1
|
Sun S, Liu M, Mao Y, Liu F, Xu X, Li Y, Lv X, Zhao S, Liu X, Wu Y, Chen Y. Ultrathin, 2D PdAg alloy mesoporous nanosheets enriched with nanogaps promote electrocatalytic CO 2 reduction to formate. Dalton Trans 2025; 54:8306-8316. [PMID: 40289850 DOI: 10.1039/d5dt00436e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Pd-based catalysts have emerged as a unique class of promising catalysts capable of selectively producing formate near the equilibrium potential during CO2 electroreduction but still suffer from CO poisoning at high overpotentials. Achieving an excellent overall performance, including high formate selectivity, a wide potential window, and high anti-CO-poisoning ability, remains a significant challenge. Herein, we report the surfactant-templated synthesis of ultrathin, two-dimensional (2D) binary PdAg alloy mesoporous nanosheets enriched with nanogaps among interlinked branches with regulated atomic stoichiometry for highly efficient CO2 reduction to formate. These advanced structural features enabled the catalysts to expose abundant active sites, and a proper Ag concentration within the alloy effectively tailored the electronic structure of Pd through electron transfer from Ag to Pd. The synergetic effect resulting from the structural and electronic perspectives greatly contributed to the promotion of electrocatalytic CO2 reduction to formate. As a result, the optimized Pd4Ag1 nanosheets displayed a maximum formate faradaic efficiency of 99.4% at -0.1 V versus reversible hydrogen electrode and exhibited a wide potential window of 400 mV for high formate selectivity (>90%) toward CO2 reduction. Moreover, the detailed electrochemical analyses collectively evidenced that the Pd4Ag1 nanosheets exhibited attenuated CO binding and CO poisoning. This work highlights a promising avenue for the elaborate design and construction of efficient formate-targeted catalysts.
Collapse
Affiliation(s)
- Shangqing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Miaomiao Liu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Shanghai 201800, China
| | - Yalan Mao
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Fang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xinyuan Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yuan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Ximei Lv
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Shulin Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xiaojing Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yuping Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
- Confucius Energy Storage Lab, School of Energy and Environment & Z Energy Storage Center, South East University, Nanjing, 211189, China
| | - Yuhui Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
2
|
Gong Z, Deng Z, Wang Y, Li C, Gong M, Wang X. Atomic Cobalt-Doped Palladium Metallene toward Efficient Oxygen Reduction Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23809-23816. [PMID: 40229191 DOI: 10.1021/acsami.4c21490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Designing a high-efficiency catalyst for the cathode oxygen reduction reaction (ORR) in fuel cells still faces enormous challenges due to the stringent requirements for high power density and long-term durability. Palladium (Pd) metallene, on account of its unique properties and high Pd utilization efficiency, is recognized as a prospective candidate for enhancing the ORR catalytic performance. Herein, we present atomic cobalt (Co)-doped Pd metallene (Co-Pdene), featuring an ultrathin and highly curved morphology, developed via a straightforward wet-chemical approach for efficient ORR electrocatalysis in alkaline media. Resulting from the metallene structure and transition metal Co doping, the Co-Pdene catalyst demonstrates exceptional electrocatalytic performance, achieving an electrochemical mass activity (MA) of 3.14 A per milligram palladium at 0.85 V while maintaining structural integrity over 30000 potential cycles. Theory simulations (DFT) manifest that the single-atom Co sites optimize the electronic structure of palladium in the Co-Pdene, thereby lowering the theoretical overpotential to 0.29 V. This work proposes an innovative design strategy of single-atom transition metal-doped Pd metallene as a highly efficient ORR electrocatalyst.
Collapse
Affiliation(s)
- Zhe Gong
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, Hubei 430078, P. R. China
| | - Zhiping Deng
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada
| | - Yongqian Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, Hubei 430078, P. R. China
| | - Chen Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, Hubei 430078, P. R. China
| | - Mingxing Gong
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, Hubei 430078, P. R. China
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
3
|
Cheng Y, Guan J, Zhang Z, Li R, Yao Y, Sun X, Liu Q, Chen X. In Situ SERS Monitoring and Heterogeneous Catalysis Verification of Pd-Catalyzed Suzuki-Miyaura Reaction via Bifunctional "Black Raspberry-like" Plasmonic Nanoreactors. Anal Chem 2025; 97:5445-5453. [PMID: 40032529 DOI: 10.1021/acs.analchem.4c03670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Constructing materials that possess both catalytic properties and surface plasmonic active structures presents an essential requirement in the field of in situ surface-enhanced Raman spectroscopy (SERS) monitoring. In this work, we developed a novel black raspberry-like bifunctional nanoreactor platform (HPRS@Au-Pd) with enhanced surface-enhanced Raman spectroscopy (SERS) activity (EF = 3.11 × 109) and excellent catalytic performance (e.g., |K| = 1.72 × 10-2 s-1 for 4-BTP). This platform enables sensitive and real-time monitoring of Suzuki reactions, providing an efficient and stable system for mechanistic investigations. By fitting a first-order kinetic model, we quantitatively analyzed the reaction kinetics of haloarenes on Pd NPs, revealing the direct involvement of surface-bound Pd NPs in the catalytic process. Furthermore, 4MPBA-blocking experiments using haloarenes devoid of functional groups demonstrated the absence of catalytic activity from dissolved Pd species, conclusively supporting the heterogeneous nature of the reaction. This work extends the applicability of the conclusion regarding heterogeneous catalysis to a broader range of substrates, offering valuable insights into the design and optimization of dual-functional nanoreactors. Beyond the Suzuki reactions, the versatility of this platform opens avenues for applications in other catalytic reactions, showcasing its potential in advanced catalytic studies and real-time monitoring.
Collapse
Affiliation(s)
- Yujun Cheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Jianping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Zhipeng Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Ruili Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yao Yao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaotong Sun
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Xiangjiang Laboratory, Changsha 410083, Hunan, China
| |
Collapse
|
4
|
Wu C, Zhang Y, Yang HY. Rational Design and Facile Preparation of Palladium-Based Electrocatalysts for Small Molecules Oxidation. CHEMSUSCHEM 2025; 18:e202401127. [PMID: 39211939 DOI: 10.1002/cssc.202401127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Direct liquid fuel cells (DLFCs) can convert the chemical energy of small organic molecules directly into electrical energy, which is a promising technique and always calls for electrocatalysts with high activity, stability and selectivity. Palladium (Pd)-based catalysts for DLFCs have been widely studied with the pursuit of ultra-high performance, however, most of the preparation routes require complex agents, multi-operation steps, even extreme experimental conditions, which are high-cost, energy-consuming, and not conducive to the scalable and sustainable production of catalysts. In this review, the recent progresses on not only the rational design strategies, but also the facile preparation methods of Pd-based electrocatalysts for small molecules oxidation reaction (SMOR) are comprehensively summarized. Based on the principles of green chemistry in material synthesis, the basic rules of "facile method" have been restricted, and the fabrication processes, perks and drawbacks, as well as practical applications of the "real" facile methods have been highlighted. The landscape of this review is to facilitate the mild preparation of efficient Pd-based electrocatalysts for SMOR, that is, to achieve a balance between "facile preparation" and "outstanding performance", thereby to stimulate the huge potential of sustainable nano-electrocatalysts in various research and industrial fields.
Collapse
Affiliation(s)
- Chenshuo Wu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 819 Xisaishan Road, Huzhou, 313001, China
| | - Yingmeng Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 819 Xisaishan Road, Huzhou, 313001, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
5
|
Basumatary P, Choi JH, Konwar D, Ramchiary A, Han B, Yoon YS. Hierarchical PtCuMnP Nanoalloy for Efficient Hydrogen Evolution and Methanol Oxidation. SMALL METHODS 2024; 8:e2301651. [PMID: 38461539 DOI: 10.1002/smtd.202301651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Indexed: 03/12/2024]
Abstract
The higher amount of Pt usage and its poisoning in methanol oxidation reaction in acidic media is a major setback for methanol fuel cells. Herein, a promising dual application high-performance electrocatalyst has been developed for hydrogen evolution and methanol oxidation. A low Pt-content nanoalloy co-doped with Cu, Mn, and P is synthesized using a modified solvothermal process. Initially, ultrasmall ≈2.9 nm PtCuMnP nanoalloy is prepared on N-doped graphene-oxide support and subsequently, it is characterized using several analytical techniques and examined through electrochemical tests. Electrochemical results show that PtCuMnP/N-rGO has a low overpotential of 6.5 mV at 10 mA cm-2 in 0.3 m H2SO4 and high mass activity for the hydrogen evolution reaction. For the methanol oxidation reaction, the PtCuMnP/N-rGO electrocatalyst exhibits robust performance. The mass activity of PtCuMnP/N-rGO is 6.790 mA mg-1 Pt, which is 7.43 times higher than that of commercial Pt/C (20% Pt). Moreover, in the chronoamperometry test, PtCuMnP/N-rGO shows exceptionally good stability and retains 72% of the initial current density even after 20,000 cycles. Furthermore, the PtCuMnP/N-rGO electrocatalyst exhibits outstanding performance for hydrogen evolution and methanol oxidation along with excellent anti-poisoning ability. Hence, the developed bifunctional electrocatalyst can be used efficiently for hydrogen evolution and methanol oxidation.
Collapse
Affiliation(s)
- Padmini Basumatary
- Department of Materials Science and Engineering, Gachon University, Bokjung-dong, Seongnam-si, Gyeonggi-Do, 1342, Republic of Korea
| | - Ji-Hyeok Choi
- Department of Materials Science and Engineering, Gachon University, Bokjung-dong, Seongnam-si, Gyeonggi-Do, 1342, Republic of Korea
| | - Dimpul Konwar
- Department of Materials Science and Engineering, Gachon University, Bokjung-dong, Seongnam-si, Gyeonggi-Do, 1342, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Anjalu Ramchiary
- Department of Physics, Bodoland University, Rangalikhata, Kokrajhar, Assam, 783370, India
| | - Byungchan Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young Soo Yoon
- Department of Materials Science and Engineering, Gachon University, Bokjung-dong, Seongnam-si, Gyeonggi-Do, 1342, Republic of Korea
| |
Collapse
|
6
|
Chen L, Sun XQ, Song ZY, Gao RH, Guo Z, Huang XJ. Theoretical Validation of Non-Noble Cu Sites Integrated on SnO 2 Nanoflowers for Enhanced Gas Sensing of Ethanethiol at Room Temperature. Inorg Chem 2024; 63:11438-11449. [PMID: 38833708 DOI: 10.1021/acs.inorgchem.4c01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Ethanethiol (EtSH), being highly toxic, flammable, and explosive, poses significant risks to human health and safety and is capable of causing fires and explosions. Room-temperature detection using chemiresistive gas sensors is essential for managing these risks. However, the gas-sensing performance of conventional metal-oxide sensing materials may be limited by their weak interaction with EtSH at room temperature. Herein, SnO2 nanoflowers assembled with non-noble Cu-site-enriched porous nanosheets were designed and prepared by an in situ self-template pyrolysis synthesis strategy to enable highly sensitive and selective room-temperature detection of EtSH. By regulating the number of non-noble Cu sites, these nanoflowers achieved efficient EtSH sensing with a Ra/Rg value of 11.0 at 50 ppb, ensuring high selectivity, reproducibility, and stability at room temperature. Moreover, a comparative analysis of the room-temperature gas-sensing performance of SnO2 nanoflowers with non-noble Fe- or Ni-site-enriched nanosheets highlights the benefits of non-noble Cu sites for EtSH detection. Density functional theory (DFT) analysis reveals that non-noble Cu sites have a unique affinity for EtSH, offering preferential binding over other gases and explaining the outstanding sensing performance of non-noble Cu-site-enriched nanosheet-assembled SnO2 nanoflowers. The structural and interface engineering of the sensing materials presented in this work provides a promising approach for offering efficient and durable gas sensors operable at room temperature.
Collapse
Affiliation(s)
- Li Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| | - Xi-Qian Sun
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| | - Zong-Yin Song
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Ren-Hui Gao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| | - Zheng Guo
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| | - Xing-Jiu Huang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education, Hefei 230601, P. R. China
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| |
Collapse
|
7
|
Li M, Lin F, Zhang S, Zhao R, Tao L, Li L, Li J, Zeng L, Luo M, Guo S. High-entropy alloy electrocatalysts go to (sub-)nanoscale. SCIENCE ADVANCES 2024; 10:eadn2877. [PMID: 38838156 DOI: 10.1126/sciadv.adn2877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Alloying has proven power to upgrade metallic electrocatalysts, while the traditional alloys encounter limitation for optimizing electronic structures of surface metallic sites in a continuous manner. High-entropy alloys (HEAs) overcome this limitation by manageably tuning the adsorption/desorption energies of reaction intermediates. Recently, the marriage of nanotechnology and HEAs has made considerable progresses for renewable energy technologies, showing two important trends of size diminishment and multidimensionality. This review is dedicated to summarizing recent advances of HEAs that are rationally designed for energy electrocatalysis. We first explain the advantages of HEAs as electrocatalysts from three aspects: high entropy, nanometer, and multidimension. Then, several structural regulation methods are proposed to promote the electrocatalysis of HEAs, involving the thermodynamically nonequilibrium synthesis, regulating the (sub-)nanosize and anisotropic morphologies, as well as engineering the atomic ordering. The general relationship between the electronic structures and electrocatalytic properties of HEAs is further discussed. Finally, we outline remaining challenges of this field, aiming to inspire more sophisticated HEA-based nanocatalysts.
Collapse
Affiliation(s)
- Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shipeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Rui Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lu Tao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lu Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Junyi Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Alemany-Molina G, Navlani-García M, Juan-Juan J, Morallón E, Cazorla-Amorós D. Exploring the synergistic effect of palladium nanoparticles and highly dispersed transition metals on carbon nitride/super-activated carbon composites for boosting electrocatalytic activity. J Colloid Interface Sci 2024; 660:401-411. [PMID: 38244506 DOI: 10.1016/j.jcis.2024.01.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
In the present work, multifunctional electrocatalysts formed by palladium nanoparticles (Pd NPs) loaded on Fe or Cu-containing composite supports, based on carbon nitride (C3N4) and super-activated carbon with a high porosity development (SBET 3180 m2/g, VDR 1.57 cm3/g, and VT 1.65 cm3/g), were synthesised. The presence of Fe or Cu sites favoured the formation of Pd NPs with small average particle size and a very narrow size distribution, which agreed with Density Functional Theory (DFT) calculations showing that the interaction of Pd clusters with C3N4 flakes is weaker than with Cu- or Fe-C3N4 sites. The electroactivity was also dependent on the composition and, as suggested by preliminary DFT calculations, the Pd-Cu catalyst showed lower overpotential for hydrogen evolution reaction (HER) while bifunctional oxygen reduction reaction/ oxygen evolution reaction (ORR/OER) behaviour was superior in Pd-Fe sample. The Pd-Fe electrocatalyst was studied in a zinc-air battery (ZAB) for 10 h, showing a performance similar to a commercial Pt/C + RuO2 catalyst with a high content of precious metal. This study demonstrates the synergistic effect between Pd species and transition metals and shows that transition metals anchored on C3N4-based composite materials promote the electroactivity of Pd NPs in HER, ORR and OER due to the interaction between both species.
Collapse
Affiliation(s)
- G Alemany-Molina
- Department of Inorganic Chemistry and Materials Institute, University of Alicante, Ap. 99, Alicante E-03080, Spain
| | - M Navlani-García
- Department of Inorganic Chemistry and Materials Institute, University of Alicante, Ap. 99, Alicante E-03080, Spain
| | - J Juan-Juan
- Research Support Services, University of Alicante, Ap. 99, Alicante E-03080, Spain
| | - E Morallón
- Department of Physical Chemistry and Materials Institute, University of Alicante, Ap. 99, Alicante E-03080, Spain
| | - D Cazorla-Amorós
- Department of Inorganic Chemistry and Materials Institute, University of Alicante, Ap. 99, Alicante E-03080, Spain.
| |
Collapse
|
9
|
Perera AK, Song K, Meng X, Wan WY, Umezu S, Sato H. Metal-Plastic Hybrid Additive Manufacturing to Realize Small-Scale Self-Propelled Catalytic Engines. ACS OMEGA 2024; 9:283-293. [PMID: 38222604 PMCID: PMC10785629 DOI: 10.1021/acsomega.3c04949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 01/16/2024]
Abstract
Microengines driven by catalytic decomposition of a fuel have been an interesting research area recently due to their diverse applications, such as environmental monitoring and drug delivery. Literature reports a number of studies on this topic where researchers have made various attempts to manufacture such microengines. Some such methods are deposition of catalytic metal layers on sacrificial photoresists, electrochemical deposition of metal layers on polymeric structures, or 3D printing of structures followed by multi-step loading of structures with catalysts. These methods, even though proven to be effective, are tedious, time-consuming, and expensive. To address these issues, herein we report a 3D printing technique to realize microengines in a simple, rapid, and inexpensive single-step process. The printing of various shapes of microengines is achieved using digital light processing printing of a catalyst resin, where Pd(II) acts as a catalyst resin. The proposed integrated molding process can achieve cost-effective preparation of high-efficiency microengines. We demonstrate the locomotion of these microengines in 30% (w/w) H2O2 through the decomposition of H2O2 to generate oxygen to facilitate the self-propelled locomotion. The study characterizes the microengine based on several factors, such as the role of H2O2, Pd, shape, and design of the microengine, to get a full picture of the self-locomotion of microengines. The study shows that the developed method is feasible to manufacture microengines in a simple, rapid, and inexpensive manner to be suitable for numerous applications such as environmental monitoring, remediation, drug delivery, diagnosis, etc., through the modification of the catalyst resin and fuel, as desired.
Collapse
Affiliation(s)
- Adhikarige
Taniya Kaushalya Perera
- School
of Mechanical and Aerospace Engineering, Nanyang Technological University, N3.2−01- 20, 65 Nanyang Drive, Singapore 637460, Singapore
| | - Kewei Song
- Graduate
School of Creative Science and Engineering, Department of Modern Mechanical
Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Xiangyi Meng
- Graduate
School of Creative Science and Engineering, Department of Modern Mechanical
Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Wei Yang Wan
- School
of Mechanical and Aerospace Engineering, Nanyang Technological University, N3.2−01- 20, 65 Nanyang Drive, Singapore 637460, Singapore
| | - Shinjiro Umezu
- Graduate
School of Creative Science and Engineering, Department of Modern Mechanical
Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hirotaka Sato
- School
of Mechanical and Aerospace Engineering, Nanyang Technological University, N3.2−01- 20, 65 Nanyang Drive, Singapore 637460, Singapore
| |
Collapse
|
10
|
Zhou L, Sun Y, Wu Y, Zhu Y, Xu Y, Jia J, Wang F, Wang R. Controlled Growth of Pd Nanocrystals by Interface Interaction on Monolayer MoS 2: An Atom-Resolved in Situ Study. NANO LETTERS 2023. [PMID: 38010863 DOI: 10.1021/acs.nanolett.3c03960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The crystal growth kinetics is crucial for the controllable preparation and performance modulation of metal nanocrystals (NCs). However, the study of growth mechanisms is significantly limited by characterization techniques, and it is still challenging to in situ capture the growth process. Real-time and real-space imaging techniques at the atomic scale can promote the understanding of microdynamics for NC growth. Herein, the growth of Pd NCs on monolayer MoS2 under different atmospheres was in situ studied by environmental transmission electron microscopy. Introducing carbon monoxide can modulate the diffusion of Pd monomers, resulting in the epitaxial growth of Pd NCs with a uniform orientation. The electron energy loss spectroscopy and theoretical calculations showed that the CO adsorption assured the specific exposed facets and good uniformity of Pd NCs. The insight into the gas-solid interface interaction and the microscopic growth mechanism of NCs may shed light on the precise synthesis of NCs on two-dimensional (2D) materials.
Collapse
Affiliation(s)
- Liang Zhou
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yinghui Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yusong Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuchen Zhu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yingying Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Fang Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
11
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Wang W, Erofeev I, He Y, Yang F, Yan H, Lu J, Mirsaidov U. Direct Observation of Hollow Bimetallic Nanoparticle Formation through Galvanic Replacement and Etching Reactions. NANO LETTERS 2023. [PMID: 37988597 DOI: 10.1021/acs.nanolett.3c02575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Hollow bimetallic nanoparticles (NPs) formed from metal oxide NP templates are widely used catalysts for hydrogen evolution and CO2 reduction reactions. Despite their importance in catalysis, the details of how these NPs form on the NP templates remain unclear. Here, using in situ liquid-phase transmission electron microscopy (TEM) imaging, we describe the conversion of Cu2O template NPs to hollow PdCu NPs. Our observations show that a polycrystalline PdCu shell forms on the surface of the template via a galvanic replacement reaction while the template undergoes anisotropic etching. This study provides important insights into the synthesis of hollow metallic nanostructures from metal oxide templates.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Physics, National University of Singapore, 117551, Singapore
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, 117557, Singapore
| | - Ivan Erofeev
- Department of Physics, National University of Singapore, 117551, Singapore
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, 117557, Singapore
| | - Ya He
- Department of Physics, National University of Singapore, 117551, Singapore
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, 117557, Singapore
| | - Fangqi Yang
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Hongwei Yan
- Department of Physics, National University of Singapore, 117551, Singapore
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, 117557, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Utkur Mirsaidov
- Department of Physics, National University of Singapore, 117551, Singapore
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, 117557, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 117546, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| |
Collapse
|
13
|
Liu M, Zhou S, Choi SI, Xia Y. Deterministic Synthesis of Pd Nanocrystals Enclosed by High-Index Facets and Their Enhanced Activity toward Formic Acid Oxidation. PRECISION CHEMISTRY 2023; 1:372-381. [PMID: 37654808 PMCID: PMC10467563 DOI: 10.1021/prechem.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023]
Abstract
Noble-metal nanocrystals enclosed by high-index facets are of growing interest due to their enhanced catalytic performance in a variety of reactions. Herein, we report the deterministic synthesis of Pd nanocrystals encased by high-index facets by controlling the rate of deposition (Vdeposition) relative to that of surface diffusion (Vdiffusion). For octahedral seeds with truncated corners, a reduction rate (and thus deposition rate) faster than that of surface diffusion (i.e., Vdeposition/Vdiffusion > 1) led to the formation of concave trisoctahedra (TOH) with high-index facets. When the reduction was slowed down, in contrast, surface diffusion dominated the growth pathway. In the case of Vdeposition/Vdiffusion ≈ 1, truncated octahedra with enlarged sizes were produced. When the reduction rate was between these two extremes, we obtained concave tetrahexahedra (THH) without or with truncation. Similar growth patterns were also observed for the cuboctahedral seeds. When the Pd octahedra, concave TOH, and concave THH were tested for electrocatalyzing the formic acid oxidation (FAO) reaction, those with high-index facets were advantageous over the conventional Pd octahedra enclosed by {111} facets. This work not only contributes to the understanding of surface diffusion and its role in nanocrystal growth but also offers a general protocol for the synthesis of nanocrystals enclosed by high-index facets.
Collapse
Affiliation(s)
- Maochang Liu
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- International
Research Center for Renewable Energy, State Key Laboratory of Multiphase
Flow, Xi’an Jiaotong University, Xi’an, Shanxi 710049, P. R. China
| | - Siyu Zhou
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sang-Il Choi
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Younan Xia
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
14
|
Zhang K, Wang C, Guo S, Li S, Wu Z, Hata S, Li J, Shiraishi Y, Du Y. Photoelectrocatalytic oxidation of ethylene glycol on trimetallic PdAgCu nanospheres enhanced by surface plasmon resonance. J Colloid Interface Sci 2023; 636:559-567. [PMID: 36669449 DOI: 10.1016/j.jcis.2023.01.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The notable surface plasmon resonance (SPR) effect of some metals has been applied to improve the efficiency of alcohol oxidation reactions, whereas the comprehensive investigation of Cu-assisted photoelectrocatalysis remains challenging. We herein successfully prepared trimetallic PdAgCu nanospheres (NSs) with abundant surface bulges for the advanced ethylene glycol oxidation reaction (EGOR) and compared them with bimetallic PdAg NSs to investigate the performance enhancement mechanism. Impressively, the as-optimized PdAgCu NSs exhibited superb mass activity and electrochemical stability. Moreover, under visible light illumination, the mass activity of PdAgCu NSs increased to 1.62 times compared to that in the dark, and in contrast, the mass activity of PdAg NSs only increased to 1.48 times that in the dark. A mechanistic study indicated that the incorporation of Cu not only strengthens the whole SPR effect of PdAgCu NSs but also further modifies the electronic structure of Pd. This work highlighted that the incorporation of Cu into PdAg NSs further enhanced the photoelectrocatalytic performance and increased noble metal atom utilization, which may provide guidance to fabricate novel and promising nanocatalysts in the field of photoelectrocatalysis.
Collapse
Affiliation(s)
- Kewang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Siyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Shujin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Shinichi Hata
- Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yukihide Shiraishi
- Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China.
| |
Collapse
|
15
|
Yan M, Yin S, Meng F, Qi J, Li X, Cui P, Wang Y, Wang L. Metal nanoparticles capped with plant polyphenol for oxygen reduction electrocatalysis. J Colloid Interface Sci 2023; 641:359-365. [PMID: 36940592 DOI: 10.1016/j.jcis.2023.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023]
Abstract
The development of a convenient and universal strategy for the synthesis of inorganic-organic hybrid nanomaterials with phenolic coating on the surface is of special significance for the preparation of electrocatalysts. In this work, we report an environmentally friendly, practical, and convenient method for one-step reduction and generation of organically capped nanocatalysts using natural polyphenol tannic acid (TA) as reducing agents and coating agents. TA coated metal (Pd, Ag and Au) nanoparticles are prepared by this strategy, among which TA coated Pd nanoparticles (PdTA NPs) show excellent oxygen reduction reaction activity and stability under alkaline conditions. Interestingly, the TA in the outer layer makes PdTA NPs methanol resistant, and TA acts as molecular armor against CO poisoning. We propose an efficient interfacial coordination coating strategy, which opens up new way to regulate the interface engineering of electrocatalysts reasonably and has broad application prospects.
Collapse
Affiliation(s)
- Min Yan
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shuli Yin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Fanqing Meng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jianguang Qi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xin Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Peizhe Cui
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yinglong Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
16
|
Zhang L, Zhao Z, Fu X, Zhu S, Min Y, Xu Q, Li Q. Curved Porous PdCu Metallene as a High-Efficiency Bifunctional Electrocatalyst for Oxygen Reduction and Formic Acid Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5198-5208. [PMID: 36691303 DOI: 10.1021/acsami.2c19196] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Designing high-efficiency and newly developed Pd-based bifunctional catalytic materials still faces tremendous challenges for oxygen reduction reaction (ORR) and formic acid oxidation reaction (FAO). Metallene materials with unique structural features are considered strong candidates for enhancing the catalytic performance. In this work, we synthesized copper-doped two-dimensional curved porous Pd metallene nanomaterials via a simplistic one-pot solvothermal method. The updated catalysts served as sturdy bifunctional electrocatalysts for cathodal ORR and anodic FAO. In particular, the developed PdCu metallene exhibits excellent half-wave potential (0.943 V vs RHE) and mass activity (MA) (1.227 A mgPt-1) in alkaline solutions, which are 1.09 and 6.26 times higher than those of commercial Pt/C, respectively, indicating that the nanomaterials have abundant active sites, displaying surpassing catalytic performance for oxygen reduction. Furthermore, in an acidic formic acid electrolyte, PdCu metallene exhibits prominent MA with a value of 0.905 A mgPd-1, which is 2.76 times that of commercial Pd/C. The remarkable bifunctional catalytic performance of metallene materials can be attributed to the special structure and electronic effects. This work shows that metallene materials with curved and porous properties provide a scientific idea for the development and design of efficient and steady electrocatalysts.
Collapse
Affiliation(s)
- Li Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhengwei Zhao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xin Fu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Sheng Zhu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| | - Qiaoxia Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| |
Collapse
|
17
|
Luo W, Jiang Y, Wang M, Lu D, Sun X, Zhang H. Design strategies of Pt-based electrocatalysts and tolerance strategies in fuel cells: a review. RSC Adv 2023; 13:4803-4822. [PMID: 36760269 PMCID: PMC9903923 DOI: 10.1039/d2ra07644f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
As highly efficient conversion devices, proton-exchange-membrane fuel cells (PEMFCs) can directly convert chemical energy to electrical energy with high efficiencies and lower or even zero emissions compared to combustion engines. However, the practical applications of PEMFCs have been seriously hindered by the intermediates (especially CO) poisoning of anodic Pt catalysts. Hence, how to improve the CO tolerance of the needed Pt catalysts and reveal their anti-CO poisoning mechanism are the key points to developing novel anti-toxic Pt-based electrocatalysts. To date, two main strategies have received increasing attention in improving the CO tolerance of Pt-based electrocatalysts, including alloying Pt with a second element and fabricating composites with geometry and interface engineering. Herein, we will first discuss the latest developments of Pt-based alloys and their anti-CO poisoning mechanism. Subsequently, a detailed description of Pt-based composites with enhanced CO tolerance by utilizing the synergistic effect between Pt and carriers is introduced. Finally, a brief perspective and new insights on the design of Pt-based electrocatalysts to inhibit CO poisoning in PEMFCs are also presented.
Collapse
Affiliation(s)
- Wenlei Luo
- National Innovation Institute of Defense Technology, Academy of Military Science Beijing 100071 China
| | - Yitian Jiang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Mengwei Wang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Dan Lu
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Xiaohui Sun
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Huahui Zhang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| |
Collapse
|
18
|
Xu H, Chen J, Zhang Z, Hung CT, Yang J, Li W. In Situ Confinement of Ultrasmall Metal Nanoparticles in Short Mesochannels for Durable Electrocatalytic Nitrate Reduction with High Efficiency and Selectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207522. [PMID: 36408927 DOI: 10.1002/adma.202207522] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Electrocatalytic reduction is a sustainable approach for NO3 - removal and high-value N-containing compounds manufacturing, which, however, is strongly obstructed by sluggish kinetics, low selectivity, and poor stability. Herein, the in situ confinement of ultrasmall CuPd alloy nanoparticles in mesochannels of conductive core-shell structured carbon nanotubes@mesoporous carbon substrates (CNTs@mesoC@CuPd) via a simple molecule-mediated interfacial assembly method is reported. As a catalyst for electrocatalytic NO3 - reduction, the CNTs@mesoC@CuPd shows a splendid conversion efficiency (100%), N2 selectivity (98%), cycling stability (>30 days), and removal capacity as high as 30 000 mg N g-1 CuPd, which are much superior to most of the prior reports. Notably, experimental (in situ testing and isotopic labeling) and theoretical results unveil that bimetallic and monometallic catalysts for electrocatalytic NO3 - reduction exhibit exclusive selectivity for N2 and NH3 , respectively. This in situ confinement strategy is universal for the synthesis of stable and highly accessible metallic catalysts, which opens an appealing way to synthesize advanced catalysts with high activity, selectivity, and stability.
Collapse
Affiliation(s)
- Hui Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Junliang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhenghao Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Chin-Te Hung
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wei Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
19
|
Li H, Huang H, Chen Y, Lai F, Fu H, Zhang L, Zhang N, Bai S, Liu T. High-Entropy Alloy Aerogels: A New Platform for Carbon Dioxide Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209242. [PMID: 36373568 DOI: 10.1002/adma.202209242] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/29/2022] [Indexed: 06/16/2023]
Abstract
High-entropy alloy aerogels (HEAAs) combined with the advantages of high-entropy alloys and aerogels are prospective new platforms in catalytic reactions. However, due to the differences in reduction potentials and miscibility behavior of different metals, the realization of HEAAs with a single phase is still a great challenge. Herein, a series of HEAAs is fabricated via the freeze-thaw method as highly active and durable electrocatalysts for the carbon dioxide reduction reaction (CO2 RR). Especially, the PdCuAuAgBiIn HEAAs can achieve Faradaic efficiency (FE) of C1 products almost 100% from -0.7 to -1.1 V versus reversible hydrogen electrode (VRHE ), and a maximum FE for formic acid (FEHCOOH ) of 98.1% at -1.1 VRHE , outperforming PdCuAuAgBiIn high-entropy alloy particles (HEAPs) and Pd metallic aerogels (MAs). Specifically, the current density and FEHCOOH are almost 200 mA cm-2 and 87% in a flow cell. The impressive CO2 RR performance of the PdCuAuAgBiIn HEAAs is attributed to the strong interactions between the different metals and the surface unsaturated sites, which can regulate the electronic structures of different metals and allow the optimal HCOO* intermediate adsorption and desorption onto the catalysts surface to enhance HCOOH production. The work not only provides a facile synthetic strategy to fabricate HEAAs, but also opens the avenue for development of efficient catalysts and beyond.
Collapse
Affiliation(s)
- Hanjun Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| | - Honggang Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| | - Yao Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Hui Fu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| | - Longsheng Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| | - Nan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| | - Shuxing Bai
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
20
|
Wang P, Xu T, Xi B, Yuan J, Song N, Sun D, Xiong S. A Zn8 Double-Cavity Metallacalix[8]arene as Molecular Sieve to Realize Self-Cleaning Intramolecular Tandem Transformation of Li-S Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207689. [PMID: 36259588 DOI: 10.1002/adma.202207689] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Toward the well-explored lithium-sulfur (Li-S) catalytic chemistry, the slow adsorption-migration-conversion kinetics of lithium polysulfides on catalytic materials and Li2 S deposition-induced passivation of active sites limit the rapid and complete conversion of sulfur. Conceptively, molecular architectures can provide atom-precise models to understand the underlying active sites responsible for selective adsorption and conversion of LiPSs and Li2 S2 /Li2 S species. Here, an octanuclear Zn(II) (Zn8 ) cluster is presented, which features a metallacalix[8]arene with double cavities up and down the Zn8 ring. The central Zn8 ring and the specific double cavities with organic ligands of different electronegativity and bonding environments render active sites with variable steric hindrance and interaction toward the sulfur-borne species. An intramolecular tandem transformation mechanism is realized exclusively by Zn8 cluster, which promotes the self-cleaning of active sites and continuous electrochemical reaction. Notably, the external azo groups and internal Zn/O sites of Zn8 cluster in sequence stimulate the adsorption and conversion of long chain Li2 Sx (x ≥ 4) and short chain Li2 S/Li2 S2 , contributing to remarkable rate performance and cycling stability. This work pioneers the application of metallacalix[n]arene clusters with atom-precise structure in Li-S batteries, and the proposed mechanism advances the molecule-level understanding of Li-S catalytic chemistry.
Collapse
Affiliation(s)
- Peng Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Tianyang Xu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jia Yuan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Ning Song
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
21
|
Pi Y, Ma Y, Wang X, Price CAH, Li H, Liu Q, Wang L, Chen H, Hou G, Su BL, Liu J. Multilevel Hollow Phenolic Resin Nanoreactors with Precise Metal Nanoparticles Spatial Location toward Promising Heterogeneous Hydrogenations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205153. [PMID: 35999183 DOI: 10.1002/adma.202205153] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Hollow nanostructures with fascinating properties have inspired numerous interests in broad research fields. Cell-mimicking complex hollow architectures with precise active components distributions are particularly important, while their synthesis remains highly challenging. Herein, a "top-down" chemical surgery strategy is introduced to engrave the 3-aminophenol formaldehyde resin (APF) spheres at nanoscale. Undergoing the cleavage of (Ar)CN bonds with ethanol as chemical scissors and subsequent repolymerization process, the Solid APF transform to multilevel hollow architecture with precise nanospatial distribution of organic functional groups (e.g., hydroxymethyl and amine). The transformation is tracked by electron microscopy and solid-state nuclear magnetic resonance techniques, the category and dosage of alcohol are pivotal for constructing multilevel hollow structures. Moreover, it is demonstrated the evolution of nanostructures accompanied with unique organic microenvironments is able to accurately confine multiple gold (Au) nanoparticles, leading to the formation of pomegranate-like particles. Through selectively depositing palladium (Pd) nanoparticles onto the outer shell, bimetallic Au@APF@Pd catalysts are formed, which exhibit excellent hydrogenation performance with turnover frequency (TOF) value up to 11257 h-1 . This work provides an effective method for precisely manipulating the nanostructure and composition of polymers at nanoscale and sheds light on the design of catalysts with precise spatial active components.
Collapse
Affiliation(s)
- Yutong Pi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Yanfu Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xinyao Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Cameron-Alexander Hurd Price
- Department of Chemical Engineering and Analytical Science, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
- The University of Manchester at Harwell, Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, UK
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Labs, Harwell campus, Didcot, Oxfordshire, OX11 0FA, UK
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Haitao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Qinglong Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Liwei Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Hongyu Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Bao-Lian Su
- Laboratory of Inorganic Materials Chemistry, University of Namur, 61, rue de Bruxelles, Namur, 5000, Belgium
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| |
Collapse
|
22
|
Gao F, Li C, Ren Y, Li B, Lv C, Yang X, Zhang X, Lu Z, Yu X, Li L. High‐Efficient Ultrathin PdCuMo Porous Nanosheets with Abundant Defects for Oxygen Reduction Reaction. Chemistry 2022; 28:e202201860. [DOI: 10.1002/chem.202201860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Fan Gao
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Chuanliang Li
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Yangyang Ren
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Baosong Li
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Chenhao Lv
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Xiaojing Yang
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Xinghua Zhang
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Zunming Lu
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Xiaofei Yu
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Lanlan Li
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| |
Collapse
|
23
|
Yaraki MT, Zahed Nasab S, Zare I, Dahri M, Moein Sadeghi M, Koohi M, Tan YN. Biomimetic Metallic Nanostructures for Biomedical Applications, Catalysis, and Beyond. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Mohammad Dahri
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Maedeh Koohi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran
| | - Yen Nee Tan
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, No. 05-04, 609607, Singapore
| |
Collapse
|
24
|
Li C, Li M, Xu H, Zhao F, Gong S, Wang H, Qi J, Wang Z, Fan X, Peng W, Liu J. Constructing hollow nanotube-like amorphous vanadium oxide and carbon hybrid via in-situ electrochemical induction for high-performance aqueous zinc-ion batteries. J Colloid Interface Sci 2022; 623:277-284. [PMID: 35597011 DOI: 10.1016/j.jcis.2022.05.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
Abstract
Aqueous zinc-ion batteries receive more and more attentions on account of their low cost, high theoretical density and inherent safety. Nevertheless, the lack of suitable cathode materials with excellent performance still severely impedes the development of aqueous zinc-ion batteries. Herein, an in-situ electrochemical induction strategy is developed to prepare hollow nanotube-like amorphous vanadium oxide and carbon (a-V2O5@C) hybrid and its electrochemical performance is investigated comprehensively as cathode materials for aqueous zinc-ion batteries. Benefitting from the unique amorphous structure of V2O5 and intimate contact between amorphous V2O5 and carbon, the a-V2O5@C hybrid possess the abundant ion storage sites, isotropic ion diffusion routes and excellent conductivity. As a result, the a-V2O5@C hybrid cathode shows outstanding specific capacity of 448 mAh g-1 at 0.15 A g-1. Impressively, the a-V2O5@C hybrid cathode exhibits superior cycling stability, even when cycling at high current density of 10 A g-1, that the 96.5% specific capacity retention can be gained over 1500 cycles, corresponding to an average specific capacity loss of only 0.0023% per cycle. Furthermore, the mechanism involved is illustrated by systematical characterizations. Therefore, this work affords a new way for developing high-performance cathode materials for aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Chunli Li
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Meng Li
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Huiting Xu
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Fan Zhao
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Siqi Gong
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Honghai Wang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Junjie Qi
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Zhiying Wang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiapeng Liu
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
25
|
Zhu G, Jiang Y, Yang H, Wang H, Fang Y, Wang L, Xie M, Qiu P, Luo W. Constructing Structurally Ordered High-Entropy Alloy Nanoparticles on Nitrogen-Rich Mesoporous Carbon Nanosheets for High-Performance Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110128. [PMID: 35146816 DOI: 10.1002/adma.202110128] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Recent efforts have observed nanoscaled chemical short-range order in bulk high-entropy alloys (HEAs). Simultaneously inspired with the nanostructuring technology, HEA nanoparticles (NPs) with complete chemical order may be achieved. Herein, structurally ordered HEA (OHEA) NPs are constructed on a novel 2D nitrogen-rich mesoporous carbon sandwich framework (OHEA-mNC) by combining a ligand-assisted interfacial assembly with NH3 annealing. Characterization results show that the resultant materials possess an ultrathin 2D nanosheet structure with large mesopores (≈10 nm), where structurally ordered HEA NPs with an L12 phase are homogeneously dispersed. The atom-resolved chemical analyses explicitly determine the location of each atomic site. When being evaluated for the oxygen reduction reaction, the OHEA-mNC NPs afford a greatly enhanced catalytic performance, including a large half-wave potential (0.90 eV) and a high durability (0.01 V decay after 10 000 cycles) compared with the disordered HEA and commercial Pt/C catalysts. The excellent performance is attributed to the enhanced mass transfer rate, improved electron conductivity, and the presence of the stable chemically ordered HEA phase, as revealed by both the experimental results and theoretical calculation. This study suggests a highly feasible process to achieve structurally ordered HEA NPs with advanced mesoporous function in the electrochemical field.
Collapse
Affiliation(s)
- Guihua Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, P. R. China
| | - Ying Jiang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Haoyu Yang
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| | - Haifeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, P. R. China
| | - Yuan Fang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, P. R. China
| | - Lei Wang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Meng Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, P. R. China
| | - Pengpeng Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, P. R. China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
26
|
Yin H, Shen Y, Xi W, Liu X, Yin S, Jia J, Zhang J, Ding Y. Accelerated Hydrogen "Spill-Over" Enhances Anode Performance of Tensile Strained Pd-Based Fuel Cell Electrocatalysts. SMALL METHODS 2022; 6:e2101328. [PMID: 35038252 DOI: 10.1002/smtd.202101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Development of efficient electrocatalysts usually relies on half-cell electrochemical tests for rapid material screening, which however are not always consistent with the associated full cell evaluation. This study designs a tensile-strained Pd anode and reveals that with a lower apparent activity toward the hydrogen oxidation reaction as compared to the unstrained one, it exhibits a surprisingly high activity in proton exchange membrane fuel cells (PEMFCs). With an ultralow Pd loading of 4.5 µg cm-2 , the tensile-strained Pd achieves a maximum power density of 1048 mW cm-2 , indicating a 30-fold improvement in power efficiency than that of commercial Pd/C, nearly four times of that of the unstrained one. This discrepancy can be ascribed to the hydrogen-rich surface in the H2 atmosphere of PEMFCs owing to the accelerated hydrogen "spill-over" in the tensile-strained Pd with a standout hydrogen storage property.
Collapse
Affiliation(s)
- Huiming Yin
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Yongli Shen
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Wei Xi
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Xizheng Liu
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Shuai Yin
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Jiankuo Jia
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Jian Zhang
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Yi Ding
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| |
Collapse
|