods, and fabrication of composite or nanocomposite materials. Moreover, we focused on the aspects of stability, fouling, regenerability, and swelling, which deserve special attention when the MXene family is implemented in membrane and adsorption-based separation applications.
Collapse
Affiliation(s)
- Şirin Massoumılari
- Institute
of Nanotechnology, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
| | - Sadiye Velioǧlu
- Institute
of Nanotechnology, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
- Nanotechnology
Research and Application Center, Gebze Technical
University, Gebze 41400, Kocaeli, Turkey
| |
Collapse
|
13
|
Jatoi AH, Kim KH, Khan MA, Memon FH, Iqbal M, Janwery D, Phulpoto SN, Samantasinghar A, Choi KH, Thebo KH. Functionalized graphene oxide-based lamellar membranes for organic solvent nanofiltration applications. RSC Adv 2023; 13:12695-12702. [PMID: 37114023 PMCID: PMC10126819 DOI: 10.1039/d3ra00223c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
In this study, two-dimensional graphene oxide-based novel membranes were fabricated by modifying the surface of graphene oxide nanosheets with six-armed poly(ethylene glycol) (PEG) at room conditions. The as-modified PEGylated graphene oxide (PGO) membranes with unique layered structures and large interlayer spacing (∼1.12 nm) were utilized for organic solvent nanofiltration applications. The as-prepared 350 nm-thick PGO membrane offers a superior separation (>99%) against evans blue, methylene blue and rhodamine B dyes along with high methanol permeance ∼ 155 ± 10 L m-2 h-1, which is 10-100 times high compared to pristine GO membranes. Additionally, these membranes are stable for up to 20 days in organic solvent. Hence the results suggested that the as-synthesized PGO membranes with superior separation efficiency for dye molecules in organic solvent can be used in future for organic solvent nanofiltration application.
Collapse
Affiliation(s)
- Ashique Hussain Jatoi
- Department of Chemistry, Shaheed Benazir Bhutto University Shaheed Benazirabad 67480 Pakistan
| | | | - Muhammad Ali Khan
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Fida Hussain Memon
- Department of Mechatronics Engineering, Jeju National University Jeju 63243 Republic of Korea
- Department of Electrical Engineering, Sukkur IBA University Sukkur 65200 Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur KPK 22620 Pakistan
| | - Dahar Janwery
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro Pakistan
| | - Shah Nawaz Phulpoto
- Department of Molecular Biology & Genetics, Shaheed Benazir University Shaheed Benazirabad 67480 Pakistan
| | - Anupama Samantasinghar
- Department of Mechatronics Engineering, Jeju National University Jeju 63243 Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University Jeju 63243 Republic of Korea
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences (CAS) Shenyang 110016 China
| |
Collapse
|
14
|
Brette F, Kourati D, Paris M, Loupias L, Célérier S, Cabioc'h T, Deschamps M, Boucher F, Mauchamp V. Assessing the Surface Chemistry of 2D Transition Metal Carbides (MXenes): A Combined Experimental/Theoretical 13C Solid State NMR Approach. J Am Chem Soc 2023; 145:4003-4014. [PMID: 36779668 DOI: 10.1021/jacs.2c11290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The surface functionalization of 2D transition metal carbides or nitrides, so-called MXenes, is one of the fundamental levers allowing to deeply modify their physicochemical properties. Beyond new approaches to control this pivotal parameter, the ability to unambiguously assess their surface chemistry is thus key to expand the application fields of this large class of 2D materials. Using a combination of experiments and state of the art density functional theory calculations, we show that the NMR signal of the carbon─the element common to all MXene carbides and corresponding MAX phase precursors─is extremely sensitive to the MXene functionalization, although carbon atoms are not directly bonded to the surface groups. The simulations include the orbital part to the NMR shielding and the contribution from the Knight shift, which is crucial to achieve good correlation with the experimental data, as demonstrated on a set of reference MXene precursors. Starting with the Ti3C2Tx MXene benchmark system, we confirm the high sensitivity of the 13C NMR shift to the exfoliation process. Developing a theoretical protocol to straightforwardly simulate different surface chemistries, we show that the 13C NMR shift variations can be quantitatively related to different surface compositions and number of surface chemistry variants induced by the different etching agents. In addition, we propose that the etching agent affects not only the nature of the surface groups but also their spatial distribution. The direct correlation between surface chemistry and 13C NMR shift is further confirmed on the V2CTx, Mo2CTx, and Nb2CTx MXenes.
Collapse
Affiliation(s)
- Florian Brette
- Université de Poitiers, ISAE-ENSMA, CNRS, PPRIME, 86073 Poitiers, France
- Nantes Université, CNRS, Institut des Matériaux De Nantes Jean Rouxel, IMN, F-44000 Nantes, France
| | - Dani Kourati
- CNRS, CEMHTI UPR3079, Université D'Orléans, 45071 Orléans, France
| | - Michael Paris
- Nantes Université, CNRS, Institut des Matériaux De Nantes Jean Rouxel, IMN, F-44000 Nantes, France
| | - Lola Loupias
- Institut De Chimie Des Milieux Et Matériaux De Poitiers (IC2MP), Université De Poitiers, CNRS, F-86073 Poitiers, France
| | - Stéphane Célérier
- Institut De Chimie Des Milieux Et Matériaux De Poitiers (IC2MP), Université De Poitiers, CNRS, F-86073 Poitiers, France
| | - Thierry Cabioc'h
- Université de Poitiers, ISAE-ENSMA, CNRS, PPRIME, 86073 Poitiers, France
| | | | - Florent Boucher
- Nantes Université, CNRS, Institut des Matériaux De Nantes Jean Rouxel, IMN, F-44000 Nantes, France
| | - Vincent Mauchamp
- Université de Poitiers, ISAE-ENSMA, CNRS, PPRIME, 86073 Poitiers, France
| |
Collapse
|
15
|
Wang J, Zhou H, Li S, Wang L. Selective Ion Transport in Two-Dimensional Lamellar Nanochannel Membranes. Angew Chem Int Ed Engl 2023; 62:e202218321. [PMID: 36718075 DOI: 10.1002/anie.202218321] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Precise and ultrafast ion sieving is highly desirable for many applications in environment-, energy-, and resource-related fields. The development of a permselective lamellar membrane constructed from parallel stacked two-dimensional (2D) nanosheets opened a new avenue for the development of next-generation separation technology because of the unprecedented diversity of the designable interior nanochannels. In this Review, we first discuss the construction of homo- and heterolaminar nanoarchitectures from the starting materials to the emerging preparation strategies. We then explore the property-performance relationships, with a particular emphasis on the effects of physical structural features, chemical properties, and external environment stimuli on ion transport behavior under nanoconfinement. We also present existing and potential applications of 2D membranes in desalination, ion recovery, and energy conversion. Finally, we discuss the challenges and outline research directions in this promising field.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Huijiao Zhou
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Shangzhen Li
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Lei Wang
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| |
Collapse
|
16
|
Li Y, Liu Z, Li S, Nian P, Xu N, Luo H, Wei Y. Highly permeable and stable hyperbranched polyethyleneimine crosslinked AgNP@Ti3C2Tx MXene membranes for nanofiltration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
Tuneable ion transport by electrically responsive membranes under electrical assistance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Polyaniline-based acid resistant membranes for controllable ion rejection performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Wang J, Zheng S, Liu S, Li S, Wang D, He M, Wang L, Wang X. Ion transport behavior in a vertically-oriented asymmetric Ti3C2Tx nanochannel membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
20
|
Zhang H, Zheng Y, Zhou H, Zhu S, Yang J. Nanocellulose-intercalated MXene NF Membrane with Enhanced Swelling Resistance for Highly Efficient Antibiotics Separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Murali G, Reddy Modigunta JK, Park YH, Lee JH, Rawal J, Lee SY, In I, Park SJ. A Review on MXene Synthesis, Stability, and Photocatalytic Applications. ACS NANO 2022; 16:13370-13429. [PMID: 36094932 DOI: 10.1021/acsnano.2c04750] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic water splitting, CO2 reduction, and pollutant degradation have emerged as promising strategies to remedy the existing environmental and energy crises. However, grafting of expensive and less abundant noble-metal cocatalysts on photocatalyst materials is a mandatory practice to achieve enhanced photocatalytic performance owing to the ability of the cocatalysts to extract electrons efficiently from the photocatalyst and enable rapid/enhanced catalytic reaction. Hence, developing highly efficient, inexpensive, and noble-metal-free cocatalysts composed of earth-abundant elements is considered as a noteworthy step toward considering photocatalysis as a more economical strategy. Recently, MXenes (two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides) have shown huge potential as alternatives for noble-metal cocatalysts. MXenes have several excellent properties, including atomically thin 2D morphology, metallic electrical conductivity, hydrophilic surface, and high specific surface area. In addition, they exhibit Gibbs free energy of intermediate H atom adsorption as close to zero and less than that of a commercial Pt-based cocatalyst, a Fermi level position above the H2 generation potential, and an excellent ability to capture and activate CO2 molecules. Therefore, there is a growing interest in MXene-based photocatalyst materials for various photocatalytic events. In this review, we focus on the recent advances in the synthesis of MXenes with 2D and 0D morphologies, the stability of MXenes, and MXene-based photocatalysts for H2 evolution, CO2 reduction, and pollutant degradation. The existing challenges and the possible future directions to enhance the photocatalytic performance of MXene-based photocatalysts are also discussed.
Collapse
Affiliation(s)
- G Murali
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jeevan Kumar Reddy Modigunta
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Young Ho Park
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jong-Hoon Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Jishu Rawal
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Insik In
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
22
|
Ihsanullah I, Bilal M. Potential of MXene-based membranes in water treatment and desalination: A critical review. CHEMOSPHERE 2022; 303:135234. [PMID: 35679979 DOI: 10.1016/j.chemosphere.2022.135234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
MXenes have emerged as wonderful materials that earned enormous attention in the last decade for applications in various fields. The potential of MXenes in the development of novel membranes has been explored recently by many researchers. This review critically assessed the recent advances in applications of MXene-based materials for the development of novel membranes. The synthesis routes of the MXene-based membranes are discussed, and the applications of developed membranes in water treatment and desalination are elaborated in detail. MXene-based membranes have demonstrated excellent potential in water treatment and desalination for the removal of dyes, metal ions, and salts from water. These membranes have unveiled exceptional antifouling potential and were proven to be a good choice to be employed in oil/water (O/W) separation. Besides impressive progress, numerous barriers restrict the practical applications of these membranes. The challenges related to synthesis routes of MXenes and MXene-based membranes, their stability and reusability potential, and the development of membranes on large scale are highlighted. Finally, recommendations for future work are suggested to overcome these limitations in future.
Collapse
Affiliation(s)
- Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Muhammad Bilal
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| |
Collapse
|
23
|
Huang H, Chu X, Xie Y, Zhang B, Wang Z, Duan Z, Chen N, Xu Z, Zhang H, Yang W. Ti 3C 2T x MXene-Based Micro-Supercapacitors with Ultrahigh Volumetric Energy Density for All-in-One Si-Electronics. ACS NANO 2022; 16:3776-3784. [PMID: 35239314 DOI: 10.1021/acsnano.1c08172] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MXene-based microsupercapacitors (MSCs) have promoted the development of on-chip energy storage for miniaturized and portable electronics due to the small size, high power density and integration density. However, restricted energy density and operating voltage invariably create obstacles to the practical application of MSCs. Here, we report a symmetric MXene-based on-chip MSC, achieving an ultrahigh energy density of 75 mWh cm-3 with high operating voltage of 1.2 V, which are almost the highest values among all reported symmetric MXene MSCs. The adjustment strategy of acetone on the viscosity and surface tension of MXene ink, along with the natural sedimentation strategy, can effectively prevent the orderly stacking of MXene sheets. Further, we developed an all-in-one Si-electronics with three series MSCs through laser-etching technology, obviously presenting high integration capacity and processing compatibility. Thus, this work will contribute to the development of high integration all-in-one electronics with high energy density MXene-based MSCs.
Collapse
Affiliation(s)
- Haichao Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiang Chu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yanting Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Binbin Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zixing Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhongyi Duan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ningjun Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhong Xu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Haitao Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
24
|
Chen J, Wu J, Sherrell PC, Chen J, Wang H, Zhang W, Yang J. How to Build a Microplastics-Free Environment: Strategies for Microplastics Degradation and Plastics Recycling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103764. [PMID: 34989178 PMCID: PMC8867153 DOI: 10.1002/advs.202103764] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/25/2021] [Indexed: 05/19/2023]
Abstract
Microplastics are an emergent yet critical issue for the environment because of high degradation resistance and bioaccumulation. Unfortunately, the current technologies to remove, recycle, or degrade microplastics are insufficient for complete elimination. In addition, the fragmentation and degradation of mismanaged plastic wastes in environment have recently been identified as a significant source of microplastics. Thus, the developments of effective microplastics removal methods, as well as, plastics recycling strategies are crucial to build a microplastics-free environment. Herein, this review comprehensively summarizes the current technologies for eliminating microplastics from the environment and highlights two key aspects to achieve this goal: 1) Catalytic degradation of microplastics into environmentally friendly organics (carbon dioxide and water); 2) catalytic recycling and upcycling plastic wastes into monomers, fuels, and valorized chemicals. The mechanisms, catalysts, feasibility, and challenges of these methods are also discussed. Novel catalytic methods such as, photocatalysis, advanced oxidation process, and biotechnology are promising and eco-friendly candidates to transform microplastics and plastic wastes into environmentally benign and valuable products. In the future, more effort is encouraged to develop eco-friendly methods for the catalytic conversion of plastics into valuable products with high efficiency, high product selectivity, and low cost under mild conditions.
Collapse
Affiliation(s)
- Junliang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jing Wu
- Co‐Innovation Center for Textile IndustryInnovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| | - Peter C. Sherrell
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research Institute (IPRI)Australian Institute of Innovative Materials (AIIM)University of WollongongWollongongNew South Wales2522Australia
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
- Co‐Innovation Center for Textile IndustryInnovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| | - Wei‐xian Zhang
- College of Environmental Science and EngineeringState Key Laboratory of Pollution Control and Resources ReuseTongji UniversityShanghai200092P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
25
|
Liu G, Guo Y, Meng B, Wang Z, Liu G, Jin W. Two-dimensional MXene hollow fiber membrane for divalent ions exclusion from water. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Castro-Muñoz R. MXene: A two-dimensional material in selective water separation via pervaporation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
27
|
Wang X, Wang Z, Qiu J. Stabilizing MXene by Hydration Chemistry in Aqueous Solution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xingyu Wang
- State Key Lab of Fine Chemicals Liaoning Key Lab for Energy Materials and Chemical Engineering School of Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Zhiyu Wang
- State Key Lab of Fine Chemicals Liaoning Key Lab for Energy Materials and Chemical Engineering School of Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Jieshan Qiu
- College of Chemical Engineering Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
28
|
Wang X, Wang Z, Qiu J. Stabilizing MXene by Hydration Chemistry in Aqueous Solution. Angew Chem Int Ed Engl 2021; 60:26587-26591. [PMID: 34729881 DOI: 10.1002/anie.202113981] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 11/05/2022]
Abstract
MXenes attract interest in diverse fields but suffer from fast structural degradation by attacking of dissolved oxygen and water molecules in aqueous solution. This drawback hinders the long-term storage, applications and understanding of the chemical nature of MXenes. Herein, we report a cost-effective and environmentally sustainable way for long-term storage of MXenes in aqueous solution by hydration chemistry of nontoxic inorganic salts. The attacking of MXene by free water and dissolved oxygen molecules is inhibited by decreasing the water activity, which simultaneously lowers the dissolved oxygen concentration, of saline solution. As a result, the storage life of MXene can be prolonged to up to 400 days at ambient conditions without loss of intrinsic surface chemistry and bulk carrier properties. Over 90 % of salt protectant can be recycled by simply evaporating the final waste liquor after fully extracting the MXene to minimize the waste discharge and processing cost. This work offers a commercializable approach with high cost-effectiveness, processing sustainability and environmental benefit for extending the shelf life of MXenes.
Collapse
Affiliation(s)
- Xingyu Wang
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhiyu Wang
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jieshan Qiu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
29
|
Do HH, Cho JH, Han SM, Ahn SH, Kim SY. Metal-Organic-Framework- and MXene-Based Taste Sensors and Glucose Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:7423. [PMID: 34770730 PMCID: PMC8587148 DOI: 10.3390/s21217423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022]
Abstract
Taste sensors can identify various tastes, including saltiness, bitterness, sweetness, sourness, and umami, and have been useful in the food and beverage industry. Metal-organic frameworks (MOFs) and MXenes have recently received considerable attention for the fabrication of high-performance biosensors owing to their large surface area, high ion transfer ability, adjustable chemical structure. Notably, MOFs with large surface areas, tunable chemical structures, and high stability have been explored in various applications, whereas MXenes with good conductivity, excellent ion-transport characteristics, and ease of modification have exhibited great potential in biochemical sensing. This review first outlines the importance of taste sensors, their operation mechanism, and measuring methods in sensing utilization. Then, recent studies focusing on MOFs and MXenes for the detection of different tastes are discussed. Finally, future directions for biomimetic tongues based on MOFs and MXenes are discussed.
Collapse
Affiliation(s)
- Ha Huu Do
- School of Chemical Engineering and Materials Science, Chung-Ang University, Dongjak-gu, Seoul 06974, Korea;
| | - Jin Hyuk Cho
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, Seongbuk-gu, Seoul 02841, Korea;
| | - Sang Mok Han
- Korea Institute of Geoscience and Mineral Resources, Yuseong-gu, Pohang 37559, Korea
| | - Sang Hyun Ahn
- School of Chemical Engineering and Materials Science, Chung-Ang University, Dongjak-gu, Seoul 06974, Korea;
| | - Soo Young Kim
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, Seongbuk-gu, Seoul 02841, Korea;
| |
Collapse
|