1
|
Xiao Y, He M, Zhang X, Yang M, Yuan Z, Yao S, Qin Y. Research progress on the mechanism of tumor cell ferroptosis regulation by epigenetics. Epigenetics 2025; 20:2500949. [PMID: 40327848 PMCID: PMC12064064 DOI: 10.1080/15592294.2025.2500949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025] Open
Abstract
Cancer remains a significant barrier to human longevity and a leading cause of mortality worldwide. Despite advancements in cancer therapies, challenges such as cellular toxicity and drug resistance to chemotherapy persist. Regulated cell death (RCD), once regarded as a passive process, is now recognized as a programmed mechanism with distinct biochemical and morphological characteristics, thereby presenting new therapeutic opportunities. Ferroptosis, a novel form of RCD characterized by iron-dependent lipid peroxidation and unique mitochondrial damage, differs from apoptosis, autophagy, and necroptosis. It is driven by reactive oxygen species (ROS)-induced lipid peroxidation and is implicated in tumorigenesis, anti-tumor immunity, and resistance, particularly in tumors undergoing epithelial-mesenchymal transition. Moreover, ferroptosis is associated with ischemic organ damage, degenerative diseases, and aging, regulated by various cellular metabolic processes, including redox balance, iron metabolism, and amino acid, lipid, and glucose metabolism. This review focuses on the role of epigenetic factors in tumor ferroptosis, exploring their mechanisms and potential applications in cancer therapy. It synthesizes current knowledge to provide a comprehensive understanding of epigenetic regulation in tumor cell ferroptosis, offering insights for future research and clinical applications.
Collapse
Affiliation(s)
- Yuyang Xiao
- Department of Health Management Medical, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mengyang He
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xupeng Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Meng Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhangchi Yuan
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shanhu Yao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Medical Information Research, Central South University, Changsha, Hunan, China
| | - Yuexiang Qin
- Department of Health Management Medical, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Zhang C, Xiao L, Fang Z, Li S, Fan C, You R, Wang C, Li A, Wang X, Zhang M. Gestational Exposure to Black Phosphorus Nanoparticles Induces Placental Trophoblast Dysfunction by Triggering Reactive Oxygen Species-Regulated Mitophagy. ACS NANO 2025; 19:16517-16533. [PMID: 40264356 PMCID: PMC12060646 DOI: 10.1021/acsnano.4c18731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
As a type of two-dimensional nanomaterial, black phosphorus (BP) has attracted considerable interest for applications in various fields. Despite its advantages, including biodegradability and biocompatibility, recent studies have shown that BP exhibits cytotoxicity in different types of cells. However, no studies have investigated the effects of BP exposure during pregnancy. Herein, we first investigated the effect of gestational exposure to BP nanoparticles (BPNPs) in a mouse model. Our findings indicated that BPNPs exposure restricted fetal growth and hindered placental development. In HTR8/SVneo trophoblast cells, BPNPs inhibited cell proliferation, migration, and invasion and caused apoptosis in a dose-dependent manner. Furthermore, BPNPs induced intracellular reactive oxygen species (ROS) overproduction and extensive mitochondrial damage. We further demonstrated that BPNPs promoted mitophagy via the PINK1/Parkin signaling pathway. Parkin siRNA knockdown rescued BPNPs-induced trophoblast dysfunction, while ROS inhibition attenuated BPNPs-induced cytotoxicity by reducing mitochondrial damage. Finally, treatment with mdivi-1, a mitophagy inhibitor, mitigated mitochondrial membrane potential reduction, excessive mtROS production, and the resulting trophoblast dysfunction. In vivo model investigation indicated that the application of mdivi-1 ameliorated embryonic resorption and fetal growth by alleviating placental damage. In summary, gestational exposure to BPNPs impairs fetal growth by inducing placental trophoblast dysfunction through ROS-regulated, PINK1/Parkin-dependent mitophagy.
Collapse
Affiliation(s)
- Changqing Zhang
- Key
Laboratory of Maternal & Fetal Medicine of National Health Commission
of China, Shandong Provincial Maternal and
Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Li Xiao
- Key
Laboratory of Maternal & Fetal Medicine of National Health Commission
of China, Shandong Provincial Maternal and
Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Zhenya Fang
- Key
Laboratory of Maternal & Fetal Medicine of National Health Commission
of China, Shandong Provincial Maternal and
Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Shuxian Li
- Key
Laboratory of Maternal & Fetal Medicine of National Health Commission
of China, Shandong Provincial Maternal and
Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Chao Fan
- Key
Laboratory of Maternal & Fetal Medicine of National Health Commission
of China, Shandong Provincial Maternal and
Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Ruolan You
- School
of Public Health, Shandong Second Medical
University, Weifang 261053, China
| | - Chunying Wang
- Key
Laboratory of Maternal & Fetal Medicine of National Health Commission
of China, Shandong Provincial Maternal and
Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Anna Li
- Key
Laboratory of Maternal & Fetal Medicine of National Health Commission
of China, Shandong Provincial Maternal and
Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Xietong Wang
- Key
Laboratory of Maternal & Fetal Medicine of National Health Commission
of China, Shandong Provincial Maternal and
Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Meihua Zhang
- Key
Laboratory of Maternal & Fetal Medicine of National Health Commission
of China, Shandong Provincial Maternal and
Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| |
Collapse
|
3
|
Sahoo SS, Manna D. Nanomaterial-Triggered Ferroptosis and Cuproptosis in Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412462. [PMID: 40018870 DOI: 10.1002/smll.202412462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Cancer remains one of the leading causes of the death of individuals globally. Conventional treatment techniques like chemotherapy and radiation often suffer various drawbacks like toxicity and drug resistance. The study of cell death has been predominantly focused on classical forms like apoptosis, but the role of metal ions in governing controlled cell death is a fascinating and less explored area. Metal-mediated controlled cell death is a process where metal triggers cell death via a unique mechanism. Nanomaterial-based strategies have gained attention for their ability to deliver precise therapeutic agents while also triggering Regulated Cell Death (RCD) mechanisms in cancer cells. The recently discovered metal-mediated controlled cell death techniques like cuproptosis and ferroptosis can be used in cancer treatment as they can be used selectively for the treatment of drug-resistant cancer. Nano material-based delivery system can also be used for the precise delivery of the drug to the targeted sites. In this review, we have given some idea about the mechanism of metal-mediated controlled cell death techniques (ferroptosis and cuproptosis) and how we can initiate controlled cell deaths using nanomaterials for cancer treatment.
Collapse
Affiliation(s)
- Suman Sekhar Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Debasish Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
4
|
Luo Y, He B, Li ZP, Zhong Q, Liu YC, Zhang HY, Li Y, Yan HL, Hu YL, Zheng ZJ, Ren H, Liao XP, Sun J. Rutin Synergizes with Colistin to Eradicate Salmonellosis in Mice by Enhancing the Efficacy and Reducing the Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:438-449. [PMID: 39699161 DOI: 10.1021/acs.jafc.4c06751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The wide dissemination of multidrug-resistant (MDR) Gram-negative bacteria poses a significant global health and security concern. As developing new antibiotics is generally costly, fastidious, and time-consuming, there is an urgent need for alternative therapeutic strategies to address the gap in antibiotic discovery void. This study aimed to investigate the activity of colistin (CS) in combination with a natural product, rutin (RT), to combat against Salmonella Typhimurium (S. Tm) in vitro and in vivo. The results showed that a combination with RT enabled the potentiation of CS efficacy. Further mechanistic analysis indicated that RT disrupted iron homeostasis to inactivate the PmrA/PmrB system, thereafter reducing the bacterial membrane modifications for enhancing CS binding. Besides enhancing bactericidal activity of CS, RT was also observed to mitigate the CS-induced nephrotoxicity, by which the dosing limitation of CS was overcome for better pathogen clearance. The animal trial eventually confirmed the in vivo synergistic interaction of RT with CS to treat the bacterial infection. To sum up, the present study uncovered the potential of RT as a viable adjuvant of CS to eradicate the infection and protect the hosts, which might serve as a promising alternative to combat infections caused by MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Yang Luo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Bing He
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhi-Peng Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Qin Zhong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yu-Chen Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Hai-Yi Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Hui-Lin Yan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Ya-Lin Hu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Zi-Jian Zheng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Hao Ren
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiao-Ping Liao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Jian Sun
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| |
Collapse
|
5
|
Zhu S, Ruan F, Ye L, Jiang S, Yang C, Zuo Z, He C. Black phosphorus quantum dots induce lipid accumulation through PPARγ activation and mitochondrial dysfunction in adipocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177972. [PMID: 39662394 DOI: 10.1016/j.scitotenv.2024.177972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Black phosphorus quantum dots (BPQDs) are believed to have broad prospects for application. Obesity has garnered significant attention, but the association between BPQDs and lipid metabolism has not been thoroughly investigated. Mice were orally exposed to BPQDs at doses of 0.1 and 1 mg/kg for 28 d. The exposed mice exhibited reduced insulin sensitivity, hypertrophy of white adipose tissues, and reduced thermogenic function of brown adipose tissues. In white adipocyte line (3T3-L1), exposure to 5-20 μg/mL BPQDs induced lipid accumulation, oxidative stress, and upregulated the expression of PPARγ and genes involved in de novo lipogenesis. Moreover, both a reactive oxygen species (ROS) scavenger and a PPARγ inhibitor were able to attenuate lipid accumulation and downregulate the expression of lipid-associated genes in white adipocytes. In mouse brown adipocytes, BPQDs exposure caused oxidative stress, mitochondrial dysfunction, and downregulation of thermogenic genes such as UCP1. The ROS scavenger attenuated the oxidative stress and improved the mitochondrial thermogenic function in brown adipocytes. In summary, this work demonstrates that oxidative stress induced by BPQDs mediates the lipid accumulation possibly through PPARγ activation and mitochondrial dysfunction of adipose tissues, highlighting the potential obesogenic effect of BPQDs. Our findings provide novel insights into the biosafety of BPQDs and their potential health risks to humans, offering important considerations for the sustainable application of BP materials. ENVIRONMENTAL IMPLICATION: BPQDs are a novel type of nanomaterials with unique physicochemical properties, and have broad applications in various fields, particularly in biomedicine. However, during the production and use of BPQDs as medical materials, they inevitably contact with the human body for long periods of time. Therefore, it is necessary to investigate the effects of BPQDs on organisms under long-term exposure, especially lipid metabolism. This study would be helpful decreasing the environmental health risk of BP materials and promoting their sustainable development of nanotechnology in biomedicine.
Collapse
Affiliation(s)
- Sihao Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Lingxiao Ye
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Suhua Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China..
| |
Collapse
|
6
|
Sun M, Ren J, Qu X. In situ bioorthogonal-modulation of m 6A RNA methylation in macrophages for efficient eradication of intracellular bacteria. Chem Sci 2024; 15:11657-11666. [PMID: 39055012 PMCID: PMC11268468 DOI: 10.1039/d4sc03629h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
N6-Methyladenosine (m6A) methylation plays a critical role in controlling the RNA fate. Emerging evidence has demonstrated that aberrant m6A methylation in immune cells such as macrophages could alter cell homeostasis and function, which can be a promising target for disease treatment. Despite tremendous progress in regulating the level of m6A methylation, the current methods suffer from the time-consuming operation and annoying off-target effect, which hampers the in situ manipulation of m6A methylation. Here, a bioorthogonal in situ modulation strategy of m6A methylation was proposed. Well-designed covalent organic framework (COF) dots (CIDM) could deprotect the agonist prodrug of m6A methyltransferase, resulting in a considerable hypermethylation of m6A modification. Simultaneously, the bioorthogonal catalyst CIDM showed oxidase (OXD)-mimic activity that further promoted the level of m6A methylation. Ultimately, the potential therapeutic effect of bioorthogonal controllable regulation of m6A methylation was demonstrated through intracellular bacteria eradication. The remarkable antimicrobial outcomes indicate that upregulating m6A methylation in macrophages could reprogram them into the M1 phenotype with high bactericidal activity. We believe that our bioorthogonal chemistry-controlled epigenetics regulatory strategy will provide a unique insight into the development of controllable m6A methylation.
Collapse
Affiliation(s)
- Mengyu Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 China
| |
Collapse
|
7
|
Ruan F, Liu C, Zeng J, Zhang F, Jiang Y, Zuo Z, He C. Multi-omics integration identifies ferroptosis involved in black phosphorus quantum dots-induced renal injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174532. [PMID: 38972417 DOI: 10.1016/j.scitotenv.2024.174532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Black phosphorus quantum dots (BPQDs) have recently emerged as a highly promising contender in biomedical applications ranging from drug delivery systems to cancer therapy modalities. Nevertheless, the potential toxicity and its effects on human health need to be thoroughly investigated. In this study, we utilized multi-omics integrated approaches to explore the complex mechanisms of BPQDs-induced kidney injury. First, histological examination showed severe kidney injury in male mice after subacute exposure to 1 mg/kg BPQDs for 28 days. Subsequently, transcriptomic and metabolomic analyses of kidney tissues exposed to BPQDs identified differentially expressed genes and metabolites associated with ferroptosis, an emerging facet of regulated cell death. Our findings highlight the utility of the multi-omics integrated approach in predicting and elucidating potential toxicological outcomes of nanomaterials. Furthermore, our study provides a comprehensive understanding of the mechanisms driving BPQDs-induced kidney injury, underscoring the importance of recognizing ferroptosis as a potential toxic mechanism associated with BPQDs.
Collapse
Affiliation(s)
- Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, Xiamen 361102, China.
| | - Changqian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jie Zeng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Fucong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yu Jiang
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China; Molecular Diagnostic Laboratory for Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
8
|
Wei Q, Xue C, Li M, Wei J, Zheng L, Chen S, Duan Y, Deng H, Tang F, Xiong W, Zhou M. Ferroptosis: a critical mechanism of N 6-methyladenosine modification involved in carcinogenesis and tumor progression. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1119-1132. [PMID: 38811442 DOI: 10.1007/s11427-023-2474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/23/2023] [Indexed: 05/31/2024]
Abstract
Ferroptosis is an iron-dependent regulatory cell necrosis induced by iron overload and lipid peroxidation. It occurs when multiple redox-active enzymes are ectopically expressed or show abnormal function. Hence, the precise regulation of ferroptosis-related molecules is mediated across multiple levels, including transcriptional, posttranscriptional, translational, and epigenetic levels. N6-methyladenosine (m6A) is a highly evolutionarily conserved epigenetic modification in mammals. The m6A modification is commonly linked to tumor proliferation, progression, and therapy resistance because it is involved in RNA metabolic processes. Intriguingly, accumulating evidence suggests that dysregulated ferroptosis caused by the m6A modification drives tumor development. In this review, we summarized the roles of m6A regulators in ferroptosis-mediated malignant tumor progression and outlined the m6A regulatory mechanism involved in ferroptosis pathways. We also analyzed the potential value and application strategies of targeting m6A/ferroptosis pathway in the clinical diagnosis and therapy of tumors.
Collapse
Affiliation(s)
- Qingqing Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Changning Xue
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Jianxia Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Lemei Zheng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Shipeng Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Yumei Duan
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Hongyu Deng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Faqing Tang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China.
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
9
|
Shi J, Chen C, Zhang M, Wang Z, Liu Y. Repurposing Anthracycline Drugs as Potential Antibiotic Candidates and Potentiators to Tackle Multidrug-Resistant Pathogens. ACS Infect Dis 2024; 10:594-605. [PMID: 38183662 DOI: 10.1021/acsinfecdis.3c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
The escalating mortality rate resulting from multidrug-resistant (MDR) bacteria has intensified the urgency for innovative antimicrobial agents. Currently, the antimicrobial activity of compounds is usually assessed by testing the minimum inhibitory concentration (MIC) on a standardized laboratory medium. However, such screening conditions differ from the in vivo environment, making it easy to overlook some antibacterial agents that are active in vivo but less active in vitro. Herein, by using tissue medium RPMI, we uncover that anthracyclines, especially mitoxantrone (MX), exhibit improved bacteriostatic and bactericidal effects against various MDR bacteria in host-like media. Transcriptome results reveal that LPS modification-related genes of bacterial membrane surfaces and metabolic genes are significantly down-regulated in RPMI media. Mechanistic studies demonstrate that MX leads to more substantial membrane damage, increased ROS production, and DNA damage in host-mimicking conditions. Furthermore, we demonstrate that MX and colistin exhibit strong synergistic effects against mcr-positive strains in host-mimicking media by disrupting iron homeostasis. In an experimental murine infection model, MX monotreatment demonstrates therapeutic efficacy in reducing bacterial burdens. Overall, our work suggests that mimicking the host condition is an effective strategy to identify new antimicrobial agents and highlights the therapeutic potential of anthracycline drugs in combating MDR pathogens.
Collapse
Affiliation(s)
- Jingru Shi
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Miao Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Pei J, Zou Y, Zhou W, Wang Y. Baicalein, a component of banxia xiexin decoction, alleviates CPT-11-induced gastrointestinal dysfunction by inhibiting ALOX15-mediated ferroptosis. Chem Biol Drug Des 2023; 102:1568-1577. [PMID: 37735740 DOI: 10.1111/cbdd.14349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023]
Abstract
Baicalein, one of the active ingredients of banxia xiexin decoction, has good therapeutic efficacy in treating diarrhea and improving gastrointestinal dysfunction. The role and mechanism of Baicalein on irinotecan (CPT-11)-induced gastrointestinal dysfunction are the focus of this study. Concretely, CPT-11 induced delayed diarrhea rat model and intestinal epithelial cell (IEC)-6 cell injury model with Baicalein treatment as needed. Colonic pathological changes were analyzed by hematoxylin-eosin staining, and inflammatory factor expressions in serum were determined by enzyme-linked immunosorbent assay. Immunohistochemistry and western blot were performed to quantify ferroptosis-related protein expressions. Thiobarbituric acid reactive substances (TBARS) kits and colorimetric assay kit were applied to detect lipid peroxidation levels and Fe2+ content, respectively. In vitro experiments also included quantitative real-time polymerase chain reaction, cell counting kit-8, and C11 BODIPY staining. CPT-11 induced aggravation of intestinal tissue damage, inflammatory factor release, Fe2+ accumulation, upregulation of lipid peroxidation and 15-Lipoxygenase (ALOX15) expression, and downregulation of glutathione peroxidase 4 (Gpx4) and SLC7A11 in vivo in rats; however, Baicalein dose-dependently reversed the effects of CPT-11. Baicalein elevated cell viability, reduced lipid peroxidation and Fe2+ accumulation, and elevated Gpx4 and SLC7A11 levels, whereas ALOX15 overexpression reversed the effects of Baicalein on a CPT-11-induced IEC-6 cell injury model. In conclusion, Baicalein plays a mitigating role in CPT-11-induced delayed diarrhea via ALOX15-mediated ferroptosis.
Collapse
Affiliation(s)
- Jingbo Pei
- Department of Gastroenterology, Xiaoshan District Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Yuanyuan Zou
- Department of Gastroenterology, Xiaoshan District Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Wenying Zhou
- Department of Gastroenterology, Xiaoshan District Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Yakun Wang
- Department of Intensive Care Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou, China
| |
Collapse
|
11
|
Zhang J, Qiu T, Yao X, Sun X. Insights into the role of N6-methyladenosine in ferroptosis. Biomed Pharmacother 2023; 165:115192. [PMID: 37487443 DOI: 10.1016/j.biopha.2023.115192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
N6-methyladenosine (m6A) methylation modification is one of the most prevalent epigenetic modifications of eukaryotic RNA. m6A methylation is widely associated with many biological processes through the modification of RNA metabolism and is associated with multiple disease states. As a newly discovered regulatory cell death in recent years, ferroptosis is an iron-dependent cell death characterized by excessive lipid peroxidation. Emerging evidence supports that ferroptosis has a significant role in the progression of diverse diseases. Besides, the key regulators of ferroptosis exhibit aberrant m6A levels under different pathological conditions. However, the correlation between m6A-modified ferroptosis and multiple diseases has not been well elucidated. In this review, we summarized the functions of m6A in ferroptosis, which are associated with the initiation and progression of multiple diseases. Investigating the role of m6A in ferroptosis might both facilitate a better understanding of the pathogenesis of these diseases and provide new opportunities for targeted treatment.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Tianming Qiu
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Xiaofeng Yao
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Xiance Sun
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, PR China.
| |
Collapse
|
12
|
Zhao Q, Donskyi IS, Xiong Z, Liu D, Page TM, Zhang S, Deng S, Xu Y, Zeng J, Wu F, Zhang X. Recent Advances in the Biological Responses to Nano-black Phosphorus: Understanding the Importance of Intrinsic Properties and Cell Types. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11373-11388. [PMID: 37470763 DOI: 10.1021/acs.est.3c02688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The production scalability and increasing demand for nano-black phosphorus materials (nano-BPs) inevitably lead to their environmental leakage, thereby raising the risk of human exposure through inhalation, ingestion, dermal, and even intravenous pathways. Consequently, a systematic evaluation of their potential impacts on human health is necessary. This Review outlines recent progress in the understanding of various biological responses to nano-BPs. Attention is particularly given to the inconsistent toxicological findings caused by a wide variation of nano-BPs' physicochemical properties, toxicological testing methods, and cell types examined in each study. Additionally, cellular uptake and intracellular trafficking, cell death modes, immunological effects, and other biologically relevant processes are discussed in detail, providing evidence for the potential health implications of nano-BPs. Finally, we address the remaining challenges related to the health risk evaluation of nano-BPs and propose a broader range of applications for these promising nanomaterials.
Collapse
Affiliation(s)
- Qing Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Ievgen S Donskyi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Zhiqiang Xiong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taylor M Page
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuze Xu
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Jin Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuejiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
13
|
Zhong ZX, Zhou S, Liang YJ, Wei YY, Li Y, Long TF, He Q, Li MY, Zhou YF, Yu Y, Fang LX, Liao XP, Kreiswirth BN, Chen L, Ren H, Liu YH, Sun J. Natural flavonoids disrupt bacterial iron homeostasis to potentiate colistin efficacy. SCIENCE ADVANCES 2023; 9:eadg4205. [PMID: 37294761 PMCID: PMC10256158 DOI: 10.1126/sciadv.adg4205] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/04/2023] [Indexed: 06/11/2023]
Abstract
In the face of the alarming rise in global antimicrobial resistance, only a handful of novel antibiotics have been developed in recent decades, necessitating innovations in therapeutic strategies to fill the void of antibiotic discovery. Here, we established a screening platform mimicking the host milieu to select antibiotic adjuvants and found three catechol-type flavonoids-7,8-dihydroxyflavone, myricetin, and luteolin-prominently potentiating the efficacy of colistin. Further mechanistic analysis demonstrated that these flavonoids are able to disrupt bacterial iron homeostasis through converting ferric iron to ferrous form. The excessive intracellular ferrous iron modulated the membrane charge of bacteria via interfering the two-component system pmrA/pmrB, thereby promoting the colistin binding and subsequent membrane damage. The potentiation of these flavonoids was further confirmed in an in vivo infection model. Collectively, the current study provided three flavonoids as colistin adjuvant to replenish our arsenals for combating bacterial infections and shed the light on the bacterial iron signaling as a promising target for antibacterial therapies.
Collapse
Affiliation(s)
- Zi-xing Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Shuang Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yu-jiao Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yi-yang Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yan Li
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Teng-fei Long
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Qian He
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Meng-yuan Li
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yu-feng Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yang Yu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Liang-xing Fang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiao-ping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Barry N. Kreiswirth
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, NJ, USA
| | - Liang Chen
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, NJ, USA
| | - Hao Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Ya-hong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
14
|
Liu C, Ruan J, Ruan F, Ding X, Han C, Huang C, Zhong H, He C, Zuo Z, Huang J. Estradiol protects female mice from hyperuricemia induced by PCB138 exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115093. [PMID: 37270882 DOI: 10.1016/j.ecoenv.2023.115093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a type of persistent organic pollutant (POP). Our previous study demonstrated that exposure to 0.5-50 μg/kg bw PCB138 during postnatal days (PND) 3-21 led to elevated serum uric acid (UA) levels and kidney injury in adult male mice. Given that the prevalence of hyperuricemia (HUA) is significantly lower in women than in men, it is worth investigating whether POP-induced HUA and its secondary kidney injury have sexual dimorphism. Herein, we exposed female mice to 0.5-50 μg/kg bw PCB138 during PND 3-21, resulting in elevated serum UA levels, but without causing significant kidney damage. Concurrently, we found a negative correlation between serum 17β-estradiol (E2) and serum UA levels. We also observed down-regulation of estrogen receptor (ER) protein levels in the kidneys of the PCB138-exposed groups. Furthermore, our study showed that E2 rescued the increased UA level and cytotoxicity caused by HUA in human renal tubular epithelial (HK-2) cells. Collectively, our findings suggest that E2 likely plays a crucial protective role in PCB138-induced HUA and kidney injury in female mice. Our research highlights the existence of sexual dimorphism in kidney injury secondary to HUA induced by POPs, which could provide guidance for individuals of different genders in preventing kidney injury caused by environmental factors.
Collapse
Affiliation(s)
- Changqian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Jinpeng Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoyan Ding
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Changshun Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Chaoqun Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Hongbin Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jiyi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
15
|
Yang M, Luo H, Yi X, Wei X, Jiang D. The epigenetic regulatory mechanisms of ferroptosis and its implications for biological processes and diseases. MedComm (Beijing) 2023; 4:e267. [PMID: 37229485 PMCID: PMC10203370 DOI: 10.1002/mco2.267] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Ferroptosis is a form of regulated cell death triggered by the iron-dependent peroxidation of phospholipids. Interactions of iron and lipid metabolism factors jointly promote ferroptosis. Ferroptosis has been demonstrated to be involved in the development of various diseases, such as tumors and degenerative diseases (e.g., aortic dissection), and targeting ferroptosis is expected to be an effective strategy for the treatment of these diseases. Recent studies have shown that the regulation of ferroptosis is affected by multiple mechanisms, including genetics, epigenetics, posttranscriptional modifications, and protein posttranslational modifications. Epigenetic changes have garnered considerable attention due to their importance in regulating biological processes and potential druggability. There have been many studies on the epigenetic regulation of ferroptosis, including histone modifications (e.g., histone acetylation and methylation), DNA methylation, and noncoding RNAs (e.g., miRNAs, circRNAs, and lncRNAs). In this review, we summarize recent advances in research on the epigenetic mechanisms involved in ferroptosis, with a description of RNA N6-methyladenosine (m6A) methylation included, and the importance of epigenetic regulation in biological processes and ferroptosis-related diseases, which provides reference for the clinical application of epigenetic regulators in the treatment of related diseases by targeting ferroptosis.
Collapse
Affiliation(s)
- Molin Yang
- Division of Cardiothoracic and Vascular SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Hanshen Luo
- Division of Cardiothoracic and Vascular SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xin Yi
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xiang Wei
- Division of Cardiothoracic and Vascular SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhanHubeiChina
| | - Ding‐Sheng Jiang
- Division of Cardiothoracic and Vascular SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhanHubeiChina
| |
Collapse
|
16
|
Wang L, Lin M, Hou X, Dou L, Huang Z, Liu R, Zhang J, Cai C, Chen C, Liu Y, Wang D, Guo D, An R, Wei L, Yao Y, Zhang Y. Black phosphorus quantum dots induce autophagy and apoptosis of human bronchial epithelial cells via endoplasmic reticulum stress. CHEMOSPHERE 2023; 327:138463. [PMID: 36966929 DOI: 10.1016/j.chemosphere.2023.138463] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/27/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE The board application of black phosphorus quantum dots (BP-QDs) increases the risk of inhalation exposure in the manufacturing process. The aim of this study is to explore the toxic effect of BP-QDs on human bronchial epithelial cells (Beas-2B) and lung tissue of Balb/c mice. METHODS The BP-QDs were characterized using transmission electron microscopy (TEM) and a Malvern laser particle size analyzer. Cell Counting Kit-8 (CCK-8) and TEM were used to detect cytotoxicity and organelle injury. Damage to the endoplasmic reticulum (ER) was detected by using the ER-Tracker molecular probe. Rates of apoptosis were detected by AnnexinV/PI staining. Phagocytic acid vesicles were detected using AO staining. Western blotting and immunohistochemistry were used to examine the molecular mechanisms. RESULTS After treatment with different concentrations of BP-QDs for 24 h, the cell viability decreased, as well as activation of the ER stress and autophagy. Furthermore, the rate of apoptosis was increased. Inhibition of ER stress caused by 4-phenyl butyric acid (4-PBA) was shown to significantly inhibit both apoptosis and autophagy, suggesting that ER stress could be an upstream mediator of both autophagy and apoptosis. BP-QD-induced autophagy can also inhibit the occurrence of apoptosis using molecules related to autophagy including rapamycin (Rapa), 3-methyladenine (3-MA), and bafilomycin A1 (Bafi A1). In general, BP-QDs activate ER stress in Beas-2B cells, which further induces autophagy and apoptosis, and autophagy may be activated as a factor that protects against apoptosis. We also observed strong staining of related proteins of ER stress, autophagy, and apoptosis proteins in mouse lung tissue following intracheal instillation over the course of a week. CONCLUSION BP-QD-induced ER stress facilitates autophagy and apoptosis in Beas-2B cells and autophagy may be activated as a protective factor against apoptosis. Under conditions of ER stress induced by BP-QDs, The interplay between autophagy and apoptosis determines cell fate.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Mo Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Liangding Dou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhi Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Rong Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jinwen Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chuchu Cai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chen Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ying Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Dai Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Dongbei Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ran An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lifang Wei
- Department of Nephrology, The Third People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Youliang Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Yongxing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
17
|
Yu B, Liu J, Cai Z, Wang H, Feng X, Zhang T, Ma R, Gu Y, Zhang J. RNA N 6-methyladenosine profiling reveals differentially methylated genes associated with intramuscular fat metabolism during breast muscle development in chicken. Poult Sci 2023; 102:102793. [PMID: 37276703 PMCID: PMC10258505 DOI: 10.1016/j.psj.2023.102793] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023] Open
Abstract
Intramuscular fat (IMF) is an important indicator for determining meat quality, and IMF deposition during muscle development is regulated by a complex molecular network involving multiple genes. The N6-methyladenosine (m6A) modification of mRNA plays an important regulatory role in muscle adipogenesis. However, the distribution of m6A and its role in IMF metabolism in poultry has not been reported. In the present study, a transcriptome-wide m6A profile was constructed using methylated RNA immunoprecipitation sequence (MeRIP-seq) and RNA sequence (RNA-seq) to explore the potential mechanism of regulating IMF deposition in the breast muscle based on the comparative analysis of IMF differences in the breast muscles of 42 (group G), 126 (group S), and 180-days old (group M) Jingyuan chickens. The findings revealed that the IMF content in the breast muscle increased significantly with the increase in the growth days of the Jingyuan chickens (P < 0.05). The m6A peak in the breast muscles of the 3 groups was highly enriched in the coding sequence (CDS) and 3' untranslated regions (3' UTR), which corresponded to the consensus motif RRACH. Moreover, we identified 129, 103, and 162 differentially methylated genes (DMGs) in the breast muscle samples of the G, S, and M groups, respectively. Functional enrichment analyses revealed that DMGs are involved in many physiological activities of muscle fat anabolism. The m6A-induced ferroptosis pathway was identified in breast muscle tissue as a new target for regulating IMF metabolism. In addition, association analysis demonstrated that LMOD2 and its multiple m6A negatively regulated DMGs are potential regulators of IMF differential deposition in muscle. The findings of the present study provide a solid foundation for further investigation into the potential role of m6A modification in regulating chicken fat metabolism.
Collapse
Affiliation(s)
- Baojun Yu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jiamin Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Zhengyun Cai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Haorui Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Xiaofang Feng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Tong Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Ruoshuang Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
18
|
Guo Z, Wang Z, Liu Y, Wu H, Zhang Q, Han J, Liu J, Zhang C. Carbon Dots from Lycium barbarum Attenuate Radiation-Induced Bone Injury by Inhibiting Senescence via METTL3/Clip3 in an m 6A-Dependent Manner. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20726-20741. [PMID: 37088945 DOI: 10.1021/acsami.3c01322] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Radiation-induced bone injury management remains a challenge in clinical practice, and there is no effective medicine. Recently, biomass-derived carbon dots (CDs) have attracted attention in biomedical engineering due to the advantages of abundant heteroatoms, low toxicity, and no need to drug loading. Here, we report that CDs, synthesized from Lycium barbarum via hydrothermal strategy, can effectively alleviate radiation-induced bone injury. CCK-8, apoptosis analysis, β-galactosidase staining, quantitative polymerase chain reaction, and western blots demonstrate that CDs can mediate radiation-induced damage and senescence of bone marrow mesenchymal stem cells (BMSCs). CDs regulate osteogenic- and adipogenic-balance after irradiation, shown by alizarin red and oil red O staining. In vivo experiments reveal that CDs prevent the occurrence of osteoradionecrosis in rats, demonstrated by micro-CT and histology examination. The osseointegration of titanium implants installed in irradiated bone is promoted by CDs. Mechanistically, CDs increase the N6-methyladenosine (m6A) level of irradiated BMSCs via the increased methyltransferase-like 3 (METTL3). High-throughput sequencing facilitates detection of increased m6A levels located in the 3'-untranslated regions (UTR) of the CAP-Gly domain containing linker protein 3 (Clip3) mRNA. The dual-luciferase reporter assay shows that 3'UTR is the direct target of METTL3. Subsequently, the increased m6A modification led to enhanced degradation of mRNA and downregulated CLIP3 expression, eventually resulting in the alleviation of radiation-induced bone injury. Interfering with the METTL3/Clip3 axis can antagonize the effect of CDs, indicating that CDs mediate radiation-induced bone injury via the METTL3/Clip3 axis. Taken together, CDs from L. barbarum alleviate radiation-induced bone injury by inhibiting senescence via regulation of m6A modification of Clip3. The present study paves a new pathway for the management of radiation-induced bone injury.
Collapse
Affiliation(s)
- Zhiyong Guo
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Zilin Wang
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yige Liu
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Hao Wu
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Qiaoyu Zhang
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jing Han
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jiannan Liu
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Chenping Zhang
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
19
|
Tkachenko A, Onishchenko A, Myasoedov V, Yefimova S, Havranek O. Assessing regulated cell death modalities as an efficient tool for in vitro nanotoxicity screening: a review. Nanotoxicology 2023; 17:218-248. [PMID: 37083543 DOI: 10.1080/17435390.2023.2203239] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Nanomedicine is a fast-growing field of nanotechnology. One of the major obstacles for a wider use of nanomaterials for medical application is the lack of standardized toxicity screening protocols for assessing the safety of newly synthesized nanomaterials. In this review, we focus on less frequently studied nanomaterials-induced regulated cell death (RCD) modalities, including eryptosis, necroptosis, pyroptosis, and ferroptosis, as a tool for in vitro nanomaterials safety evaluation. We summarize the latest insights into the mechanisms that mediate these RCDs in response to nanomaterials exposure. Comprehensive data from reviewed studies suggest that ROS (reactive oxygen species) overproduction and ROS-mediated pathways play a central role in nanomaterials-induced RCDs activation. On the other hand, studies also suggest that individual properties of nanomaterials, including size, shape, or surface charge, could determine specific toxicity pathways with consequent RCD induction as well. We anticipate that the evaluation of RCDs can become one of the mechanism-based screening methods in nanotoxicology. In addition to the toxicity assessment, evaluation of necroptosis-, pyroptosis-, and ferroptosis-promoting capacity of nanomaterials could simultaneously provide useful information for specific medical applications as could be their anti-tumor potential. Moreover, a detailed understanding of molecular mechanisms driving nanomaterials-mediated induction of immunogenic RCDs will substantially aid novel anti-tumor nanodrugs development.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Valeriy Myasoedov
- Department of Medical Biology, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Svetlana Yefimova
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Hematology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
20
|
Li D, Chen T, Li QG. Identification of a m 6A-related ferroptosis signature as a potential predictive biomarker for lung adenocarcinoma. BMC Pulm Med 2023; 23:128. [PMID: 37072786 PMCID: PMC10111681 DOI: 10.1186/s12890-023-02410-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/31/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Both N6-methyladenosine (m6A) and ferroptosis-related genes are associated with the prognosis of lung adenocarcinoma. However, the predictive value of m6A-related ferroptosis genes remains unclear. Here, we aimed to identify the prognostic value of m6A-related ferroptosis genes in lung adenocarcinoma. METHODS Lung adenocarcinoma sample data were downloaded from the University of California Santa Cruz Xena and Gene Expression Omnibus databases. Spearman's correlation analysis was used to screen for m6A-related ferroptosis genes. Univariate Cox regression, Kaplan-Meier, and Lasso analyses were conducted to identify prognostic m6A-related ferroptosis genes, and stepwise regression was used to construct a prognostic gene signature. The predictive value of the gene signature was assessed using a multivariate Cox analysis. In the validation cohort, survival analysis was performed to verify gene signature stability. The training cohort was divided into high- and low-risk groups according to the median risk score to assess differences between the two groups in terms of gene set variation analysis, somatic mutations, and tumor immune infiltration cells. RESULTS Six m6A-related ferroptosis genes were used to construct a gene signature in the training cohort and a multivariate Cox analysis was conducted to determine the independent prognostic value of these genes in lung adenocarcinoma. In the validation cohort, Kaplan-Meier and receiver operating characteristic analyses confirmed the strong predictive power of this signature for the prognosis of lung adenocarcinoma. Gene set variation analysis showed that the low-risk group was mainly related to immunity, and the high-risk group was mainly related to DNA replication. Somatic mutation analysis revealed that the TP53 gene had the highest mutation rate in the high-risk group. Tumor immune infiltration cell analysis showed that the low-risk group had higher levels of resting CD4 memory T cells and lower levels of M0 macrophages. CONCLUSION Our study identified a novel m6A-related ferroptosis-associated six-gene signature (comprising SLC2A1, HERPUD1, EIF2S1, ACSL3, NCOA4, and CISD1) for predicting lung adenocarcinoma prognosis, yielding a useful prognostic biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Dongdong Li
- Medical College of Nanchang University, Nanchang, 330006, Jiangxi, P. R. China
- Department of Pulmonary and Critical Care Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, P. R. China
| | - Ting Chen
- Department of Pulmonary and Critical Care Medicine, Wuhan Wuchang Hospital, Wuhan, 430063, Hubei, P. R. China
| | - Qiu-Gen Li
- Medical College of Nanchang University, Nanchang, 330006, Jiangxi, P. R. China.
- Department of Pulmonary and Critical Care Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, P. R. China.
| |
Collapse
|
21
|
Gui X, Zhang H, Zhang R, Li Q, Zhu W, Nie Z, Zhao J, Cui X, Hao W, Wen X, Shen W, Song H. Exosomes incorporated with black phosphorus quantum dots attenuate retinal angiogenesis via disrupting glucose metabolism. Mater Today Bio 2023; 19:100602. [PMID: 36942311 PMCID: PMC10024194 DOI: 10.1016/j.mtbio.2023.100602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/06/2023] Open
Abstract
Black phosphorus quantum dots (BPQDs) have shown potential in tumor therapy, however, their anti-angiogenic functions have not been studied. Although BPQDs are easily degraded to non-toxic phosphrous, the reported toxicity, poor stability, and non-selectivity largely limit their further application in medicine. In this study, a vascular targeting, biocompatible, and cell metabolism-disrupting nanoplatform is engineered by incorporating BPQDs into exosomes modified with the Arg-Gly-Asp (RGD) peptide (BPQDs@RGD-EXO nanospheres, BREs). BREs inhibit endothelial cells (ECs) proliferation, migration, tube formation, and sprouting in vitro. The anti-angiogenic role of BREs in vivo is evaluated using mouse retinal vascular development model and oxygen-induced retinopathy model. Combined RNA-seq and metabolomic analysis reveal that BREs disrupt glucose metabolism, which is further confirmed by evaluating metabolites, ATP production and the c-MYC/Hexokinase 2 pathway. These BREs are promising anti-angiogenic platforms for the treatment of pathological retinal angiogenesis with minimal side effects.
Collapse
Affiliation(s)
- Xiao Gui
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Haorui Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Rui Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Qing Li
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Weiye Zhu
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Zheng Nie
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Jiawei Zhao
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Xiao Cui
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Weiju Hao
- University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Xudong Wen
- Department of Gastroenterology, Chengdu Integrated TCM&Western Medicine Hospital, Chengdu University of TCM, Chengdu, 610016, China
- Corresponding author.
| | - Wei Shen
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
- Corresponding author.
| | - Hongyuan Song
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
- Corresponding author.
| |
Collapse
|
22
|
Zhu X, Fu H, Sun J, Xu Q. Interaction between N6-methyladenosine (m6A) modification and environmental chemical-induced diseases in various organ systems. Chem Biol Interact 2023; 373:110376. [PMID: 36736874 DOI: 10.1016/j.cbi.2023.110376] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
A wide variety of chemicals are ubiquitous in the environment and thus exposure to these environmental chemicals poses a serious threat to public health. Particularly, environmental factors such as air pollution, heavy metals, and endocrine-disrupting chemicals (EDCs) can lead to diseases in various organ systems. Recent research in environmental epigenetics has demonstrated that N6-methyladenosine (m6A) modification is a key mechanism of environment-related diseases. m6A modification is the most abundant chemical modification in mRNAs, which can specifically regulate gene expression by affecting RNA translation, stability, processing, and nuclear export. In this review, we discussed how environmental chemicals affected m6A modification and mediated environment-related disease occurrence by classifying the diseases of various systems. Here, we conclude that environmental chemicals alter the levels of m6A and its modulators, which then participate in the occurrence of diseases in various systems by regulating gene expression and downstream signaling pathways such as METTL3/m6A ZBTB4/YTHDF2/EZH2, Foxo3a/FTO/m6A ephrin-B2/YTHDF2, and HIF1A/METTL3/m6A BIRC5/IGF2BP3/VEGFA. Considering the significant role of m6A and its modulators in response to environmental chemicals, they are expected to be used as biomarkers of environment-related diseases. Additionally, targeting m6A modulators using small molecule inhibitors and activators is expected to be a new method for the treatment of environment-related diseases. This review systematically and comprehensively clarifies the important role of m6A in diseases caused by environmental chemicals, thus establishing a scientific basis for the treatment of diseases in various organ systems.
Collapse
Affiliation(s)
- Xiaofang Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Ding jia qiao Road, Gulou District, Nanjing, 210009, China
| | - Haowei Fu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Ding jia qiao Road, Gulou District, Nanjing, 210009, China
| | - Jiahui Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Ding jia qiao Road, Gulou District, Nanjing, 210009, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Ding jia qiao Road, Gulou District, Nanjing, 210009, China.
| |
Collapse
|
23
|
Zhang X, Donskyi IS, Tang W, Deng S, Liu D, Zhang S, Zhao Q, Xing B. Biological Effects of Black Phosphorus Nanomaterials on Mammalian Cells and Animals. Angew Chem Int Ed Engl 2023; 62:e202213336. [PMID: 36218046 PMCID: PMC10107789 DOI: 10.1002/anie.202213336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
The remarkable progress of applied black phosphorus nanomaterials (BPNMs) is attributed to BP's outstanding properties. Due to its potential for applications, environmental release and subsequent human exposure are virtually inevitable. Therefore, how BPNMs impact biological systems and human health needs to be considered. In this comprehensive Minireview, the most recent advancements in understanding the mechanisms and regulation factors of BPNMs' endogenous toxicity to mammalian systems are presented. These achievements lay the groundwork for an understanding of its biological effects, aimed towards establishing regulatory principles to minimize the adverse health impacts.
Collapse
Affiliation(s)
- Xuejiao Zhang
- National–Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South ChinaGuangdong Key Laboratory of Integrated Agro-environmental Pollution Control and ManagementInstitute of Eco-environmental and Soil SciencesGuangdong Academy of SciencesGuangzhou510650China
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Ievgen S. Donskyi
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Weihao Tang
- National–Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South ChinaGuangdong Key Laboratory of Integrated Agro-environmental Pollution Control and ManagementInstitute of Eco-environmental and Soil SciencesGuangdong Academy of SciencesGuangzhou510650China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
- University of Chinese Academy of SciencesBeijing100049China
| | - Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
- University of Chinese Academy of SciencesBeijing100049China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Qing Zhao
- National–Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South ChinaGuangdong Key Laboratory of Integrated Agro-environmental Pollution Control and ManagementInstitute of Eco-environmental and Soil SciencesGuangdong Academy of SciencesGuangzhou510650China
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Baoshan Xing
- Stockbridge School of AgricultureUniversity of MassachusettsAmherstMA 01003USA
| |
Collapse
|
24
|
Zheng N, Sun X, Shi Y, Chen L, Wang L, Cai H, Han C, Liao T, Yang C, Zuo Z, He C. The valence state of iron-based nanomaterials determines the ferroptosis potential in a zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158715. [PMID: 36113792 DOI: 10.1016/j.scitotenv.2022.158715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Many nanomaterials containing different valences of iron have been designed for applications in biomedicine, energy, catalyzers, nanoenzymes, and so on. However, the toxic effects of the valence state of iron in iron-based nanomaterials are still unclear. Here, three different-valence iron-based nanomaterials (nFe@Fe3O4, nFe3O4 and nFe2O3) were synthesized and exposed to zebrafish embryos and mammalian cardiomyocytes. All of them induced ferroptosis along with an increase in valence through iron overload and the Fenton reaction. Specifically, we exposed Tg (cmlc2:EGFP) zebrafish to the three iron-based nanomaterials and found that nFe@Fe3O4 treatments led to enlarged ventricles, while nFe3O4 and nFe2O3 increased atrial size, which was consistent with the results from hematoxylin-eosin staining and in situ hybridization. Moreover, we used ferroptosis inhibitors (ferrostatin-1 or deferoxamine) to treat zebrafish along with nanoparticles exposure and found that the cardiac developmental defects caused by nFe3O4 and nFe2O3, but not nFe@Fe3O4, could be completely rescued by ferroptosis inhibitors. We further found that nFe@Fe3O4, rather than nFe3O4 and nFe2O3, reduced the dissolved oxygen in the medium, which resulted in hypoxia and acceleration of heart tube formation and ventricular enlargement, and both were fully rescued by oxygen donors combined with ferroptosis inhibitors. Consistently, these findings were also observed in mammalian cardiomyocytes. In summary, our study demonstrates that the valence state of iron-based nanomaterials determines the ferroptosis potential. Our study also clarifies that high-valence iron-based nanomaterials induce an enlarged atrium via ferroptosis, while low-valence ones increase the ventricular size through both hypoxia and ferroptosis, which is helpful to understand the potential adverse effects of different valences of iron-based nanomaterials on environmental health and assure the responsible and sustainable development of nanotechnology.
Collapse
Affiliation(s)
- Naying Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Department of Pediatric, Women and Children's Hospital, Xiamen University, Xiamen 361102, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Yiyue Shi
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Luheng Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Department of Pediatric, Women and Children's Hospital, Xiamen University, Xiamen 361102, China
| | - Luanjin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Department of Pediatric, Women and Children's Hospital, Xiamen University, Xiamen 361102, China
| | - Haoxing Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Department of Pediatric, Women and Children's Hospital, Xiamen University, Xiamen 361102, China
| | - Changshun Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Department of Pediatric, Women and Children's Hospital, Xiamen University, Xiamen 361102, China
| | - Tingting Liao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Department of Pediatric, Women and Children's Hospital, Xiamen University, Xiamen 361102, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Department of Pediatric, Women and Children's Hospital, Xiamen University, Xiamen 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Department of Pediatric, Women and Children's Hospital, Xiamen University, Xiamen 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Department of Pediatric, Women and Children's Hospital, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
25
|
Wang J, Yang Y, Sun F, Luo Y, Yang Y, Li J, Hu W, Tao H, Lu C, Yang JJ. ALKBH5 attenuates mitochondrial fission and ameliorates liver fibrosis by reducing Drp1 methylation. Pharmacol Res 2023; 187:106608. [PMID: 36566000 DOI: 10.1016/j.phrs.2022.106608] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Mitochondrial metabolism plays a pivotal role in various cellular processes and fibrosis. However, the mechanism underlying mitochondrial metabolic function and liver fibrosis remains poorly understood. In this study, we determined whether mitochondrial metabolism mediates liver fibrosis using cells, animal models, and clinical samples to elucidate the potential effects and underlying mechanism of mitochondrial metabolism in liver fibrosis. We report that AlkB Homolog 5 (ALKBH5) decreases mitochondrial membrane potential (MMP) and oxygen consumption rate (OCR), suppresses mitochondrial fission and hepatic stellate cell (HSC) proliferation and migration and ameliorates liver fibrosis. Enhancement of mitochondrial fission, an essential event during HSC proliferation and migration, is dependent on decreased ALKBH5 expression. Furthermore, we reveal that low ALKBH5 expression is associated with elevated N6-methyladenosine (m6A) mRNA levels. Mechanistically, ALKBH5 mediates m6A demethylation in the 3'UTR of Drp1 mRNA and induces its translation in a YTH domain family proteins 1 (YTHDF1)-independent manner. Subsequently, in transforming growth factor-β1 (TGF-β1) induced HSC, Dynamin-related protein 1 (Drp1) mediates mitochondrial fission and increases cell proliferation and migration. Decreased Drp1 expression inhibits mitochondrial fission and suppresses HSC proliferation and migration. Notably, human fibrotic liver and heart tissue exhibited enhanced mitochondrial fission; increased YTHDF1, Drp1, alpha-smooth muscle actin (α-SMA) and collagen I expression; decreased ALKBH5 expression and increased liver fibrosis. Our results highlight a novel mechanism by which ALKBH5 suppresses mitochondrial fission and HSC proliferation and migration by reducing Drp1 methylation in an m6A-YTHDF1-dependent manner, which may indicate a demethylation-based approach for liver fibrosis diagnosis and therapy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yang Yang
- Department of Surgical Oncology, Suzhou Science & Technology Town Hospital, Suzhou 215153, China
| | - Feng Sun
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yong Luo
- Department of Scientific research and experimental center, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Yan Yang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hui Tao
- Department of Anesthesiology, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| | - Chao Lu
- First Affiliated Hospital, Anhui University of Science & Technology, Huainan 232001, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
26
|
Wang X, He K, Hu Y, Tang M. A review of pulmonary toxicity of different types of quantum dots in environmental and biological systems. Chem Biol Interact 2022; 368:110247. [DOI: 10.1016/j.cbi.2022.110247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
27
|
Cheung JCT, Deng G, Wong N, Dong Y, Ng SSM. More than a duologue: In-depth insights into epitranscriptomics and ferroptosis. Front Cell Dev Biol 2022; 10:982606. [PMID: 36172270 PMCID: PMC9511216 DOI: 10.3389/fcell.2022.982606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Beyond transcription, RNA molecules are enzymatically modified to influence the biological functions of living organisms. The term “epitranscriptomics” describes the changes in RNA strands aside from altering the innate sequences. Modifications on adenosine (A) are the most widely characterized epitranscriptomic modification, including N6-methyladenosine (m6A), N1-methyladenosine (m1A), polyadenylation, and adenosine-to-inosine (A-to-I) RNA editing, and modifications on other nucleotides seem to be fewer, such as N7-methylguanosine (m7G), 5-methylcytosine (m5C), and pseudouridine (Ψ). These changes on the RNA strand surface, exclusively by their RNA-modifying proteins (RMPs), are reported in various biological phenomena, including programmed cell death (PCD). One necro-biological phenomenon that has been observed for long but has started to gain heed in recent years is “ferroptosis.” The phospholipid peroxidation by polyunsaturated-fatty-acid-containing-phospholipid hydroperoxyl (PLOOH) radicals destroys membrane integrity due to a series of mechanisms. The Fenton reaction, constituting the final Haber–Weiss reaction that is less recognized, collaboratively leading to the conversion of polyunsaturated fatty acid (PUFA) to PLOOH, is the etymological origin of ferroptosis. However, it is with increasing evidence that ferroptotic signaling is also intervened by epitranscriptomic modifications, although the truth is still ambiguous. We attempted to delineate some up-to-date discoveries on both epitranscriptomics and ferroptosis, bringing up the fundamentals to address any potential connection between the two. Next, we discussed whether a duologal relationship, or more, exists between the two, taking the ROS level and iron status into consideration. Lastly, we surveyed future perspectives that would favor the understanding of these topics.
Collapse
Affiliation(s)
- Justin Chak Ting Cheung
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Guangzheng Deng
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Nathalie Wong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yujuan Dong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- *Correspondence: Simon Siu Man Ng, ; Yujuan Dong,
| | - Simon Siu Man Ng
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- *Correspondence: Simon Siu Man Ng, ; Yujuan Dong,
| |
Collapse
|
28
|
Liu N, Liang Y, Wei T, Zou L, Huang X, Kong L, Tang M, Zhang T. The role of ferroptosis mediated by NRF2/ERK-regulated ferritinophagy in CdTe QDs-induced inflammation in macrophage. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129043. [PMID: 35525219 DOI: 10.1016/j.jhazmat.2022.129043] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/11/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Cadmium telluride quantum dots (CdTe QDs) exist in the environment due to the abandonment of products. There is a potential risk to organisms and toxic mechanism is worth exploring. In this study, 12.5 μmol/Kg body weight CdTe QDs triggered systemic and local inflammatory response in mice and activated macrophages, then the mechanism of activating macrophages to overexpress IL-1β and IL-6 was explored. RAW264.7 macrophages were used, and after macrophages exposing to 1 μM CdTe QDs for 24 h, oxidative stress occurred. Further investigation found that CdTe QDs triggered ferroptosis in RAW264.7 cells. And deferoxamine mesylate alleviated the excessive lipid hydroperoxide caused by QDs. Mechanistically, CdTe QDs-provoked decrease of nuclear factor erythroid 2-related factor 2 (NRF2) elicited phosphorylation of extracellular regulated protein kinases1/2 (ERK1/2) and then activated ferritinophagy, which made ferritin heavy chain 1 (FTH1) degraded in lysosome and proteasome to release free iron ions to initiate ferroptosis in macrophages. This paper updates the mechanism of macrophage activation by CdTe QDs with regard to ferritinophagy, and more importantly, identifies the key role of NRF2 and ERK1/2. Our research extends the role of ferroptosis in inflammatory responses triggered by nanoparticles (NPs) in macrophages and provides insightful reference for toxicity assessment of NPs.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Ying Liang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China; Testing Center for Medical Device, Yancheng Institute of Measurement and Testing, Yancheng 224007, PR China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Lu Kong
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China.
| | - Ting Zhang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
29
|
mRNA-Modified FUS/NRF2 Signalling Inhibits Ferroptosis and Promotes Prostate Cancer Growth. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8509626. [PMID: 36035281 PMCID: PMC9410928 DOI: 10.1155/2022/8509626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022]
Abstract
Objective. Regarding the imperfect mechanism of occurrence and development of prostate adenocarcinoma (PRAD), this study investigated mRNA-modified FUS/NRF2 signalling to inhibit ferroptosis and promote prostate adenocarcinoma growth. Methods. Bioinformatics analysis was used to obtain the expression of FUS and its mRNA modification in PRAD. The expression of FUS in prostate cells (CRPC) and the level of m6A methylation modification, ferroptosis (P53 and GPX4), apoptosis (Caspase3), ferroptosis (P53 and GPX4), and apoptosis (Caspase3) in CRPC after ferroptosis inducer Erastin, ferroptosis inhibitor, and FUS knockdown were detected. Autophagy (LC3B), oxidative stress (GSH and ROS), and expression of NRF2/HO-1 pathway are indicators. Results. FUS was highly expressed in PRAD and phenomenally reduced the survival rate of patients. After knocking down FUS, the level of m6A methylation was significantly reduced, and the expressions of ferroptosis markers P53 and GPX4 were phenomenally reduced, while the levels of apoptosis and autophagy markers Caspase3 and LC3B remained unchanged. Upregulated and NRF2/HO-1 pathway indicators were upregulated. It shows that m6A methylation modification is reduced when FUS is the low expression, inhibits the expression of P53 and GPX4, downregulates GSH, upregulates ROS, activates the NRF2/HO-1 pathway, and promotes ferroptosis to inhibit the occurrence of RPAD. Conclusions. The increase of m6A methylation modification can increase the expression of FUS, thereby promoting the expression of P53 and GPX4, upregulating GSH, downregulating ROS, inhibiting the NRF2/HO-1 pathway, inhibiting ferroptosis, and promoting the growth of PRAD.
Collapse
|
30
|
Zhang Y, Liu Q, Ning J, Jiang T, Kang A, Li L, Pang Y, Zhang B, Huang X, Wang Q, Bao L, Niu Y, Zhang R. The proteasome-dependent degradation of ALKBH5 regulates ECM deposition in PM 2.5 exposure-induced pulmonary fibrosis of mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128655. [PMID: 35334267 DOI: 10.1016/j.jhazmat.2022.128655] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Long-term inhalation of fine particulate matter (PM2.5) can cause serious effects on the respiratory system. It might be attributed to the fact that PM2.5 could directly enter and deposit in lung tissues. We established models of PM2.5 exposure in vivo and in vitro to explore the adverse effects of ambient PM2.5 on pulmonary and its potential pathogenic mechanisms. Our results showed that PM2.5 exposure promoted the deposition of ECM and the increased stiffness of the lungs, and then led to pulmonary fibrosis in time- and dose- dependent manners. Pulmonary function test showed restrictive ventilation function in mice after PM2.5 exposure. After PM2.5 exposure, ALKBH5 was recognized by TRIM11 and then degraded through the proteasome pathway. ALKBH5 deficiency (ALKBH5-/-) aggravated restrictive ventilatory disorder and promoted ECM deposition in lungs of mice induced by PM2.5. And the YAP1 signaling pathway was more activated in ALKBH5-/- than WT mice after PM2.5 exposure. In consequence, decreased ALKBH5 protein levels regulated miRNAs and then the miRNAs-targeted YAP1 signaling was activated to promote pulmonary fibrosis induced by PM2.5.
Collapse
Affiliation(s)
- Yaling Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Jie Ning
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Tao Jiang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Aijuan Kang
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Lipeng Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Boyuan Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Science and Technology Office, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - XiaoYan Huang
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Qian Wang
- Experimental Center, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Lei Bao
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China.
| |
Collapse
|
31
|
Pan J, Wang J, Fang K, Hou W, Li B, Zhao J, Ma X. RNA m 6A Alterations Induced by Biomineralization Nanoparticles: A Proof-of-Concept Study of Epitranscriptomics for Nanotoxicity Evaluation. NANOSCALE RESEARCH LETTERS 2022; 17:23. [PMID: 35122526 PMCID: PMC8817964 DOI: 10.1186/s11671-022-03663-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Although various strategies have been included in nanotoxicity evaluation, epitranscriptomics has rarely been integrated into this field. In this proof-of-concept study, N6-methyladenosine (m6A) changes of mRNA in HEK293T cells induced by three bovine serum albumin (BSA)-templated Au, CuS and Gd2O3 nanoparticles are systematically explored, and their possible biological mechanisms are preliminarily investigated. It has been found that all the three BSA-templated nanoparticles can reduce m6A levels, and the genes with reduced m6A are enriched for TGF-beta signaling, which is critical for cell proliferation, differentiation and apoptosis. Further results indicate that abnormal aggregation of m6A-related enzymes at least partly account for the nanoparticle-induced epitranscriptomic changes. These findings demonstrate that epitranscriptomics analysis can provide an unprecedented landscape of the biological effect induced by nanomaterials, which should be involved in the nanotoxicity evaluation to promote the potential clinical translation of nanomaterials.
Collapse
Affiliation(s)
- Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Jiaojiao Wang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Kun Fang
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Wenjing Hou
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Bing Li
- Department of Orthopedics, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Jie Zhao
- Department of Orthopedics, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
| | - Xinlong Ma
- Department of Orthopedics, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
| |
Collapse
|
32
|
Nanoparticle-Induced m6A RNA Modification: Detection Methods, Mechanisms and Applications. NANOMATERIALS 2022; 12:nano12030389. [PMID: 35159736 PMCID: PMC8839700 DOI: 10.3390/nano12030389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
With the increasing application of nanoparticles (NPs) in medical and consumer applications, it is necessary to ensure their safety. As m6A (N6-methyladenosine) RNA modification is one of the most prevalent RNA modifications involved in many diseases and essential biological processes, the relationship between nanoparticles and m6A RNA modification for the modulation of these events has attracted substantial research interest. However, there is limited knowledge regarding the relationship between nanoparticles and m6A RNA modification, but evidence is beginning to emerge. Therefore, a summary of these aspects from current research on nanoparticle-induced m6A RNA modification is timely and significant. In this review, we highlight the roles of m6A RNA modification in the bioimpacts of nanoparticles and thus elaborate on the mechanisms of nanoparticle-induced m6A RNA modification. We also summarize the dynamic regulation and biofunctions of m6A RNA modification. Moreover, we emphasize recent advances in the application perspective of nanoparticle-induced m6A RNA modification in medication and toxicity of nanoparticles to provide a potential method to facilitate the design of nanoparticles by deliberately tuning m6A RNA modification.
Collapse
|
33
|
Guan Q, Zhou LL, Dong YB. Ferroptosis in cancer therapeutics: a materials chemistry perspective. J Mater Chem B 2021; 9:8906-8936. [PMID: 34505861 DOI: 10.1039/d1tb01654g] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ferroptosis, distinct from apoptosis, is a regulated form of cell death caused by lipid peroxidation that has attracted extensive research interest since it was first defined in 2012. Over the past five years, an increasing number of studies have revealed the close relationship between ferroptosis and materials chemistry, in particular nanobiotechnology, and have concluded that nanotechnology-triggered ferroptosis is an efficient and promising antitumor strategy that provides an alternative therapeutic approach, especially for apoptosis-resistant tumors. In this review, we summarize recent advances in ferroptosis-induced tumor therapy at the intersection of materials chemistry, redox biology, and tumor biology. The biological features and molecular mechanisms of ferroptosis are first outlined, followed by a summary of the feasible strategies to induce ferroptosis using nanomaterials and the applications of ferroptosis in combined tumor therapy. Finally, the existing challenges and future development directions in this emerging field are discussed, with the aim of promoting the progress of ferroptosis-based oncotherapy in materials science and nanoscience and enriching the antitumor arsenal.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|