1
|
Holthaus M, Xiong X, Eghbalzadeh K, Großmann C, Geißen S, Piontek F, Mollenhauer M, Abdallah AT, Kamphausen T, Rothschild M, Wahlers T, Paunel-Görgülü A. Loss of peptidylarginine deiminase 4 mitigates maladaptive cardiac remodeling after myocardial infarction through inhibition of inflammatory and profibrotic pathways. Transl Res 2025; 280:1-16. [PMID: 40252995 DOI: 10.1016/j.trsl.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Inflammation and progressive fibrosis represent predictive risk factors for heart failure (HF) development following myocardial infarction (MI). Peptidylargininine deiminase 4 (PAD4) catalyzes the citrullination of arginine residues in polypeptides and has recently been identified as a contributor to HF pathogenesis. This study aimed to evaluate the role of PAD4 in monocytes / macrophages (Mo/Mφ) and cardiac fibroblasts (CFs) for cardiac repair following MI and HF progression. Cardiac Padi4 expression significantly increased in mice subjected to MI by permanent coronary artery ligation as well as in humans who died from MI. Transcriptome analysis revealed marked downregulation of inflammation-related genes in infarcted hearts and cardiac Mo/Mφ from global PAD4 knockout (PAD4-/-) mice on day 7 post-MI accompanied by increased frequency of reparative CD206+ macrophages. Mechanistically, pharmacological and genetic PAD4 inhibition abrogated nuclear NF-κB translocation and inflammatory gene expression in bone marrow-derived macrophages (BMDM). Simultaneously, reduced inflammation and diminished cardiac levels of transforming growth factor-β (TGF-β) along with impaired IL-6 / TGF-β signaling in PAD4-/- CFs were associated with decreased expression of fibrotic genes, reduced collagen deposition, improved cardiac function, and enhanced 28-day survival in PAD4-/- mice. Strikingly, whereas pharmacological PAD inhibition in the acute phase after MI exacerbated cardiac damage, treatment starting on day 7 ameliorated cardiac remodeling and improved long-term survival in mice. Collectively, we here identified PAD4 as a critical regulator of inflammatory genes in Mo/Mφ and of profibrotic pathways in CFs. Thus, therapeutic approaches directed against PAD4 are promising interventions to alleviate adverse cardiac remodeling and subsequent HF development.
Collapse
Affiliation(s)
- Michelle Holthaus
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Xiaolin Xiong
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kaveh Eghbalzadeh
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Clara Großmann
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simon Geißen
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Fabian Piontek
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Mollenhauer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Ali T Abdallah
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD) Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne Germany
| | - Thomas Kamphausen
- Institute of Legal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Markus Rothschild
- Institute of Legal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Adnana Paunel-Görgülü
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Wang L, Lin S, Wei Q, Li T, Mo Q, Bai R, Feng J, Zhan A, Yang X, Rong X, Guo J. Preventive Administration of Quercetin Promotes Survival and Reduces Adverse Ventricular Remodeling after myocardial infarction through facilitating M2-like macrophage polarization. Int Immunopharmacol 2025; 151:114296. [PMID: 39983422 DOI: 10.1016/j.intimp.2025.114296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025]
Abstract
Myocardial infarction (MI) remains a leading cause of global health burden, and adverse cardiac remodeling after MI seriously affects patient recovery. Macrophages play an important role in the cardiac remodeling post-MI. Quercitrin (Que), a bioflavonoid commonly found in fruits, vegetables, and various Chinese medicines, possesses a therapeutic effect in MI, but whether it has a role in the prevention of MI is unclear. This study investigated the potential preventive value and mechanism of Que against MI. In this study, we treated adult male C57BL/6 mice with Que for 2 weeks and then constructed the MI model. We found that pre-treatment with Que improved cardiac fractional shortening and ejection fraction, and elevated the survival of mice after MI. In addition, pre-administration of Que attenuated cardiac hypertrophy and diminished the infarct size of the heart post-MI. Picrosirius red staining of heart sections and detection of fibrosis markers' levels by real-time polymerase chain reaction and western blot analyses revealed that Que repressed cardiac fibrosis after MI. Que pre-administration inhibited the levels of inflammatory factors and the infiltration of inflammatory cells, and increased the proportion of M2-like macrophages in the infarcted area of the heart. Furthermore, we found that Que pre-treatment polarized macrophage from M1-like to M2-like, which promoted the proliferation, migration, and activation of cardiac fibroblasts in vitro. Collectively, these data demonstrated that pre-administration Que promoted survival and reduced adverse ventricular remodeling after MI partially through modifying macrophage polarization. This provides an experimental basis for the future application of Que in cardiovascular diseases including MI.
Collapse
Affiliation(s)
- Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Shaolin Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Tongjun Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Quqian Mo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Ruining Bai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Jiaojiao Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Angyu Zhan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Xiao Yang
- Department of Clinical Laboratory, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
3
|
Zhao Y, Hu Y, Wang Y, Qian H, Zhu C, Dong H, Hao C, Zhang Y, Ji Z, Li X, Chen Y, Xu R, Jiang J, Cao H, Ma G, Chen L. Cardiac fibroblast-derived mitochondria-enriched sEVs regulate tissue inflammation and ventricular remodeling post-myocardial infarction through NLRP3 pathway. Pharmacol Res 2025; 214:107676. [PMID: 40015386 DOI: 10.1016/j.phrs.2025.107676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/30/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Resident cardiac fibroblasts (CFs) play crucial roles in sensing injury signals and regulating inflammatory responses post-myocardial infarction (MI). Damaged mitochondria can be transferred extracellularly via various mechanisms, including extracellular vesicles (EVs). In this study, we aimed to investigate whether CFs could transfer damaged mitochondrial components via small EVs (sEVs) and elucidate their role in regulating inflammatory responses post-MI. Left anterior descending coronary artery ligation was performed in mice. Mitochondrial components in sEVs were detected using nanoflow cytometry. Differential protein expression in sEVs from normoxia and normoglycemia CFs (CFs-Nor-sEVs) and CFs post oxygen-glucose deprivation (CFs-OGD-sEVs) was identified using label-free proteomics. CFs-sEVs were co-cultured with mouse bone marrow-derived macrophages (BMDMs) to assess macrophage inflammatory responses. Effects of intramyocardial injection of CFs-sEVs were assessed in MI mice in the absence or presence of NLRP3 inhibitor CY-09. Results demonstrated that mitochondrial components were detected in CFs-derived sEVs post-MI. Damaged mitochondrial components were enriched in CFs-OGD-sEVs (CFs-mt-sEVs), which promoted pro-inflammatory phenotype activation of BMDMs in vitro. Myocardial injection of CFs-mt-sEVs enhanced tissue inflammation, aggravated cardiac dysfunction, and exacerbated maladaptive ventricular remodeling post-MI in vivo. Mechanistically, above effects were achieved via activation of NLRP3 and above effects could be reversed by NLRP3 inhibitor CY-09. This study indicates that CFs could transfer damaged mitochondrial components via the sEVs post-MI, promote macrophage inflammatory activation and exacerbate maladaptive ventricular remodeling post MI by activating NLRP3. Our findings highlight the potential therapeutic effects of inhibiting CFs-mt-sEVs and NLRP3 to improve cardiac function and attenuate ventricular remodeling post-MI.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Ya Hu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Yifei Wang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Hao Qian
- Department of Cardiology, Huai 'an No.1 People's Hospital Affiliated to Nanjing Medical University, PR China
| | - Chenxu Zhu
- Institute for Computational Biomedicine - Disease Modeling, RWTH Aachen University, Aachen, Germany
| | - Hongjian Dong
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Chunshu Hao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Yao Zhang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Xinxin Li
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Yue Chen
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Rongfeng Xu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Jie Jiang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Hailong Cao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China.
| | - Lijuan Chen
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, PR China; Department of Cardiology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Nanjing 211200, PR China.
| |
Collapse
|
4
|
Li H, Zhu Q, Wang W, Bao Y, Bai Y, Liu H, Leng W. Identification of biomarkers associated with M1 macrophages in the ST-segment elevation myocardial infarction through bioinformatics and machine learning approaches. Sci Rep 2025; 15:11069. [PMID: 40169697 PMCID: PMC11961635 DOI: 10.1038/s41598-025-89125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/03/2025] [Indexed: 04/03/2025] Open
Abstract
ST-segment elevation myocardial infarction (STEMI) is considered a critical cardiac condition with a poor prognosis. Shortly after STEMI occurs, the increased number of circulating leukocytes including macrophages can lead to the accumulation of more cells in the myocardium, affecting the cardiac immune microenvironment. Identifying serum biomarkers associated with immune infiltration after STEMI is important for diagnosing and treating STEMI. In this work, we aimed to use integrated bioinformatics and machine learning methods to identify new biomarkers. First, candidate genes closely associated with M1 macrophage immune infiltration and STEMI were obtained using the limma package, the CIBERSORTx package, weighted gene coexpression network analysis (WGCNA), and protein‒protein interaction (PPI) networks from the GSE59867 dataset, which comprises peripheral blood mononuclear cell (PBMC) samples. The STEMI patients were subsequently stratified into subtypes using the ConsensusClusterPlus package. Furthermore, using machine learning methods, we identified AKT3, GJC2, HMGCL and RBM17 as the genes with the greatest potential to be associated with STEMI subtypes and with M1 macrophage infiltration during the acute phase of STEMI. Finally, the expression profile and diagnostic value of the four feature genes were validated in the GSE59867 and GSE62646 datasets and in 24 patients using real-time PCR. This study revealed logically and comprehensively that AKT3, GJC2, HMGCL and RBM17, which are derived from PBMCs, could enhance the accuracy of STEMI diagnosis and might provide effective treatment options for STEMI patients.
Collapse
Affiliation(s)
- Huiying Li
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, China
- Medical School of Chinese PLA, 28 Fuxing Road, Haidian, Beijing, 100853, China
| | - Qiwei Zhu
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, China
| | - Wei Wang
- Department of Cardiology, The Sixth Medical Center of Chinese PLA General Hospital, 6 Fucheng Road, Haidian, Beijing, 100037, China
| | - Yu Bao
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, China
| | - Yongyi Bai
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, China.
| | - Hongbin Liu
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, China.
| | - Wenxiu Leng
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, China.
| |
Collapse
|
5
|
Tang J, Tudi X, Zhang T, Zhu J, Shen T. Neutrophil-related IL1R2 gene predicts the occurrence and early progression of myocardial infarction. Front Cardiovasc Med 2025; 12:1516043. [PMID: 40231027 PMCID: PMC11994735 DOI: 10.3389/fcvm.2025.1516043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction Myocardial infarction (MI) is a leading cause of death worldwide. Immune cells play a significant role in the MI development. This study aims to identify a marker related to neutrophil for the diagnosis and early progression of MI. Methods Key genes were screened using three machine learning algorithms to establish a diagnostic model. A gene associated with the early progression of MI was identified based on single cell RNA sequencing data. To further validate the predictive value of the gene, the mouse models of MI were constructed. Immunofluorescence (IF) analysis demonstrated the co-expression of the gene with neutrophils. Immunohistochemistry (IHC) was performed to validate the role of the gene in the progression of MI. Results Neutrophils were identified and verified as the key infiltrating immune cells (IICs) involved in the onset of MI. A diagnostic panel with superior performance was developed using five key genes related to neutrophils in MI (AUC = 0.887). Among the panel, IL1R2 was found to early phase of MI, which was further corroborated by IHC in mouse models of MI. Conclusions This study suggests that IL1R2, which is specific to neutrophils, can predict the diagnosis and early progression of MI, providing new insights into the clinical management of MI.
Collapse
Affiliation(s)
- Jieqiong Tang
- Department of Cardiology, Chuzhou Hospital Affiliated to Anhui Medical University, Chuzhou, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xierenayi Tudi
- Department of Cardiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianxiang Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingbo Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongtong Shen
- Department of Cardiology, Chuzhou Hospital Affiliated to Anhui Medical University, Chuzhou, China
| |
Collapse
|
6
|
Liu Y, Shen C, Cao Y. Mediating Role of Blood Metabolites in the Relationship Between Immune Cell Traits and Heart Failure: A Mendelian Randomization and Mediation Analysis. J Am Heart Assoc 2025; 14:e037265. [PMID: 40079309 DOI: 10.1161/jaha.124.037265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 01/30/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Observational studies have shown a significant association between immune cells and heart failure (HF). Nevertheless, the precise biological mechanisms underlying this association remain unclear. METHODS To investigate the causative relationships and underlying mechanisms between immune cell traits and adult HF, 3 main methods of Mendelian randomization were used: 2-sample Mendelian randomization, multivariable Mendelian randomization with controlling for several factors affecting HF, and mediation analysis. Results from the inverse variance-weighted model indicated that genetic predispositions for human leukocyte antigen-type DR (HLA DR) on CD33dim HLA DR+ CD11b+ (odds ratio, 0.967 [95% CI, 0.939-0.996]; P=0.028) may be associated with a reduced risk of HF. Although the association between HF and HLA DR on CD33 dim HLA DR+ CD11b+ did not withstand multiple-testing correction, the Mendelian randomization results (PIVW <0.05) decrease the likelihood that the observational results are due to chance. RESULTS Our 2-step mediation analysis demonstrated that genetic predispositions for HLA DR on CD33dim HLA DR+ CD11b+ (odds ratio,1.085 [95% CI, 1.020-1.155]; P=0.010) was associated with increased levels of the metabolite Octadecanedioate, while genetic predispositions for Octadecanedioate levels (odds ratio, 0.917 [95% CI, 0.849-0.991]; P=0.028) was associated with a reduced risk of HF. Moreover, our results also demonstrated that the association between HLA DR on CD33dim HLA DR+ CD11b+ and HF was possibly mediated by Octadecanedioate levels, with a mediation proportion of 21.4% [95% CI, 43.7 -0.998]. CONCLUSIONS These findings underscore the importance of HLA DR on CD33dim HLA DR+ CD11b+ in the development of HF, with Octadecanedioate levels acting as a possible mediator in this pathway.
Collapse
Affiliation(s)
- Yi Liu
- Department of Emergency Medicine, Laboratory of Emergency Medicine West China Hospital, West China School of Medicine, Sichuan University Chengdu China
| | - Chenfu Shen
- Department of Neurosurgery Xiangya Hospital, Central South University Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine West China Hospital, West China School of Medicine, Sichuan University Chengdu China
| |
Collapse
|
7
|
Cai L, Guo X, Zhang Y, Xie H, Liu Y, Zhou J, Feng H, Zheng J, Li Y. Integrated analysis of single-cell and bulk RNA-sequencing to predict prognosis and therapeutic response for colorectal cancer. Sci Rep 2025; 15:7986. [PMID: 40055390 PMCID: PMC11889094 DOI: 10.1038/s41598-025-91761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 02/24/2025] [Indexed: 05/13/2025] Open
Abstract
Colorectal cancer (CRC) is a prevalent malignant tumor characterized by high global incidence and mortality rates. Furthermore, it is imperative to comprehend the molecular mechanisms underlying its development and to identify effective prognostic markers. These efforts are crucial for pinpointing potential therapeutic targets and enhancing patient survival rates. Therefore, we develop a novel prognostic model aimed at providing new theoretical support for clinical prognosis evaluation and treatment. We downloaded data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Subsequently, we performed single-cell analysis and developed a prognostic model associated with colorectal cancer. We divided the scRNA-seq dataset (GSE221575) into 19 cell clusters and classified these clusters into 11 distinct cell types using marker genes. Using univariate Cox regression and LASSO (Least Absolute Shrinkage and Selection Operator) analyses, we developed a prognostic model consisting of 9 genes. Based on our 9-gene model, we divided patients into high-risk and low-risk groups using the median risk score. The high-risk group demonstrated significant positive correlations with M0 macrophages, CD8+ T cells, and M2 macrophages. The enrichment analyses indicate significant enrichment of immune-related pathways in the high-risk group, including HEDGEHOG_SIGNALING, Wnt signaling pathway, and cell adhesion molecules. Drug sensitivity analysis revealed that the low-risk group was sensitive to 5 chemotherapeutic drugs, while the high-risk group was sensitive to only 1. Additionally, we developed a highly reliable nomogram for clinical application. This suggests that the risk score derived from our modeling analysis is highly effective for stratifying colorectal cancer samples. This study comprehensively applied bioinformatics methods to construct a risk score model. The model showed good predictive performance, offering potential guidance for individualized treatment of colorectal cancer patients. Furthermore, it may provide valuable insights into the disease's pathogenesis and identify potential therapeutic targets for further research.
Collapse
Affiliation(s)
- Liyang Cai
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Xin Guo
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Yucheng Zhang
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Huajie Xie
- The First Clinical Medical College, Guangdong Medical University, Guangzhou, China
| | - Yongfeng Liu
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Jianlong Zhou
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Huolun Feng
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
| | - Yong Li
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
8
|
Chen X, Lin S, You H, Chen J, Wu Q, Yin K, Lin F, Zhang Y, Song J, Ding C, Kang D, Yang C. Integrating Metabolic RNA Labeling-Based Time-Resolved Single-Cell RNA Sequencing with Spatial Transcriptomics for Spatiotemporal Transcriptomic Analysis. SMALL METHODS 2025; 9:e2401297. [PMID: 39390840 DOI: 10.1002/smtd.202401297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Metabolic RNA labeling-based time-resolved single-cell RNA sequencing (scRNA-seq) has provided unprecedented tools to dissect the temporal dynamics and the complex gene regulatory networks of gene expression. However, this technology fails to reveal the spatial organization of cells in tissues, which also regulates the gene expression by intercellular communication. Herein, it is demonstrated that integrating time-resolved scRNA-seq with spatial transcriptomics is a new paradigm for spatiotemporal analysis. Metabolic RNA labeling-based time-resolved Well-TEMP-seq is first applied to profile the transcriptional dynamics of glioblastoma (GBM) cells and discover two potential pathways of EZH2-mediated mesenchymal transition in GBM. With spatial transcriptomics, it is further revealed that the crosstalk between CCL2+ malignant cells and IL10+ tumor-associated macrophages in the tumor microenvironment through an EZH2-FOSL2-CCL2 axis contributes to the mesenchymal transition in GBM. These discoveries show the power of integrative spatiotemporal scRNA-seq to elucidate the complex gene regulatory mechanism and advance the understanding of cellular processes in disease.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Shichao Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Honghai You
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Jinyuan Chen
- Department of Ophthalmology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, P. R. China
| | - Qiaoyi Wu
- Department of Trauma Center & Emergency Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, P. R. China
| | - Kun Yin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Fanghe Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yingkun Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jia Song
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| | - Chenyu Ding
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| |
Collapse
|
9
|
Tang M, Xu Y, Pan M. Integrative Analysis of scRNA-Seq and Bulk RNA-Seq Identifies Plasma Cell Related Genes and Constructs a Prognostic Model for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2025; 12:427-444. [PMID: 40040881 PMCID: PMC11878290 DOI: 10.2147/jhc.s509749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
Purpose The complexity and heterogeneity of the tumor immune microenvironment (TIME) are linked to the development and poor prognosis of hepatocellular carcinoma (HCC). However, the cell type within the TIME that is most closely associated with HCC development remains unclear. Herein, we aimed to identify cell clusters that significantly contribute to HCC development and their underlying mechanisms. Method and Results Using single-cell RNA sequencing (scRNA-seq), we analyzed changes in the TIME of normal and tumor tissues, identifying plasma cells as the key cluster in HCC development. Based on plasma cell-related genes (PCRGs), we constructed and validated an eight-gene prognostic model (ST6GALNAC4, SEC61A1, SSR3, RPN2, PRDX4, TRAM1, SPCS2, CD79A) using internal and external datasets and a nomogram. Functional enrichment, miRNA network construction, and transcriptional regulation analyses were performed to explore underlying mechanisms. TIDE scores and the GDSC database were used to predict immunotherapy and chemotherapy sensitivity in different risk groups. Finally, SSR3's biological function was validated in vitro in HCC cell lines. Conclusion Plasma cells are key clusters in HCC development. A prognostic model based on the PCRGs can accurately predict the prognosis of patients with HCC and guide clinical treatment.
Collapse
Affiliation(s)
- Mingyang Tang
- General Surgery Center, Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, People’s Republic of China
| | - Yuyan Xu
- General Surgery Center, Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, People’s Republic of China
| | - Mingxin Pan
- General Surgery Center, Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, People’s Republic of China
| |
Collapse
|
10
|
Wu Y, Meng L, Zhan S, Li M, Huang J, Chen X, Chen L, Gao X, Chen H, Chen H, Zhong Y, Xu L, Xu Y. ITIH5-mediated fibroblast/macrophage crosstalk exacerbates cardiac remodelling after myocardial infarction. J Transl Med 2025; 23:224. [PMID: 39994656 PMCID: PMC11852866 DOI: 10.1186/s12967-025-06244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Myocardial infarction (MI) and subsequent ischaemic cardiomyopathy (ICM) are the primary causes of heart failure. Inter-α trypsin inhibitor heavy chain 5 (ITIH5) is an extracellular matrix (ECM) protein and has been identified as a myocardial marker of ICM. However, its diagnostic value in patients with ICM and its function and molecular mechanism in regulating cardiac repair and remodelling after MI remain unknown. METHODS Three microarray datasets including 117 ICM and 152 non-failing (NF) myocardial tissue samples were merged and analysed. Peripheral blood and clinical information were collected from 53 patients with ICM and 40 NF controls. The effects of ITIH5 on cellular interactions and cardiac remodelling was studied using ITIH5 RNAi adeno-associated virus and mouse MI model in vivo and in fibroblast-macrophage co-culture model in vitro. RESULTS ITIH5 was upregulated in the myocardial tissue and peripheral blood of patients with ICM and could be an independent risk factor for ICM. Experiments in mice suggested that ITIH5 promotes cardiac fibrotic remodelling at all phases after MI. Downregulation of ITIH5 increased the risk of death within 7 d after MI but inhibited ventricular remodelling and improved cardiac function on the long-term. ITIH5 promotes the primary cardiac fibroblasts (CFs) proliferation, migration, and improves survival rather than activiation. Morover, ITIH5 directly promotes macrophage tissue infiltration, maturation, and profibrotic phenotype transformation, thereby promoting fibrotic remodelling. By using fibroblast-macrophage co-culture model, we demonstrated ITIH5 enhanced the fibroblast/macrophage crosstalk manifest as macrophage profibrotic phenotype transformation and CFs activation, mainly by enhancing the hyaluronan stability, the ability of ITIH5 to bind macrophage CD44 receptors and the downstream activation of the signal transduction and activator of transcription 3 pathway in macrophages. CONCLUSIONS ITIH5 could be used as a diagnostic marker for ICM. Moreover, ITIH5 expression was upregulated after MI, which accelerated ECM-fibroblast-macrophage interaction, thereby promoting macrophage profibrotic phenotype transformation, CFs activation, and cardiac fibrotic remodelling.
Collapse
Affiliation(s)
- Yirong Wu
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
| | - Li Meng
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siyao Zhan
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
| | - Miaofu Li
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
| | - Jiamin Huang
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xuechun Chen
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
| | - Liuying Chen
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
| | - Xiaofei Gao
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
| | - Hao Chen
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Huimin Chen
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yigang Zhong
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China.
| | - Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China.
- Translational Medicine Research Center, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China.
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China.
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
11
|
Gu Y, Chen N, Qi J, Zhu L, Chen X, Wang F, Zhang Y, Jiang T. The Endothelial Cell-Related Genes EIF1 and HSPA1B Contribute to the Pathogenesis of Alzheimer's Disease by Modulating Peripheral Immunoinflammatory Responses. Brain Sci 2025; 15:205. [PMID: 40002537 PMCID: PMC11852842 DOI: 10.3390/brainsci15020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/09/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Emerging evidence suggests that peripheral immunoinflammatory responses contribute to Alzheimer's disease (AD) pathogenesis, and endothelial cells (ECs) are involved in these responses. Nevertheless, the potential molecular mechanisms and signaling pathways by which ECs modulate peripheral immunoinflammatory responses and thus contribute to AD pathogenesis are not fully understood. METHODS The single-cell RNA sequencing dataset GSE157827 was analyzed, and AD key genes were screened using LASSO regression and random forest algorithms. Functional enrichment analyses of these AD key genes were conducted using gene set enrichment analysis (GSEA) and gene set variation analysis. Immune cell infiltration analyses for AD key genes were performed using single-sample GSEA, and their correlations with immunoinflammatory factors were assessed using the TISIDB database. Peripheral blood RNA sequencing data from our cohort were utilized to validate the expression patterns of EC-related AD key genes in peripheral blood and to investigate their association with cognition. RESULTS ECs are the most significant contributors to AD among all brain cell subpopulations. For the first time, the EC-related genes EIF1 and HSPA1B were identified as key genes associated with AD progression. These two EC-related key genes may participate in AD pathogenesis by modulating peripheral immunoinflammatory responses. The levels of EIF1 and HSPA1B were significantly altered in the peripheral blood during AD progression, and EIF1 levels correlated with cognitive functions in AD clinical continuum patients. CONCLUSIONS These findings underscore the critical roles of the EC-related genes EIF1 and HSPA1B in AD pathogenesis and their potential as biomarkers for this disease.
Collapse
Affiliation(s)
- Yucheng Gu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China; (Y.G.); (N.C.); (J.Q.); (L.Z.); (X.C.); (Y.Z.)
| | - Nihong Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China; (Y.G.); (N.C.); (J.Q.); (L.Z.); (X.C.); (Y.Z.)
| | - Jingwen Qi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China; (Y.G.); (N.C.); (J.Q.); (L.Z.); (X.C.); (Y.Z.)
| | - Lin Zhu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China; (Y.G.); (N.C.); (J.Q.); (L.Z.); (X.C.); (Y.Z.)
| | - Xiangliang Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China; (Y.G.); (N.C.); (J.Q.); (L.Z.); (X.C.); (Y.Z.)
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China;
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China; (Y.G.); (N.C.); (J.Q.); (L.Z.); (X.C.); (Y.Z.)
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China; (Y.G.); (N.C.); (J.Q.); (L.Z.); (X.C.); (Y.Z.)
| |
Collapse
|
12
|
Chen J, Zhu T, Yang J, Shen M, Wang D, Gu B, Xu J, Zhang M, Hao X, Tang Z, Tong J, Du Y, Zhang B, Li H, Xu M. Geniposide Protects Against Myocardial Infarction Injury via the Restoration in Gut Microbiota and Gut-Brain Axis. J Cell Mol Med 2025; 29:e70406. [PMID: 39910683 PMCID: PMC11798748 DOI: 10.1111/jcmm.70406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Improving gut dysbiosis and impaired gut-brain axis has been a potent therapeutic strategy for treating myocardial infarction (MI). Geniposide (GEN), a traditional Chinese medicine extract, has demonstrated substantial cardioprotective properties post-MI. Nevertheless, the effect of GEN on gut microbial, gut-brain communication, and its potential mechanism remains unclear. In this study, we initially found that GEN significantly alleviated MI-induced cardiac dysfunction from echocardiographic data and decreased myocardial fibrosis, inflammation, apoptosis and hypertrophy post-MI. Additionally, we investigated the effects of GEN on gut pathology, and observed that GEN led to a remarkable change in gut microbiota as evidenced by altering β-diversity and short-chain fatty acids (SCFAs) levels, and alleviated intestinal damage indicated by reduced inflammation and barrier permeability post-MI. Finally, our investigation into brain pathology revealed that GEN induced a remarkable inhibition in PVN inflammation and sympathetic activity following MI. Collectively, these findings imply that the cardioprotective effects of GEN against MI were mediated possibly via an improvement in the impaired gut-brain axis. Mechanically, GEN-induced increase of microbiota-derived SCFAs might be the critical factor linking gut microbiota and reduced neuroinflammation with PVN, which leads to the suppression of sympathetic activation, therefore protecting the myocardium against MI-induced damage.
Collapse
Affiliation(s)
- Jie Chen
- The Affiliated Xi'an International Medical Center HospitalNorthwest UniversityXi'anShaanxiChina
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Tong Zhu
- The Affiliated Xi'an International Medical Center HospitalNorthwest UniversityXi'anShaanxiChina
| | - Jinbao Yang
- The Affiliated Xi'an International Medical Center HospitalNorthwest UniversityXi'anShaanxiChina
| | - Mengqing Shen
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Danmei Wang
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Boyuan Gu
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Jin Xu
- The Affiliated Xi'an International Medical Center HospitalNorthwest UniversityXi'anShaanxiChina
| | - Mingxia Zhang
- The Affiliated Xi'an International Medical Center HospitalNorthwest UniversityXi'anShaanxiChina
| | - Xiuli Hao
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Zheng Tang
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Jie Tong
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Yan Du
- Department of NephrologyThe First Affiliated Hospital of Xi'an Medical UniversityXi'anShaanxiChina
| | - Bao Zhang
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Hongbao Li
- Department of Physiology and PathophysiologyXi'an Jiaotong University School of Basic Medical SciencesXi'anChina
| | - MengLu Xu
- Department of NephrologyThe First Affiliated Hospital of Xi'an Medical UniversityXi'anShaanxiChina
| |
Collapse
|
13
|
Zheng H, Ou J, Han H, Lu Q, Shen Y. SS-31@Fer-1 Alleviates ferroptosis in hypoxia/reoxygenation cardiomyocytes via mitochondrial targeting. Biomed Pharmacother 2025; 183:117832. [PMID: 39848110 DOI: 10.1016/j.biopha.2025.117832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/25/2025] Open
Abstract
PURPOSE Targeting mitochondrial ferroptosis presents a promising strategy for mitigating myocardial ischemia-reperfusion (I/R) injury. This study aims to evaluate the efficacy of the mitochondrial-targeted ferroptosis inhibitor SS-31@Fer-1 (elamipretide@ferrostatin1) in reducing myocardial I/R injury. METHODS SS-31@Fer-1 was synthesized and applied to H9C2 cells subjected to hypoxia/reoxygenation (H/R) to assess its protective effects. Cytotoxicity was evaluated using a cell counting kit-8 (CCK-8) assay, with lactate dehydrogenase (LDH) and creatine kinase isoenzyme (CK-MB) levels measured. Mitochondrial reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were assessed using Mito-SOX and JC-1 fluorescent dyes, respectively. Lipid peroxidation products, malondialdehyde (MDA) and glutathione (GSH), were quantified. Mitochondrial structure, mt-cytochrome b (mt-Cytb), and mt-ATP synthase membrane subunit 6 (mt-ATP6) were analyzed. Additionally, iron homeostasis and ferroptosis markers were evaluated. RESULTS SS-31@Fer-1 significantly improved H/R-induced cardiomyocyte viability and reduced LDH and CK-MB levels. Compared to the Fer-1 group, SS-31@Fer-1 reduced GSH and increased MDA levels, enhancing mitochondrial integrity and function. Notably, it increased mitochondrial ROS and decreased MMP, indicating a mitigation of H/R-induced cardiomyocyte cytotoxicity. Furthermore, SS-31@Fer-1 maintained cellular iron homeostasis, as evidenced by increased expression of FTH, FTMT, FPN, and ABCB8. Elevated levels of GPX4 and Nrf2 were observed, while ACSL4 and PTGS2 levels were reduced in the SS-31@Fer-1 group. CONCLUSIONS SS-31@Fer-1 effectively suppressed ferroptosis in H/R-induced cardiomyocytes by maintaining cellular iron homeostasis, improving mitochondrial function, and inhibiting oxidative stress. These findings provide novel insights and opportunities for alleviating myocardial I/R injury.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing 210009, China; Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinbo Ou
- Departments of Cardiology, Fudan University Zhongshan Hospital, Qingpu Branch, 1158 Park East Road, Shanghai 60518120, China
| | - Hui Han
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qizheng Lu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Guangdong Second Provincial General Hospital, No. 466 Xingang Middle Road, Haizhu district, Guangzhou 510317, China
| | - Yunli Shen
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
14
|
Shen S, Wang L, Liu Q, Wang X, Yuan Q, Zhao Y, Hu H, Ma L. Macrophage-to-myofibroblast transition and its role in cardiac fibrosis. Int Immunopharmacol 2025; 146:113873. [PMID: 39693954 DOI: 10.1016/j.intimp.2024.113873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
After acute myocardial infarction, the heart mainly relies on fibrosis remodeling repair to maintain the structural and functional integrity of the heart, however, excessive fibrosis is an important cause of heart failure. Macrophages play an important regulatory role in cardiac fibrosis and have been found to transform into myofibroblasts through their own phenotype. Based on the existing evidence and previous research results, we summarizes the potential and mechanism of macrophage-to-myofibroblast transition (MMT) in cardiac fibrosis. Notwithstanding the burgeoning interest in MMT within the context of cardiac tissue, research in this domain remains nascent. A deeper comprehension of this phenomenon, alongside its molecular substratum, stands as a quintessential prerequisite for the demarcation of molecular targets conducive to the amelioration of cardiac fibrosis.
Collapse
Affiliation(s)
- Shichun Shen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Luonan Wang
- Faculty of Business, Economics and Law, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Qiaoling Liu
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Xiaohe Wang
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiang Yuan
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yiting Zhao
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hao Hu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Likun Ma
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
15
|
Chen KG, Farley KO, Lassmann T. Mining single-cell data for cell type-disease associations. NAR Genom Bioinform 2024; 6:lqae180. [PMID: 39703426 PMCID: PMC11655289 DOI: 10.1093/nargab/lqae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
A robust understanding of the cellular mechanisms underlying diseases sets the foundation for the effective design of drugs and other interventions. The wealth of existing single-cell atlases offers the opportunity to uncover high-resolution information on expression patterns across various cell types and time points. To better understand the associations between cell types and diseases, we leveraged previously developed tools to construct a standardized analysis pipeline and systematically explored associations across four single-cell datasets, spanning a range of tissue types, cell types and developmental time periods. We utilized a set of existing tools to identify co-expression modules and temporal patterns per cell type and then investigated these modules for known disease and phenotype enrichments. Our pipeline reveals known and novel putative cell type-disease associations across all investigated datasets. In addition, we found that automatically discovered gene co-expression modules and temporal clusters are enriched for drug targets, suggesting that our analysis could be used to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Kevin G Chen
- Precision Health, The Kids Research Institute Australia, 15 Hospital Ave, Nedlands, 6009, WA, Australia
| | - Kathryn O Farley
- Precision Health, The Kids Research Institute Australia, 15 Hospital Ave, Nedlands, 6009, WA, Australia
| | - Timo Lassmann
- Precision Health, The Kids Research Institute Australia, 15 Hospital Ave, Nedlands, 6009, WA, Australia
| |
Collapse
|
16
|
Gao S, Yang Z, Li D, Wang B, Zheng X, Li C, Fan G. Intervention of Tanshinone IIA on the PGK1-PDHK1 Pathway to Reprogram Macrophage Phenotype After Myocardial Infarction. Cardiovasc Drugs Ther 2024; 38:1359-1373. [PMID: 37991600 DOI: 10.1007/s10557-023-07520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Myocardial infarction remains a disease with high morbidity and death rate among cardiovascular diseases. Macrophages are abundant immune cells in the heart. Under different stimulatory factors, macrophages can differentiate into different phenotypes and play a dual pro-inflammatory and anti-inflammatory role. Therefore, a potential strategy for the treatment of myocardial infarction is to regulate the energy metabolism of macrophages and thereby regulate the polarization of macrophages. Tan IIA is an effective liposolubility component extracted from the root of Salvia miltiorrhiza and plays an important role in the treatment of cardiovascular diseases. On this basis, this study proposed whether Tan IIA could affect phenotype changes by regulating energy metabolism of macrophages, and thus exert its potential in the treatment of MI. METHODS Establishing a myocardial infarction model, Tan IIA was given for 3 days and 7 days for intervention. Cardiac function was detected by echocardiography, and cardiac pathological sections of each group were stained with HE and Masson to observe the inflammatory cell infiltration and fibrosis area after administration. The expression and secretion of inflammatory factors in heart tissue and serum of each group, as well as the proportion of macrophages at the myocardial infarction site, were detected using RT-PCR, ELISA, and immunofluorescence. The mitochondrial function of macrophages was evaluated using JC-1, calcium ion concentration detection, reactive oxygen species detection, and mitochondrial electron microscopic analysis. Mechanically, single-cell transcriptome data mining, cell transcriptome sequencing, and molecular docking technology were used to anchor the target of Tan IIA and enrich the pathways to explore the mechanism of Tan IIA regulating macrophage energy metabolism and phenotype. The target of Tan IIA was further determined by gene knockdown and overexpression assay. RESULTS The intervention of Tan IIA can improve the cardiac function, inflammatory cell infiltration and fibrosis after MI, reduce the expression of inflammatory factors in the heart, enhance the secretion of anti-inflammatory factors, increase the proportion of M2-type macrophages, reduce the proportion of M1-type macrophages, and promote tissue repair, suggesting that Tan IIA has pharmacological effects in the treatment of MI. In terms of mechanism, RNA-seq results suggest that the phenotype of macrophages is strongly correlated with energy metabolism, and Tan IIA can regulate the PGK1-PDHK1 signaling pathway, change the energy metabolism mode of macrophages, and then affect its phenotype. CONCLUSION Tan IIA regulates the energy metabolism of macrophages and changes its phenotype through the PGK1-PDHK1 signaling pathway, thus playing a role in improving MI.
Collapse
Affiliation(s)
- Shan Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Tianjin, 300193, Nan Kai District, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhihui Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Tianjin, 300193, Nan Kai District, China
| | - Dan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Tianjin, 300193, Nan Kai District, China
| | - Bingkai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Tianjin, 300193, Nan Kai District, China
| | - Xu Zheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Tianjin, 300193, Nan Kai District, China
| | - Chong Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Tianjin, 300193, Nan Kai District, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Tianjin, 300193, Nan Kai District, China.
| |
Collapse
|
17
|
Zhou X, Ning J, Cai R, Liu J, Yang H, Liu Q, Lv J, Bai Y. Multi-omic analysis revealed the immunological patterns and diagnostic value of exhausted T cell-derived PTTG1 in patients with psoriasis. Biochem Biophys Res Commun 2024; 734:150740. [PMID: 39342798 DOI: 10.1016/j.bbrc.2024.150740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Psoriasis, characterized by chronic inflammation, is a persistent skin condition that is notoriously challenging to manage and prone to relapse. Despite significant advancements in its treatment, many adverse reactions still occur. Therefore, exploring the mechanisms behind the occurrence and development of psoriasis is extremely important. METHODS The weighted correlation network analysis (WGCNA) algorithm was used to identify phenotype-related genes in patients with psoriasis. We recruited clinical samples of patients with psoriasis, and used single-cell RNA sequencing (scRNA-seq) to visualize divergent genes and metabolisms of varied cells for the psoriasis. Various machine-learning methods were used to identify core genes, and molecular docking was used to analyze the stability of leptomycin B targeting pituitary tumor transforming 1 (PTTG1). Immunofluorescence (IHC) analysis, multiplex immunofluorescence (mIF) analysis, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to validate the results. RESULTS Our results identified 1391 genes associated with the phenotype in patients with psoriasis and highlighted the significant alterations in T-cell functionality observed in the disease by WGCNA. There were nine distinct cellular clusters in psoriasis analyzed with the aid of scRNA-seq data. Each subtype of cell exhibited distinct genetic profiles, functional roles, signaling mechanisms, and metabolic characteristics. Machine-learning methods further demonstrated the potential diagnostic value of T cell-derived PTTG1 and its relationship with T-cell exhaustion in psoriasis. Lastly, the leptomycin B was scrutinized and verified had high stability targeting PTTG1. CONCLUSIONS This study elucidates the biological basis of psoriasis. At the same time, it was discovered that PTTG1 derived from exhausted T cells serves as a diagnostic biomarker for psoriasis. Leptomycin B could be a potential drug for targeted treatment of psoriasis on PTTG1.
Collapse
Affiliation(s)
- Xiangnan Zhou
- Department of Dermatology, China-Japan Friendship Hospital, National Center for Integrative Medicine, Beijing, 100029, China
| | - Jingyuan Ning
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui Cai
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical School of Medicine, Beijing, 100029, China
| | - Jiayi Liu
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical School of Medicine, Beijing, 100029, China
| | - Haoyu Yang
- Department of Dermatology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Qingwu Liu
- Department of Dermatology, China-Japan Friendship Hospital, National Center for Integrative Medicine, Beijing, 100029, China
| | - Jingjing Lv
- Department of Dermatology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yanping Bai
- Department of Dermatology, China-Japan Friendship Hospital, National Center for Integrative Medicine, Beijing, 100029, China.
| |
Collapse
|
18
|
Yin W, Chen Y, Wang W, Guo M, Tong L, Zhang M, Wang Z, Yuan H. Macrophage-mediated heart repair and remodeling: A promising therapeutic target for post-myocardial infarction heart failure. J Cell Physiol 2024; 239:e31372. [PMID: 39014935 DOI: 10.1002/jcp.31372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Heart failure (HF) remains prevalent in patients who survived myocardial infarction (MI). Despite the accessibility of the primary percutaneous coronary intervention and medications that alleviate ventricular remodeling with functional improvement, there is an urgent need for clinicians and basic scientists to further reveal the mechanisms behind post-MI HF as well as investigate earlier and more efficient treatment after MI. Growing numbers of studies have highlighted the crucial role of macrophages in cardiac repair and remodeling following MI, and timely intervention targeting the immune response via macrophages may represent a promising therapeutic avenue. Recently, technology such as single-cell sequencing has provided us with an updated and in-depth understanding of the role of macrophages in MI. Meanwhile, the development of biomaterials has made it possible for macrophage-targeted therapy. Thus, an overall and thorough understanding of the role of macrophages in post-MI HF and the current development status of macrophage-based therapy will assist in the further study and development of macrophage-targeted treatment for post-infarction cardiac remodeling. This review synthesizes the spatiotemporal dynamics, function, mechanism and signaling of macrophages in the process of HF after MI, as well as discusses the emerging bio-materials and possible therapeutic agents targeting macrophages for post-MI HF.
Collapse
Affiliation(s)
- Wenchao Yin
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenjun Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhaoyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
19
|
Xu Y, Hillman H, Chang M, Ivanov S, Williams JW. Identification of conserved and tissue-restricted transcriptional profiles for lipid associated macrophages (LAMs). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614807. [PMID: 39386558 PMCID: PMC11463620 DOI: 10.1101/2024.09.24.614807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Macrophages are essential immune cells present in all tissues, and are vital for maintaining tissue homeostasis, immune surveillance, and immune responses. Considerable efforts have identified shared and tissue-specific gene programs for macrophages across organs during homeostasis. This information has dramatically enhanced our understanding of tissue-restricted macrophage programming and function. However, few studies have addressed the overlapping and tissue-specific responses of macrophage subsets following inflammatory responses. One subset of macrophages that has been observed across several studies, lipid-associated macrophages (LAMs), have gained interest due to their unique role in lipid metabolism and potential as a therapeutic target. LAMs have been associated with regulating disease outcomes in metabolically related disorders including atherosclerosis, obesity, and nonalcoholic fatty liver disease (NAFLD). In this study, we utilized single-cell RNA sequencing (scRNAseq) data to profile LAMs across multiple tissues and sterile inflammatory conditions in mice and humans. Integration of data from various disease models revealed that LAMs share a set of conserved transcriptional profiles, including Trem2 and Lpl, but also identified key sets of tissue-specific LAM gene programs. Importantly, the shared LAM markers were highly conserved with human LAM populations that also emerge in chronic inflammatory settings. Overall, this analysis provides a detailed transcriptional landscape of tissue-restricted and shared LAM gene programs and offers insights into their roles in metabolic and chronic inflammatory diseases. These data may help instruct appropriate targets for broad or tissue-restricted therapeutic interventions to modulate LAM populations in disease.
Collapse
Affiliation(s)
- Yingzheng Xu
- Center for Immunology, University of Minnesota, Minneapolis, MN USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN USA
| | - Hannah Hillman
- Center for Immunology, University of Minnesota, Minneapolis, MN USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN USA
| | - Michael Chang
- Center for Immunology, University of Minnesota, Minneapolis, MN USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN USA
| | | | - Jesse W. Williams
- Center for Immunology, University of Minnesota, Minneapolis, MN USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
20
|
Cao W, Wang K, Wang J, Chen Y, Gong H, Xiao L, Pan W. Causal relationship between immune cells and risk of myocardial infarction: evidence from a Mendelian randomization study. Front Cardiovasc Med 2024; 11:1416112. [PMID: 39257847 PMCID: PMC11384581 DOI: 10.3389/fcvm.2024.1416112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/01/2024] [Indexed: 09/12/2024] Open
Abstract
Background Atherosclerotic plaque rupture is a major cause of heart attack. Previous studies have shown that immune cells are involved in the development of atherosclerosis, but different immune cells play different roles. The aim of this study was to investigate the causal relationship between immunological traits and myocardial infarction (MI). Methods To assess the causal association of immunological profiles with myocardial infarction based on publicly available genome-wide studies, we used a two-sample mendelian randomization (MR) approach with inverse variance weighted (IVW) as the main analytical method. Sensitivity analyses were used to assess heterogeneity and horizontal pleiotropy. Results A two-sample MR analysis was conducted using IVW as the primary method. At a significance level of 0.001, we identified 47 immunophenotypes that have a significant causal relationship with MI. Seven of these were present in B cells, five in cDC, four in T cells at the maturation stage, six in monocytes, five in myeloid cells, 12 in TBNK cells, and eight in Treg cells. Sensitivity analyses were performed to confirm the robustness of the MR results. Conclusions Our results provide strong evidence that multiple immune cells have a causal effect on the risk of myocardial infarction. This discovery provides a new avenue for the development of therapeutic treatments for myocardial infarction and a new target for drug development.
Collapse
Affiliation(s)
- Wenjing Cao
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Kui Wang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiawei Wang
- Department of Critical Care Medicine, Jieyang Third People's Hospital, Jieyang, China
| | - Yuhua Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hanxian Gong
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Lei Xiao
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Wei Pan
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| |
Collapse
|
21
|
Gao H, Li Z, Gan L, Chen X. The Role and Potential Mechanisms of Rehabilitation Exercise Improving Cardiac Remodeling. J Cardiovasc Transl Res 2024; 17:923-934. [PMID: 38558377 DOI: 10.1007/s12265-024-10498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 04/04/2024]
Abstract
Rehabilitation exercise is a crucial non-pharmacological intervention for the secondary prevention and treatment of cardiovascular diseases, effectively ameliorating cardiac remodeling in patients. Exercise training can mitigate cardiomyocyte apoptosis, reduce extracellular matrix deposition and fibrosis, promote angiogenesis, and regulate inflammatory response to improve cardiac remodeling. This article presents a comprehensive review of recent research progress, summarizing the pivotal role and underlying mechanism of rehabilitation exercise in improving cardiac remodeling and providing valuable insights for devising effective rehabilitation treatment programs. Graphical Abstract.
Collapse
Affiliation(s)
- Haizhu Gao
- Colleague of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Zhongxin Li
- Colleague of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Lijun Gan
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, No.89 Guhuai Road, Jining, 272029, Shandong, China
| | - Xueying Chen
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, No.89 Guhuai Road, Jining, 272029, Shandong, China.
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
22
|
Zhu Y, Chen Y, Xu J, Zu Y. Unveiling the Potential of Migrasomes: A Machine-Learning-Driven Signature for Diagnosing Acute Myocardial Infarction. Biomedicines 2024; 12:1626. [PMID: 39062199 PMCID: PMC11274667 DOI: 10.3390/biomedicines12071626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Recent studies have demonstrated that the migrasome, a newly functional extracellular vesicle, is potentially significant in the occurrence, progression, and diagnosis of cardiovascular diseases. Nonetheless, its diagnostic significance and biological mechanism in acute myocardial infarction (AMI) have yet to be fully explored. METHODS To remedy this gap, we employed an integrative machine learning (ML) framework composed of 113 ML combinations within five independent AMI cohorts to establish a predictive migrasome-related signature (MS). To further elucidate the biological mechanism underlying MS, we implemented single-cell RNA sequencing (scRNA-seq) of cardiac Cd45+ cells from AMI-induced mice. Ultimately, we conducted mendelian randomization (MR) and molecular docking to unveil the therapeutic effectiveness of MS. RESULTS MS demonstrated robust predictive performance and superior generalization, driven by the optimal combination of Stepglm and Lasso, on the expression of nine migrasome genes (BMP1, ITGB1, NDST1, TSPAN1, TSPAN18, TSPAN2, TSPAN4, TSPAN7, TSPAN9, and WNT8A). Notably, ITGB1 was found to be predominantly expressed in cardiac macrophages in AMI-induced mice, mechanically regulating macrophage transformation between anti-inflammatory and pro-inflammatory. Furthermore, we showed a positive causality between genetic predisposition towards ITGB1 expression and AMI risk, positioning it as a causative gene. Finally, we showed that ginsenoside Rh1, which interacts closely with ITGB1, could represent a novel therapeutic approach for repressing ITGB1. CONCLUSIONS Our MS has implications in forecasting and curving AMI to inform future diagnostic and therapeutic strategies for AMI.
Collapse
Affiliation(s)
- Yihao Zhu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yuxi Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jiajin Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yao Zu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai 201306, China
| |
Collapse
|
23
|
Zhu Y, Chen Y, Zu Y. Leveraging a neutrophil-derived PCD signature to predict and stratify patients with acute myocardial infarction: from AI prediction to biological interpretation. J Transl Med 2024; 22:612. [PMID: 38956669 PMCID: PMC11221097 DOI: 10.1186/s12967-024-05415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Programmed cell death (PCD) has recently been implicated in modulating the removal of neutrophils recruited in acute myocardial infarction (AMI). Nonetheless, the clinical significance and biological mechanism of neutrophil-related PCD remain unexplored. METHODS We employed an integrative machine learning-based computational framework to generate a predictive neutrophil-derived PCD signature (NPCDS) within five independent microarray cohorts from the peripheral blood of AMI patients. Non-negative matrix factorization was leveraged to develop an NPCDS-based AMI subtype. To elucidate the biological mechanism underlying NPCDS, we implemented single-cell transcriptomics on Cd45+ cells isolated from the murine heart of experimental AMI. We finally conducted a Mendelian randomization (MR) study and molecular docking to investigate the therapeutic value of NPCDS on AMI. RESULTS We reported the robust and superior performance of NPCDS in AMI prediction, which contributed to an optimal combination of random forest and stepwise regression fitted on nine neutrophil-related PCD genes (MDM2, PTK2B, MYH9, IVNS1ABP, MAPK14, GNS, MYD88, TLR2, CFLAR). Two divergent NPCDS-based subtypes of AMI were revealed, in which subtype 1 was characterized as inflammation-activated with more vibrant neutrophil activities, whereas subtype 2 demonstrated the opposite. Mechanically, we unveiled the expression dynamics of NPCDS to regulate neutrophil transformation from a pro-inflammatory phase to an anti-inflammatory phase in AMI. We uncovered a significant causal association between genetic predisposition towards MDM2 expression and the risk of AMI. We also found that lidoflazine, isotetrandrine, and cepharanthine could stably target MDM2. CONCLUSION Altogether, NPCDS offers significant implications for prediction, stratification, and therapeutic management for AMI.
Collapse
Affiliation(s)
- Yihao Zhu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Yuxi Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Yao Zu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
24
|
Peng R, Shi J, Jiang M, Qian D, Yan Y, Bai H, Yu M, Cao X, Fu S, Lu S. Electroacupuncture Improves Cardiac Function via Inhibiting Sympathetic Remodeling Mediated by Promoting Macrophage M2 Polarization in Myocardial Infarction Mice. Mediators Inflamm 2024; 2024:8237681. [PMID: 38974599 PMCID: PMC11227948 DOI: 10.1155/2024/8237681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/24/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
Electroacupuncture (EA) at the Neiguan acupoint (PC6) has shown significant cardioprotective effects. Sympathetic nerves play an important role in maintaining cardiac function after myocardial infarction (MI). Previous studies have found that EA treatment may improve cardiac function by modulating sympathetic remodeling after MI. However, the mechanism in how EA affects sympathetic remodeling and improves cardiac function remains unclear. The aim of this study is to investigate the cardioprotective mechanism of EA after myocardial ischemic injury by improving sympathetic remodeling and promoting macrophage M2 polarization. We established a mouse model of MI by occluding coronary arteries in male C57/BL6 mice. EA treatment was performed at the PC6 with current intensity (1 mA) and frequency (2/15 Hz). Cardiac function was evaluated using echocardiography. Heart rate variability in mice was assessed via standard electrocardiography. Myocardial fibrosis was evaluated by Sirius red staining. Levels of inflammatory factors were assessed using RT-qPCR. Sympathetic nerve remodeling was assessed through ELISA, western blotting, immunohistochemistry, and immunofluorescence staining. Macrophage polarization was evaluated using flow cytometry. Our results indicated that cardiac systolic function improved significantly after EA treatment, with an increase in fractional shortening and ejection fraction. Myocardial fibrosis was significantly mitigated in the EA group. The sympathetic nerve marker tyrosine hydroxylase and the nerve sprouting marker growth-associated Protein 43 were significantly reduced in the EA group, indicating that sympathetic remodeling was significantly reduced. EA treatment also promoted macrophage M2 polarization, reduced levels of inflammatory factors TNF-α, IL-1β, and IL-6, and decreased macrophage-associated nerve growth factor in myocardial tissue. To sum up, our results suggest that EA at PC6 attenuates sympathetic remodeling after MI to promote macrophage M2 polarization and improve cardiac function.
Collapse
Affiliation(s)
- Rou Peng
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese Medicine, Nanjing 210023, China
| | - Junjing Shi
- The Second People's Hospital of Qidong, South Ring Road No. 229, Lvsigang Town, Qidong, Jiangsu Province 226200, China
| | - Minjiao Jiang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese Medicine, Nanjing 210023, China
| | - Danying Qian
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuhang Yan
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hua Bai
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meiling Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin Cao
- Acupuncture and Chronobiology Key Laboratory of Sichuan ProvinceAcupuncture and Tuina School/Third Teaching HospitalChengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shuping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shengfeng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese Medicine, Nanjing 210023, China
- School of Elderly Care Services and ManagementNanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
25
|
Li C, Shao X, Zhang S, Wang Y, Jin K, Yang P, Lu X, Fan X, Wang Y. scRank infers drug-responsive cell types from untreated scRNA-seq data using a target-perturbed gene regulatory network. Cell Rep Med 2024; 5:101568. [PMID: 38754419 PMCID: PMC11228399 DOI: 10.1016/j.xcrm.2024.101568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/27/2023] [Accepted: 04/21/2024] [Indexed: 05/18/2024]
Abstract
Cells respond divergently to drugs due to the heterogeneity among cell populations. Thus, it is crucial to identify drug-responsive cell populations in order to accurately elucidate the mechanism of drug action, which is still a great challenge. Here, we address this problem with scRank, which employs a target-perturbed gene regulatory network to rank drug-responsive cell populations via in silico drug perturbations using untreated single-cell transcriptomic data. We benchmark scRank on simulated and real datasets, which shows the superior performance of scRank over existing methods. When applied to medulloblastoma and major depressive disorder datasets, scRank identifies drug-responsive cell types that are consistent with the literature. Moreover, scRank accurately uncovers the macrophage subpopulation responsive to tanshinone IIA and its potential targets in myocardial infarction, with experimental validation. In conclusion, scRank enables the inference of drug-responsive cell types using untreated single-cell data, thus providing insights into the cellular-level impacts of therapeutic interventions.
Collapse
Affiliation(s)
- Chengyu Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China.
| | - Shujing Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Yingchao Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Kaiyu Jin
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China
| | - Penghui Yang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China.
| |
Collapse
|
26
|
Li J, Fu Y, Wang Y, Zheng Y, Zhang K, Li Y. Qi Lang formula relieves constipation via targeting SCF/c-kit signaling pathway: An integrated study of network pharmacology and experimental validation. Heliyon 2024; 10:e31860. [PMID: 38841509 PMCID: PMC11152960 DOI: 10.1016/j.heliyon.2024.e31860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Background Constipation is one of the chronic gastrointestinal functional diseases that affects the quality of life. While Qi Lang Formula (QLF) has demonstrated effectiveness in alleviating constipation symptoms, its precise mechanism remains elusive. Methods QLF was analyzed using UPLC-MS/MS. Targets for QLF were collected from SwissADME, Herb, ITCM databases, and constipation-related targets from scRNA-seq and Genecards databases. Overlapping targets suggested potential QLF therapy targets for constipation. Enrichment analysis used the KOBAS database. A "drug-ingredient-target" network was constructed with Cytoscape, and AutoDock verified active ingredient binding. H&E staining assessed colonic mucosa changes, TEM examined ICC structural changes. ELISA measured neurotransmitter levels, and Western blot verified QLF's effect on target proteins. ICC proliferation was observed through immunofluorescence. Results We identified 89 targets of QLF associated with ICC-related constipation, with c-Kit emerging as the pivotal target. Molecular docking studies revealed that Atractylenolide Ⅲ, Apigenin, Formononetin, Isorhamnetin, Naringenin, and Ononin exhibited strong binding affinities for the c-Kit structural domain. QLF significantly enhanced first stool passage time, fecal frequency, fecal moisture content, and intestinal propulsion rate. Further analysis unveiled that QLF not only restored neurotransmitter levels but also mitigated colon muscular fiber ruptures. ICC ultrastructure exhibited partial recovery, while Western blot confirmed upregulated c-Kit expression and downstream targets. Immunofluorescence results indicated ICC proliferation post QLF treatment in rat colon. Conclusion Our findings suggest that QLF may promote ICC proliferation by targeting SCF/c-Kit and its downstream signaling pathway, thereby regulating intestinal motility.
Collapse
Affiliation(s)
- Jiacheng Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yugang Fu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yanping Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yiyuan Zheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Kehui Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yong Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| |
Collapse
|
27
|
Ke D, Cao M, Ni J, Yuan Y, Deng J, Chen S, Dai X, Zhou H. Macrophage and fibroblast trajectory inference and crosstalk analysis during myocardial infarction using integrated single-cell transcriptomic datasets. J Transl Med 2024; 22:560. [PMID: 38867219 PMCID: PMC11167890 DOI: 10.1186/s12967-024-05353-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Cardiac fibrosis after myocardial infarction (MI) has been considered an important part of cardiac pathological remodeling. Immune cells, especially macrophages, are thought to be involved in the process of fibrosis and constitute a niche with fibroblasts to promote fibrosis. However, the diversity and variability of fibroblasts and macrophages make it difficult to accurately depict interconnections. METHODS We collected and reanalyzed scRNA-seq and snRNA-seq datasets from 12 different studies. Differentiation trajectories of these subpopulations after MI injury were analyzed by using scVelo, PAGA and Slingshot. We used CellphoneDB and NicheNet to infer fibroblast-macrophage interactions. Tissue immunofluorescence staining and in vitro experiments were used to validate our findings. RESULTS We discovered two subsets of ECM-producing fibroblasts, reparative cardiac fibroblasts (RCFs) and matrifibrocytes, which appeared at different times after MI and exhibited different transcriptional profiles. We also observed that CTHRC1+ fibroblasts represent an activated fibroblast in chronic disease states. We identified a macrophage subset expressing the genes signature of SAMs conserved in both human and mouse hearts. Meanwhile, the SPP1hi macrophages were predominantly found in the early stages after MI, and cell communication analysis indicated that SPP1hi macrophage-RCFs interactions are mainly involved in collagen deposition and scar formation. CONCLUSIONS Overall, this study comprehensively analyzed the dynamics of fibroblast and macrophage subsets after MI and identified specific subsets of fibroblasts and macrophages involved in scar formation and collagen deposition.
Collapse
Affiliation(s)
- Da Ke
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, People's Republic of China
| | - Mingzhen Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, People's Republic of China
| | - Jian Ni
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, People's Republic of China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, People's Republic of China
| | - Jiangyang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, People's Republic of China
| | - Si Chen
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, People's Republic of China
| | - Xiujun Dai
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, People's Republic of China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, People's Republic of China.
| |
Collapse
|
28
|
Palmer JA, Rosenthal N, Teichmann SA, Litvinukova M. Revisiting Cardiac Biology in the Era of Single Cell and Spatial Omics. Circ Res 2024; 134:1681-1702. [PMID: 38843288 PMCID: PMC11149945 DOI: 10.1161/circresaha.124.323672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Throughout our lifetime, each beat of the heart requires the coordinated action of multiple cardiac cell types. Understanding cardiac cell biology, its intricate microenvironments, and the mechanisms that govern their function in health and disease are crucial to designing novel therapeutical and behavioral interventions. Recent advances in single-cell and spatial omics technologies have significantly propelled this understanding, offering novel insights into the cellular diversity and function and the complex interactions of cardiac tissue. This review provides a comprehensive overview of the cellular landscape of the heart, bridging the gap between suspension-based and emerging in situ approaches, focusing on the experimental and computational challenges, comparative analyses of mouse and human cardiac systems, and the rising contextualization of cardiac cells within their niches. As we explore the heart at this unprecedented resolution, integrating insights from both mouse and human studies will pave the way for novel diagnostic tools and therapeutic interventions, ultimately improving outcomes for patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Jack A. Palmer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.)
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom
| | - Nadia Rosenthal
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME (N.R.)
- National Heart and Lung Institute, Imperial College London, United Kingdom (N.R.)
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.)
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom
- Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory (S.A.T.), University of Cambridge, United Kingdom
| | - Monika Litvinukova
- University Hospital Würzburg, Germany (M.L.)
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Germany (M.L.)
- Helmholtz Pioneer Campus, Helmholtz Munich, Germany (M.L.)
| |
Collapse
|
29
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
30
|
Zhou T, Pan J, Xu K, Yan C, Yuan J, Song H, Han Y. Single-cell transcriptomics in MI identify Slc25a4 as a new modulator of mitochondrial malfunction and apoptosis-associated cardiomyocyte subcluster. Sci Rep 2024; 14:9274. [PMID: 38654053 PMCID: PMC11039722 DOI: 10.1038/s41598-024-59975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Myocardial infarction (MI) is the leading cause of premature death. The death of cardiomyocytes (CMs) and the dysfunction of the remaining viable CMs are the main pathological factors contributing to heart failure (HF) following MI. This study aims to determine the transcriptional profile of CMs and investigate the heterogeneity among CMs under hypoxic conditions. Single-cell atlases of the heart in both the sham and MI groups were developed using single-cell data (GSE214611) downloaded from Gene Expression Omnibus (GEO) database ( https://www.ncbi.nlm.nih.gov/geo/ ). The heterogeneity among CMs was explored through various analyses including enrichment, pseudo time, and intercellular communication analysis. The marker gene of C5 was identified using differential expression analysis (DEA). Real-time polymerase chain reaction (RT-PCR), bulk RNA-sequencing dataset analysis, western blotting, immunohistochemical and immunofluorescence staining, Mito-Tracker staining, TUNEL staining, and flow cytometry analysis were conducted to validate the impact of the marker gene on mitochondrial function and cell apoptosis of CMs under hypoxic conditions. We identified a cell subcluster named C5 that exhibited a close association with mitochondrial malfunction and cellular apoptosis characteristics, and identified Slc25a4 as a significant biomarker of C5. Furthermore, our findings indicated that the expression of Slc25a4 was increased in failing hearts, and the downregulation of Slc25a4 improved mitochondrial function and reduced cell apoptosis. Our study significantly identified a distinct subcluster of CMs that exhibited strong associations with ventricular remodeling following MI. Slc25a4 served as the hub gene for C5, highlighting its significant potential as a novel therapeutic target for MI.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning, China
| | - Jing Pan
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning, China
- School of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Kai Xu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning, China
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning, China
| | - Jing Yuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Haixu Song
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning, China.
| | - Yaling Han
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
31
|
Dong Y, Kang Z, Zhang Z, Zhang Y, Zhou H, Liu Y, Shuai X, Li J, Yin L, Wang X, Ma Y, Fan H, Jiang F, Lin Z, Ding C, Yun Jin K, Sarapultsev A, Li F, Zhang G, Xie T, Yin C, Cheng X, Luo S, Liu Y, Hu D. Single-cell profile reveals the landscape of cardiac immunity and identifies a cardio-protective Ym-1 hi neutrophil in myocardial ischemia-reperfusion injury. Sci Bull (Beijing) 2024; 69:949-967. [PMID: 38395651 DOI: 10.1016/j.scib.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 02/25/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a major hindrance to the success of cardiac reperfusion therapy. Although increased neutrophil infiltration is a hallmark of MIRI, the subtypes and alterations of neutrophils in this process remain unclear. Here, we performed single-cell sequencing of cardiac CD45+ cells isolated from the murine myocardium subjected to MIRI at six-time points. We identified diverse types of infiltrating immune cells and their dynamic changes during MIRI. Cardiac neutrophils showed the most immediate response and largest changes and featured with functionally heterogeneous subpopulations, including Ccl3hi Neu and Ym-1hi Neu, which were increased at 6 h and 1 d after reperfusion, respectively. Ym-1hi Neu selectively expressed genes with protective effects and was, therefore, identified as a novel specific type of cardiac cell in the injured heart. Further analysis indicated that neutrophils and their subtypes orchestrated subsequent immune responses in the cardiac tissues, especially instructing the response of macrophages. The abundance of Ym-1hi Neu was closely correlated with the therapeutic efficacy of MIRI when neutrophils were specifically targeted by anti-Lymphocyte antigen 6 complex locus G6D (Ly6G) or anti-Intercellular cell adhesion molecule-1 (ICAM-1) neutralizing antibodies. In addition, a neutrophil subtype with the same phenotype as Ym-1hi Neu was detected in clinical samples and correlated with prognosis. Ym-1 inhibition exacerbated myocardial injury, whereas Ym-1 supplementation significantly ameliorated injury in MIRI mice, which was attributed to the tilt of Ym-1 on the polarization of macrophages toward the repair phenotype in myocardial tissue. Overall, our findings reveal the anti-inflammatory phenotype of Ym-1hi Neu and highlight its critical role in myocardial protection during the early stages of MIRI.
Collapse
Affiliation(s)
- Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenyu Kang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zili Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongqiang Zhang
- Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xinxin Shuai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liangqingqing Yin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xunxun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Ma
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Jiang
- Department of International Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhihao Lin
- Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Congzhu Ding
- Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Kim Yun Jin
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang 43900, Malaysia
| | - Alexey Sarapultsev
- School of Medical Biology, South Ural State University, Chelyabinsk 620049, Russia
| | - Fangfei Li
- Shum Yiu Foon Sum Bik Chuen Memorial Centre for Cancer and Inflammation Research (CCIR), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Ge Zhang
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Tian Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Changjun Yin
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich 80336, Germany
| | - Xiang Cheng
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; China-Russia Medical Research Center for Stress Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
32
|
Pang Q, Chen L, An C, Zhou J, Xiao H. Single-cell and bulk RNA sequencing highlights the role of M1-like infiltrating macrophages in antibody-mediated rejection after kidney transplantation. Heliyon 2024; 10:e27865. [PMID: 38524599 PMCID: PMC10958716 DOI: 10.1016/j.heliyon.2024.e27865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Background Antibody-mediated rejection (ABMR) significantly affects transplanted kidney survival, yet the macrophage phenotype, ontogeny, and mechanisms in ABMR remain unclear. Method We analyzed post-transplant sequencing and clinical data from GEO and ArrayExpress. Using dimensionality reduction and clustering on scRNA-seq data, we identified macrophage subpopulations and compared their infiltration in ABMR and non-rejection cases. Cibersort quantified these subpopulations in bulk samples. Cellchat, SCENIC, monocle2, and monocle3 helped explore intercellular interactions, predict transcription factors, and simulate differentiation of cell subsets. The Scissor method linked macrophage subgroups with transplant prognosis. Furthermore, hdWGCNA, nichnet, and lasso regression identified key genes associated with core transcription factors in selected macrophages, validated by external datasets. Results Six macrophage subgroups were identified in five post-transplant kidney biopsies. M1-like infiltrating macrophages, prevalent in ABMR, correlated with pathological injury severity. MIF acted as a primary intercellular signal in these macrophages. STAT1 regulated monocyte-to-M1-like phenotype transformation, impacting transplant prognosis via the IFNγ pathway. The prognostic models built on the upstream and downstream genes of STAT1 effectively predicted transplant survival. The TLR4-STAT1-PARP9 axis may regulate the pro-inflammatory phenotype of M1-like infiltrating macrophages, identifying PARP9 as a potential target for mitigating ABMR inflammation. Conclusion Our study delineates the macrophage landscape in ABMR post-kidney transplantation, underscoring the detrimental impact of M1-like infiltrating macrophages on ABMR pathology and prognosis.
Collapse
Affiliation(s)
- Qidan Pang
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Liang Chen
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Changyong An
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Juan Zhou
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Hanyu Xiao
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| |
Collapse
|
33
|
Cao C, Wu R, Wang S, Zhuang L, Chen P, Li S, Zhu Q, Li H, Lin Y, Li M, Cao L, Chen J. Elucidating the changes in the heterogeneity and function of radiation-induced cardiac macrophages using single-cell RNA sequencing. Front Immunol 2024; 15:1363278. [PMID: 38601160 PMCID: PMC11004337 DOI: 10.3389/fimmu.2024.1363278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Purpose A mouse model of irradiation (IR)-induced heart injury was established to investigate the early changes in cardiac function after radiation and the role of cardiac macrophages in this process. Methods Cardiac function was evaluated by heart-to-tibia ratio, lung-to-heart ratio and echocardiography. Immunofluorescence staining and flow cytometry analysis were used to evaluate the changes of macrophages in the heart. Immune cells from heart tissues were sorted by magnetic beads for single-cell RNA sequencing, and the subsets of macrophages were identified and analyzed. Trajectory analysis was used to explore the differentiation relationship of each macrophage subset. The differentially expressed genes (DEGs) were compared, and the related enriched pathways were identified. Single-cell regulatory network inference and clustering (SCENIC) analysis was performed to identify the potential transcription factors (TFs) which participated in this process. Results Cardiac function temporarily decreased on Day 7 and returned to normal level on Day 35, accompanied by macrophages decreased and increased respectively. Then, we identified 7 clusters of macrophages by single-cell RNA sequencing and found two kinds of stage specific macrophages: senescence-associated macrophage (Cdkn1ahighC5ar1high) on Day 7 and interferon-associated macrophage (Ccr2highIsg15high) on Day 35. Moreover, we observed cardiac macrophages polarized over these two-time points based on M1/M2 and CCR2/major histocompatibility complex II (MHCII) expression. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses suggested that macrophages on Day 7 were characterized by an inflammatory senescent phenotype with enhanced chemotaxis and inflammatory factors, while macrophages on Day 35 showed enhanced phagocytosis with reduced inflammation, which was associated with interferon-related pathways. SCENIC analysis showed AP-1 family members were associated with IR-induced macrophages changes. Conclusion We are the first study to characterize the diversity, features, and evolution of macrophages during the early stages in an IR-induced cardiac injury animal model.
Collapse
Affiliation(s)
- Chunxiang Cao
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Ran Wu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Shubei Wang
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Lingfang Zhuang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peizhan Chen
- Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyan Li
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Qian Zhu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Huan Li
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Yingying Lin
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Min Li
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Lu Cao
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Jiayi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| |
Collapse
|
34
|
Kishigami T, Ishikane S, Arioka M, Igawa K, Nishimura Y, Takahashi-Yanaga F. 2,5-Dimethyl-celecoxib induces early termination of inflammatory responses by transient macrophage accumulation and inhibits the progression of cardiac remodeling in a mouse model of cryoinjury-induced myocardial infarction. J Pharmacol Sci 2024; 154:97-107. [PMID: 38246733 DOI: 10.1016/j.jphs.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
In our previous study, we reported that 2, 5-dimethyl-celecoxib (DM-C), a derivative of celecoxib, prevents cardiac remodeling in different mouse models of heart failure, including myocardial infarction (MI). The inflammatory response after MI affects the progression of cardiac remodeling, wherein the immune cells, mainly macrophages, play crucial roles. Therefore, we evaluated the effect of DM-C on macrophages in a cryoinjury-induced myocardial infarction (CMI) mouse model. We observed that DM-C attenuated the deterioration of left ventricular ejection fraction and cardiac fibrosis 14 d after CMI. Gene expression of pro-inflammatory cytokines at the infarct site was reduced by DM-C treatment. Analysis of macrophage surface antigens revealed that DM-C induced transient accumulation of macrophages at the infarct site without affecting their polarization. In vitro experiments using peritoneal monocytes/macrophages revealed that DM-C did not directly increase the phagocytic ability of the macrophages but increased their number, thereby upregulating the clearance capacity. Moreover, DM-C rapidly excluded the cells expressing necrotic cell marker from the infarct site. These results suggested that DM-C enhanced the clearance capacity of macrophages by transiently increasing their number at the infarct site, and terminated the escape from the inflammatory phase earlier, thereby suppressing excessive cardiac remodeling and ameliorating cardiac dysfunction.
Collapse
Affiliation(s)
- Takehiro Kishigami
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan; Department of Cardiovascular Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Shin Ishikane
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.
| | - Masaki Arioka
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Kazunobu Igawa
- Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Yosuke Nishimura
- Department of Cardiovascular Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Fumi Takahashi-Yanaga
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| |
Collapse
|
35
|
Sansonetti M, Al Soodi B, Thum T, Jung M. Macrophage-based therapeutic approaches for cardiovascular diseases. Basic Res Cardiol 2024; 119:1-33. [PMID: 38170281 PMCID: PMC10837257 DOI: 10.1007/s00395-023-01027-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Despite the advances in treatment options, cardiovascular disease (CVDs) remains the leading cause of death over the world. Chronic inflammatory response and irreversible fibrosis are the main underlying pathophysiological causes of progression of CVDs. In recent decades, cardiac macrophages have been recognized as main regulatory players in the development of these complex pathophysiological conditions. Numerous approaches aimed at macrophages have been devised, leading to novel prospects for therapeutic interventions. Our review covers the advancements in macrophage-centric treatment plans for various pathologic conditions and examines the potential consequences and obstacles of employing macrophage-targeted techniques in cardiac diseases.
Collapse
Affiliation(s)
- Marida Sansonetti
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Bashar Al Soodi
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany.
- REBIRTH-Center for Translational Regenerative Medicine, Hannover Medical School, 30625, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625, Hannover, Germany.
| | - Mira Jung
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
36
|
Lv S, Wang Q, Zhang X, Ning F, Liu W, Cui M, Xu Y. Mechanisms of multi-omics and network pharmacology to explain traditional chinese medicine for vascular cognitive impairment: A narrative review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155231. [PMID: 38007992 DOI: 10.1016/j.phymed.2023.155231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/07/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND The term "vascular cognitive impairment" (VCI) describes various cognitive conditions that include vascular elements. It increases the risk of morbidity and mortality in the elderly population and is the most common cognitive impairment associated with cerebrovascular disease. Understanding the etiology of VCI may aid in identifying approaches to target its possible therapy for the condition. Treatment of VCI has focused on vascular risk factors. There are no authorized conventional therapies available right now. The medications used to treat VCI are solely approved for symptomatic relief and are not intended to prevent or slow the development of VCI. PURPOSE The function of Chinese medicine in treating VCI has not yet been thoroughly examined. This review evaluates the preclinical and limited clinical evidence to comprehend the "multi-component, multi-target, multi-pathway" mechanism of Traditional Chinese medicine (TCM). It investigates the various multi-omics approaches in the search for the pathological mechanisms of VCI, as well as the new research strategies, in the hopes of supplying supportive evidence for the clinical treatment of VCI. METHODS This review used the Preferred Reporting Items for Preferred reporting items for systematic reviews and meta-analyses (PRISMA) statements. Using integrated bioinformatics and network pharmacology approaches, a thorough evaluation and analysis of 25 preclinical studies published up to July 1, 2023, were conducted to shed light on the mechanisms of TCM for vascular cognitive impairment. The studies for the systematic review were located using the following databases: PubMed, Web of Science, Scopus, Cochrane, and ScienceDirect. RESULTS We discovered that the multi-omics analysis approach would hasten the discovery of the role of TCM in the treatment of VCI. It will explore components, compounds, targets, and pathways, slowing the progression of VCI from the perspective of inhibiting oxidative stress, stifling neuroinflammation, increasing cerebral blood flow, and inhibiting iron deposition by a variety of molecular mechanisms, which have significant implications for the treatment of VCI. CONCLUSION TCM is a valuable tool for developing dementia therapies, and further research is needed to determine how TCM components may affect the operation of the neurovascular unit. There are still some limitations, although several research have offered invaluable resources for searching for possible anti-dementia medicines and treatments. To gain new insights into the molecular mechanisms that precisely modulate the key molecules at different levels during pharmacological interventions-a prerequisite for comprehending the mechanism of action and determining the potential therapeutic value of the drugs-further research should employ more standardized experimental methods as well as more sophisticated science and technology. Given the results of this review, we advocate integrating chemical and biological component analysis approaches in future research on VCI to provide a more full and objective assessment of the standard of TCM. With the help of bioinformatics, a multi-omics analysis approach will hasten the discovery of the role of TCM in the treatment of VCI, which has significant implications for the treatment of VCI.
Collapse
Affiliation(s)
- Shi Lv
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Xinlei Zhang
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Fangli Ning
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Wenxin Liu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Mengmeng Cui
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China.
| |
Collapse
|
37
|
Kong Y, Yang N, Luo Z, Huang R, Li Q. Key Cell Types and Biomarkers in Heart Failure Identified through Analysis of Single-Cell and Bulk RNA Sequencing Data. Mediators Inflamm 2023; 2023:8384882. [PMID: 38169915 PMCID: PMC10761229 DOI: 10.1155/2023/8384882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Heart failure (HF) is a complex clinical syndrome resulting from various cardiac diseases and a significant medical issue worldwide. Although the role of inflammation in HF pathogenesis is well-known, the specific cell types and regulatory molecules involved remain poorly understood. Here, we identified key cell types and novel biomarkers via an analysis of single-cell and bulk RNA sequencing data obtained from patients with two major HF types of ischemic cardiomyopathy and dilated cardiomyopathy. Myeloid cells were identified as the primary cell population involved in HF through cellular fraction and gene set enrichment analysis. Additionally, differential analysis of myeloid cells revealed crosstalk between cellular communication and cytokine-regulated immune responses in HF, with the MIF pathway emerging as a crucial immune regulatory pathway. The CD74/CXCR4 receptor complex in myeloid cell subgroup Mφ2 was significantly upregulated, potentially acting as a crucial regulator in HF. Upon receiving the MIF signal molecule, the CD74/CXCR4 receptor can activate NF-κB signaling to produce chemokines and thereby enhance the inflammatory response. CD74 and CXCR4 may serve as biomarkers and treatment targets for HF.
Collapse
Affiliation(s)
- Ying Kong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, Guangdong, China
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ning Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhiqing Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ruiting Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Quhuan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, Guangdong, China
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
38
|
Xu Y, Jiang K, Su F, Deng R, Cheng Z, Wang D, Yu Y, Xiang Y. A transient wave of Bhlhe41 + resident macrophages enables remodeling of the developing infarcted myocardium. Cell Rep 2023; 42:113174. [PMID: 37751357 DOI: 10.1016/j.celrep.2023.113174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
The immune system plays a critical role during myocardial injury, contributing to repair and remodeling post myocardial infarction (MI). The myocardial infarct and border zone exhibit high heterogeneity, in turn leading to reconstructing macrophage subsets and specific functions. Here we use a combination of single-cell RNA sequencing, spatial transcriptomes, and reporter mice to characterize temporal-spatial dynamics of cardiac macrophage subtype in response to MI. We identify that transient appearance of monocyte-derived Bhlhe41+ Mφs in the "developing" infarct zone peaked at day 7, while other monocyte-derived macrophages are identified in "old" infarct zone. Functional characterization by co-culture of Bhlhe41+ Mφs with cardiomyocytes and fibroblasts or depletion of Bhlhe41+ Mφs unveils a crucial contribution of Bhlhe41+ Mφs in suppression of myofibroblast activation. This work highlights the importance of Bhlhe41+ Mφ phenotype and plasticity in preventing excessive fibrosis and limiting the expansion of developing infarct area.
Collapse
Affiliation(s)
- Yue Xu
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kai Jiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Fanghua Su
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ruhua Deng
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhiyang Cheng
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Dandan Wang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yong Yu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yaozu Xiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
39
|
Zhan C, Tang T, Wu E, Zhang Y, He M, Wu R, Bi C, Wang J, Zhang Y, Shen B. From multi-omics approaches to personalized medicine in myocardial infarction. Front Cardiovasc Med 2023; 10:1250340. [PMID: 37965091 PMCID: PMC10642346 DOI: 10.3389/fcvm.2023.1250340] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Myocardial infarction (MI) is a prevalent cardiovascular disease characterized by myocardial necrosis resulting from coronary artery ischemia and hypoxia, which can lead to severe complications such as arrhythmia, cardiac rupture, heart failure, and sudden death. Despite being a research hotspot, the etiological mechanism of MI remains unclear. The emergence and widespread use of omics technologies, including genomics, transcriptomics, proteomics, metabolomics, and other omics, have provided new opportunities for exploring the molecular mechanism of MI and identifying a large number of disease biomarkers. However, a single-omics approach has limitations in understanding the complex biological pathways of diseases. The multi-omics approach can reveal the interaction network among molecules at various levels and overcome the limitations of the single-omics approaches. This review focuses on the omics studies of MI, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, and other omics. The exploration extended into the domain of multi-omics integrative analysis, accompanied by a compilation of diverse online resources, databases, and tools conducive to these investigations. Additionally, we discussed the role and prospects of multi-omics approaches in personalized medicine, highlighting the potential for improving diagnosis, treatment, and prognosis of MI.
Collapse
Affiliation(s)
- Chaoying Zhan
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Tang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Erman Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengqiao He
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rongrong Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Bi
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiao Wang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yingbo Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Bairong Shen
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Lu Y, Huo H, Liang F, Xue J, Fang L, Miao Y, Shen L, He B. Role of Pericytes in Cardiomyopathy-Associated Myocardial Infarction Revealed by Multiple Single-Cell Sequencing Analysis. Biomedicines 2023; 11:2896. [PMID: 38001896 PMCID: PMC10668982 DOI: 10.3390/biomedicines11112896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of cardiovascular death worldwide. AMI with cardiomyopathy is accompanied by a poor long-term prognosis. However, limited studies have focused on the mechanism of cardiomyopathy associated with AMI. Pericytes are important to the microvascular function in the heart, yet little attention has been paid to their function in myocardial infarction until now. In this study, we integrated single-cell data from individuals with cardiomyopathy and myocardial infarction (MI) GWAS data to reveal the potential function of pericytes in cardiomyopathy-associated MI. We found that pericytes were concentrated in the left atrium and left ventricle tissues. DLC1/GUCY1A2/EGFLAM were the top three uniquely expressed genes in pericytes (p < 0.05). The marker genes of pericytes were enriched in renin secretion, vascular smooth muscle contraction, gap junction, purine metabolism, and diabetic cardiomyopathy pathways (p < 0.05). Among these pathways, the renin secretion and purine metabolism pathways were also found in the process of MI. In cardiomyopathy patients, the biosynthesis of collagen, modulating enzymes, and collagen formation were uniquely negatively regulated in pericytes compared to other cell types (p < 0.05). COL4A2/COL4A1/SMAD3 were the hub genes in pericyte function involved in cardiomyopathy and AMI. In conclusion, this study provides new evidence about the importance of pericytes in the pathogenesis of cardiomyopathy-associated MI. DLC1/GUCY1A2/EGFLAM were highly expressed in pericytes. The hub genes COL4A2/COL4A1/SMAD3 may be potential research targets for cardiomyopathy-associated MI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lan Shen
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.L.); (H.H.); (F.L.); (J.X.); (L.F.); (Y.M.)
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.L.); (H.H.); (F.L.); (J.X.); (L.F.); (Y.M.)
| |
Collapse
|
41
|
Zuo W, Sun R, Ji Z, Ma G. Macrophage-driven cardiac inflammation and healing: insights from homeostasis and myocardial infarction. Cell Mol Biol Lett 2023; 28:81. [PMID: 37858035 PMCID: PMC10585879 DOI: 10.1186/s11658-023-00491-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Early and prompt reperfusion therapy has markedly improved the survival rates among patients enduring myocardial infarction (MI). Nonetheless, the resulting adverse remodeling and the subsequent onset of heart failure remain formidable clinical management challenges and represent a primary cause of disability in MI patients worldwide. Macrophages play a crucial role in immune system regulation and wield a profound influence over the inflammatory repair process following MI, thereby dictating the degree of myocardial injury and the subsequent pathological remodeling. Despite numerous previous biological studies that established the classical polarization model for macrophages, classifying them as either M1 pro-inflammatory or M2 pro-reparative macrophages, this simplistic categorization falls short of meeting the precision medicine standards, hindering the translational advancement of clinical research. Recently, advances in single-cell sequencing technology have facilitated a more profound exploration of macrophage heterogeneity and plasticity, opening avenues for the development of targeted interventions to address macrophage-related factors in the aftermath of MI. In this review, we provide a summary of macrophage origins, tissue distribution, classification, and surface markers. Furthermore, we delve into the multifaceted roles of macrophages in maintaining cardiac homeostasis and regulating inflammation during the post-MI period.
Collapse
Affiliation(s)
- Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing, 210009, China
| | - Renhua Sun
- Department of Cardiology, Yancheng No. 1 People's Hospital, No. 66 South Renmin Road, Yancheng, 224000, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing, 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing, 210009, China.
| |
Collapse
|
42
|
Liu Y, Shao YH, Zhang JM, Wang Y, Zhou M, Li HQ, Zhang CC, Yu PJ, Gao SJ, Wang XR, Jia LX, Piao CM, Du J, Li YL. Macrophage CARD9 mediates cardiac injury following myocardial infarction through regulation of lipocalin 2 expression. Signal Transduct Target Ther 2023; 8:394. [PMID: 37828006 PMCID: PMC10570328 DOI: 10.1038/s41392-023-01635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023] Open
Abstract
Immune cell infiltration in response to myocyte death regulates extracellular matrix remodeling and scar formation after myocardial infarction (MI). Caspase-recruitment domain family member 9 (CARD9) acts as an adapter that mediates the transduction of pro-inflammatory signaling cascades in innate immunity; however, its role in cardiac injury and repair post-MI remains unclear. We found that Card9 was one of the most upregulated Card genes in the ischemic myocardium of mice. CARD9 expression increased considerably 1 day post-MI and declined by day 7 post-MI. Moreover, CARD9 was mainly expressed in F4/80-positive macrophages. Card9 knockout (KO) led to left ventricular function improvement and infarct scar size reduction in mice 28 days post-MI. Additionally, Card9 KO suppressed cardiomyocyte apoptosis in the border region and attenuated matrix metalloproteinase (MMP) expression. RNA sequencing revealed that Card9 KO significantly suppressed lipocalin 2 (Lcn2) expression post-MI. Both LCN2 and the receptor solute carrier family 22 member 17 (SL22A17) were detected in macrophages. Subsequently, we demonstrated that Card9 overexpression increased LCN2 expression, while Card9 KO inhibited necrotic cell-induced LCN2 upregulation in macrophages, likely through NF-κB. Lcn2 KO showed beneficial effects post-MI, and recombinant LCN2 diminished the protective effects of Card9 KO in vivo. Lcn2 KO reduced MMP9 post-MI, and Lcn2 overexpression increased Mmp9 expression in macrophages. Slc22a17 knockdown in macrophages reduced MMP9 release with recombinant LCN2 treatment. In conclusion, our results demonstrate that macrophage CARD9 mediates the deterioration of cardiac function and adverse remodeling post-MI via LCN2.
Collapse
Affiliation(s)
- Yan Liu
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Yi-Hui Shao
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Jun-Meng Zhang
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Ying Wang
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Mei Zhou
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Hui-Qin Li
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Cong-Cong Zhang
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Pei-Jie Yu
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Shi-Juan Gao
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Xue-Rui Wang
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Li-Xin Jia
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Chun-Mei Piao
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Yu-Lin Li
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China.
| |
Collapse
|
43
|
Berkeley B, Tang MNH, Brittan M. Mechanisms regulating vascular and lymphatic regeneration in the heart after myocardial infarction. J Pathol 2023; 260:666-678. [PMID: 37272582 PMCID: PMC10953458 DOI: 10.1002/path.6093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Myocardial infarction, caused by a thrombus or coronary vascular occlusion, leads to irreversible ischaemic injury. Advances in early reperfusion strategies have significantly reduced short-term mortality after myocardial infarction. However, survivors have an increased risk of developing heart failure, which confers a high risk of death at 1 year. The capacity of the injured neonatal mammalian heart to regenerate has stimulated extensive research into whether recapitulation of developmental regeneration programmes may be beneficial in adult cardiovascular disease. Restoration of functional blood and lymphatic vascular networks in the infarct and border regions via neovascularisation and lymphangiogenesis, respectively, is a key requirement to facilitate myocardial regeneration. An improved understanding of the endogenous mechanisms regulating coronary vascular and lymphatic expansion and function in development and in adult patients after myocardial infarction may inform future therapeutic strategies and improve translation from pre-clinical studies. In this review, we explore the underpinning research and key findings in the field of cardiovascular regeneration, with a focus on neovascularisation and lymphangiogenesis, and discuss the outcomes of therapeutic strategies employed to date. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Bronwyn Berkeley
- Centre for Cardiovascular Science, The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Michelle Nga Huen Tang
- Centre for Cardiovascular Science, The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
44
|
Zhao X, Zhang H, Han Y, Fang C, Liu J. Navigating the immunometabolic heterogeneity of B cells in murine hepatocellular carcinoma at single cell resolution. Int Immunopharmacol 2023; 120:110257. [PMID: 37182447 DOI: 10.1016/j.intimp.2023.110257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
Induction of antitumor immunity is critical for the therapeutic efficacy of hepatocellular carcinoma (HCC) immunotherapy. The cellular metabolic state underpins the effector function of immune cells, yet our understanding of the phenotypic and metabolic heterogeneity of B cells within HCC microenvironment is poorly developed. Herein, we investigated the composition, distribution, phenotype, function and metabolic profiles of B-cell subsets in HCC and adjacent liver tissues from an orthotopic HCC mouse model using single-cell RNA sequencing (scRNA-seq). Our results identified six B-cell clusters, which can be classified into plasma cells and activated and exhausted B cells according to marker expression, functional and temporal distribution. Exhausted B cells exhibited low metabolic activities and impaired effector functions. Activated B and plasma cells showed higher metabolic activity than exhausted B cells, but there were clear differences in their metabolic profiles. In addition, we found that the effector function of exhausted B cells was further diminished in HCC tissues compared with adjacent liver tissues, but their metabolic activity was significantly enhanced. Collectively, we comprehensively characterized the metabolic profile and alterations in B-cell subsets in HCC, which contributes to the understanding of B-cell immunology in HCC and lays the foundation for exploring novel targets in HCC immunotherapy.
Collapse
Affiliation(s)
- Xindong Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310003, China
| | - Huanran Zhang
- Department of Emergency Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310003, China; The Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou City, Zhejiang Province 310003, China
| | - Yiru Han
- Department of Health Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310003, China
| | - Chengyu Fang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310003, China
| | - Jingqi Liu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310003, China.
| |
Collapse
|
45
|
Li X, Liu Z, Liao J, Chen Q, Lu X, Fan X. Network pharmacology approaches for research of Traditional Chinese Medicines. Chin J Nat Med 2023; 21:323-332. [PMID: 37245871 DOI: 10.1016/s1875-5364(23)60429-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Indexed: 05/30/2023]
Abstract
Pharmacodynamics material basis and effective mechanisms are the two main issues to decipher the mechnisms of action of Traditional Chinese medicines (TCMs) for the treatment of diseases. TCMs, in "multi-component, multi-target, multi-pathway" paradigm, show satisfactory clinical results in complex diseases. New ideas and methods are urgently needed to explain the complex interactions between TCMs and diseases. Network pharmacology (NP) provides a novel paradigm to uncover and visualize the underlying interaction networks of TCMs against multifactorial diseases. The development and application of NP has promoted the safety, efficacy, and mechanism investigations of TCMs, which then reinforces the credibility and popularity of TCMs. The current organ-centricity of medicine and the "one disease-one target-one drug" dogma obstruct the understanding of complex diseases and the development of effective drugs. Therefore, more attentions should be paid to shift from "phenotype and symptom" to "endotype and cause" in understanding and redefining current diseases. In the past two decades, with the advent of advanced and intelligent technologies (such as metabolomics, proteomics, transcriptomics, single-cell omics, and artificial intelligence), NP has been improved and deeply implemented, and presented its great value and potential as the next drug-discovery paradigm. NP is developed to cure causal mechanisms instead of treating symptoms. This review briefly summarizes the recent research progress on NP application in TCMs for efficacy research, mechanism elucidation, target prediction, safety evaluation, drug repurposing, and drug design.
Collapse
Affiliation(s)
- Xiang Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 311399, China; Department of Chinese Medicine Science & Engineering, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-based Chinese Medicine, Hangzhou 310058, China
| | - Ziqi Liu
- Department of Chinese Medicine Science & Engineering, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Liao
- Department of Chinese Medicine Science & Engineering, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-based Chinese Medicine, Hangzhou 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Qian Chen
- Department of Chinese Medicine Science & Engineering, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-based Chinese Medicine, Hangzhou 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Xiaoyan Lu
- Department of Chinese Medicine Science & Engineering, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-based Chinese Medicine, Hangzhou 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Xiaohui Fan
- Department of Chinese Medicine Science & Engineering, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-based Chinese Medicine, Hangzhou 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
46
|
Li L, Cao J, Li S, Cui T, Ni J, Zhang H, Zhu Y, Mao J, Gao X, Midgley AC, Zhu M, Fan G. M2 Macrophage-Derived sEV Regulate Pro-Inflammatory CCR2 + Macrophage Subpopulations to Favor Post-AMI Cardiac Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202964. [PMID: 36950739 PMCID: PMC10190454 DOI: 10.1002/advs.202202964] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 02/21/2023] [Indexed: 05/18/2023]
Abstract
Tissue-resident cardiac macrophage subsets mediate cardiac tissue inflammation and repair after acute myocardial infarction (AMI). CC chemokine receptor 2 (CCR2)-expressing macrophages have phenotypical similarities to M1-polarized macrophages, are pro-inflammatory, and recruit CCR2+ circulating monocytes to infarcted myocardium. Small extracellular vesicles (sEV) from CCR2̶ macrophages, which phenotypically resemble M2-polarized macrophages, promote anti-inflammatory activity and cardiac repair. Here, the authors harvested M2 macrophage-derived sEV (M2EV ) from M2-polarized bone-marrow-derived macrophages for intramyocardial injection and recapitulation of sEV-mediated anti-inflammatory activity in ischemic-reperfusion (I/R) injured hearts. Rats and pigs received sham surgery; I/R without treatment; or I/R with autologous M2EV treatment. M2EV rescued cardiac function and attenuated injury markers, infarct size, and scar size. M2EV inhibited CCR2+ macrophage numbers, reduced monocyte-derived CCR2+ macrophage recruitment to infarct sites, induced M1-to-M2 macrophage switching and promoted neovascularization. Analysis of M2EV microRNA content revealed abundant miR-181b-5p, which regulated macrophage glucose uptake, glycolysis, and mitigated mitochondrial reactive oxygen species generation. Functional blockade of miR-181b-5p is detrimental to beneficial M2EV actions and resulted in failure to inhibit CCR2+ macrophage numbers and infarct size. Taken together, this investigation showed that M2EV rescued myocardial function, improved myocardial repair, and regulated CCR2+ macrophages via miR-181b-5p-dependent mechanisms, indicating an option for cell-free therapy for AMI.
Collapse
Affiliation(s)
- Lan Li
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionState Key Laboratory of Component‐based Chinese MedicineFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300193China
| | - Jiasong Cao
- Tianjin Key Laboratory of Human Development and Reproductive RegulationTianjin Central Hospital of Gynecology ObstetricsTianjin300052China
| | - Sheng Li
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Tianyi Cui
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Jingyu Ni
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionState Key Laboratory of Component‐based Chinese MedicineFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300193China
| | - Han Zhang
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Yan Zhu
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Jingyuan Mao
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionState Key Laboratory of Component‐based Chinese MedicineFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300193China
| | - Xiumei Gao
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Meifeng Zhu
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Guanwei Fan
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionState Key Laboratory of Component‐based Chinese MedicineFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300193China
| |
Collapse
|
47
|
Su X, Wang L, Ma N, Yang X, Liu C, Yang F, Li J, Yi X, Xing Y. Immune heterogeneity in cardiovascular diseases from a single-cell perspective. Front Cardiovasc Med 2023; 10:1057870. [PMID: 37180791 PMCID: PMC10167030 DOI: 10.3389/fcvm.2023.1057870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
A variety of immune cell subsets occupy different niches in the cardiovascular system, causing changes in the structure and function of the heart and vascular system, and driving the progress of cardiovascular diseases (CVDs). The immune cells infiltrating the injury site are highly diverse and integrate into a broad dynamic immune network that controls the dynamic changes of CVDs. Due to technical limitations, the effects and molecular mechanisms of these dynamic immune networks on CVDs have not been fully revealed. With recent advances in single-cell technologies such as single-cell RNA sequencing, systematic interrogation of the immune cell subsets is feasible and will provide insights into the way we understand the integrative behavior of immune populations. We no longer lightly ignore the role of individual cells, especially certain highly heterogeneous or rare subpopulations. We summarize the phenotypic diversity of immune cell subsets and their significance in three CVDs of atherosclerosis, myocardial ischemia and heart failure. We believe that such a review could enhance our understanding of how immune heterogeneity drives the progression of CVDs, help to elucidate the regulatory roles of immune cell subsets in disease, and thus guide the development of new immunotherapies.
Collapse
Affiliation(s)
- Xin Su
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Li Wang
- Department of Breast Surgery, Xingtai People’s Hospital, Xingtai, China
| | - Ning Ma
- Department of Breast Surgery, Dezhou Second People’s Hospital, Dezhou, China
| | - Xinyu Yang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Can Liu
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Fan Yang
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Jun Li
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Xin Yi
- Department of Cardiology, Beijing Huimin Hospital, Beijing, China
| | - Yanwei Xing
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| |
Collapse
|
48
|
Coulis G, Jaime D, Guerrero-Juarez C, Kastenschmidt JM, Farahat PK, Nguyen Q, Pervolarakis N, McLinden K, Thurlow L, Movahedi S, Duarte J, Sorn A, Montoya E, Mozaffar I, Dragan M, Othy S, Joshi T, Hans CP, Kimonis V, MacLean AL, Nie Q, Wallace LM, Harper SQ, Mozaffar T, Hogarth MW, Bhattacharya S, Jaiswal JK, Golann DR, Su Q, Kessenbrock K, Stec M, Spencer MJ, Zamudio JR, Villalta SA. Single-cell and spatial transcriptomics identify a macrophage population associated with skeletal muscle fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537253. [PMID: 37131694 PMCID: PMC10153153 DOI: 10.1101/2023.04.18.537253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The monocytic/macrophage system is essential for skeletal muscle homeostasis, but its dysregulation contributes to the pathogenesis of muscle degenerative disorders. Despite our increasing knowledge of the role of macrophages in degenerative disease, it still remains unclear how macrophages contribute to muscle fibrosis. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages. We identified six novel clusters. Unexpectedly, none corresponded to traditional definitions of M1 or M2 macrophage activation. Rather, the predominant macrophage signature in dystrophic muscle was characterized by high expression of fibrotic factors, galectin-3 and spp1. Spatial transcriptomics and computational inferences of intercellular communication indicated that spp1 regulates stromal progenitor and macrophage interactions during muscular dystrophy. Galectin-3 + macrophages were chronically activated in dystrophic muscle and adoptive transfer assays showed that the galectin-3 + phenotype was the dominant molecular program induced within the dystrophic milieu. Histological examination of human muscle biopsies revealed that galectin-3 + macrophages were also elevated in multiple myopathies. These studies advance our understanding of macrophages in muscular dystrophy by defining the transcriptional programs induced in muscle macrophages, and reveal spp1 as a major regulator of macrophage and stromal progenitor interactions.
Collapse
Affiliation(s)
- Gerald Coulis
- Department of Physiology and Biophysics, University of California Irvine, USA
- Institute for Immunology, University of California Irvine, USA
| | - Diego Jaime
- Department of Physiology and Biophysics, University of California Irvine, USA
- Institute for Immunology, University of California Irvine, USA
| | - Christian Guerrero-Juarez
- Department of Mathematics, University of California Irvine, USA
- Department of Developmental and Cell Biology, University of California Irvine, USA
| | - Jenna M. Kastenschmidt
- Department of Physiology and Biophysics, University of California Irvine, USA
- Institute for Immunology, University of California Irvine, USA
| | - Philip K. Farahat
- Department of Physiology and Biophysics, University of California Irvine, USA
- Institute for Immunology, University of California Irvine, USA
| | - Quy Nguyen
- Department of Biological Chemistry, University of California Irvine, USA
| | | | - Katherine McLinden
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, USA
| | - Lauren Thurlow
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, USA
| | - Saba Movahedi
- Department of Physiology and Biophysics, University of California Irvine, USA
| | - Jorge Duarte
- Department of Physiology and Biophysics, University of California Irvine, USA
| | - Andrew Sorn
- Department of Physiology and Biophysics, University of California Irvine, USA
| | - Elizabeth Montoya
- Department of Physiology and Biophysics, University of California Irvine, USA
| | - Izza Mozaffar
- Department of Physiology and Biophysics, University of California Irvine, USA
| | - Morgan Dragan
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, USA
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California Irvine, USA
- Institute for Immunology, University of California Irvine, USA
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, USA
| | - Chetan P. Hans
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA
| | | | - Adam L. MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Qing Nie
- Department of Mathematics, University of California Irvine, USA
- Department of Developmental and Cell Biology, University of California Irvine, USA
| | - Lindsay M. Wallace
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital
| | - Scott Q. Harper
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital
| | - Tahseen Mozaffar
- Department of Neurology, University of California Irvine, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, USA
| | - Marshall W. Hogarth
- Children’s National Hospital, Research Center for Genetic Medicine, Washington, DC, USA
| | - Surajit Bhattacharya
- Children’s National Hospital, Research Center for Genetic Medicine, Washington, DC, USA
| | - Jyoti K. Jaiswal
- Children’s National Hospital, Research Center for Genetic Medicine, Washington, DC, USA
| | | | - Qi Su
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California Irvine, USA
| | - Michael Stec
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - Jesse R. Zamudio
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, USA
| | - S. Armando Villalta
- Department of Physiology and Biophysics, University of California Irvine, USA
- Institute for Immunology, University of California Irvine, USA
- Department of Neurology, University of California Irvine, USA
| |
Collapse
|
49
|
Long X, Yuan X, Du J. Single-cell and spatial transcriptomics: Advances in heart development and disease applications. Comput Struct Biotechnol J 2023; 21:2717-2731. [PMID: 37181659 PMCID: PMC10173363 DOI: 10.1016/j.csbj.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Current transcriptomics technologies, including bulk RNA-seq, single-cell RNA sequencing (scRNA-seq), single-nucleus RNA-sequencing (snRNA-seq), and spatial transcriptomics (ST), provide novel insights into the spatial and temporal dynamics of gene expression during cardiac development and disease processes. Cardiac development is a highly sophisticated process involving the regulation of numerous key genes and signaling pathways at specific anatomical sites and developmental stages. Exploring the cell biological mechanisms involved in cardiogenesis also contributes to congenital heart disease research. Meanwhile, the severity of distinct heart diseases, such as coronary heart disease, valvular disease, cardiomyopathy, and heart failure, is associated with cellular transcriptional heterogeneity and phenotypic alteration. Integrating transcriptomic technologies in the clinical diagnosis and treatment of heart diseases will aid in advancing precision medicine. In this review, we summarize applications of scRNA-seq and ST in the cardiac field, including organogenesis and clinical diseases, and provide insights into the promise of single-cell and spatial transcriptomics in translational research and precision medicine.
Collapse
Affiliation(s)
- Xianglin Long
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
50
|
Murine neonatal cardiac B cells promote cardiomyocyte proliferation and heart regeneration. NPJ Regen Med 2023; 8:7. [PMID: 36774363 PMCID: PMC9922252 DOI: 10.1038/s41536-023-00282-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 01/25/2023] [Indexed: 02/13/2023] Open
Abstract
The irreversible loss of cardiomyocytes in the adult heart following cardiac injury leads to adverse cardiac remodeling and ventricular dysfunction. However, the role of B cells in cardiomyocyte proliferation and heart regeneration has not been clarified. Here, we found that the neonatal mice with B cell depletion showed markedly reduced cardiomyocyte proliferation, leading to cardiac dysfunction, fibrosis scar formation, and the complete failure of heart regeneration after apical resection. B cell depletion also significantly impaired heart regeneration and cardiac function in neonatal mice following myocardial infarction (MI). However, B cell depletion in adult mice suppressed tissue inflammation, inhibited myocardial fibrosis, and improved cardiac function after MI. Interestingly, B cell depletion partially restricted cardiomyocyte proliferation in adult mice post-MI. Single-cell RNA sequencing showed that cardiac B cells possessed a more powerful ability to inhibit inflammatory responses and enhance angiogenesis in the postnatal day 1 (P1) mice compared with P7 and adult mice. Besides, the proportion of cardioprotective B cell clusters with high expression levels of S100a6 (S100 calcium-binding protein A6) and S100a4 (S100 calcium-binding protein A4) was greatly decreased in adult heart tissues compared with neonatal mice after cardiac damage. Thus, our study discovers that cardiac B cells in neonatal mice are required for cardiomyocyte proliferation and heart regeneration, while adult B cells promote inflammation and impair cardiac function after myocardial injury.
Collapse
|