1
|
Li B, Ma X, Lei M, Jin Z. Graphdiyne based Zn 0. 5Cd 0. 5S and NiO dual S-scheme heterojunction boosting photocatalytic hydrogen evolution. J Colloid Interface Sci 2025; 683:1064-1077. [PMID: 39721078 DOI: 10.1016/j.jcis.2024.12.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
As a novel carbon-based material with two-dimensional (2D) characteristics, graphdiyne (GDY) shows great potential in constructing active catalytic sites due to its distinctive atomic configuration and sp/sp2 conjugated hybrid two-dimensional networks. In this study, the layered GDY was synthesized using the ball milling method, and Zn0.5Cd0.5S/Graphdiyne/NiO (ZnCdS/GDY/NiO) composite was synthesized by in-situ composite and physical mixing method. The prepared ZnCdS/GDY/NiO has good photostability outstanding performance in photocatalytic hydrogen production. When exposed to 5 W of white light, the ZnCdS/GDY/NiO photocatalyst demonstrates a hydrogen production rate of 24.44 mmol·g-1·h-1, which was 8.4 times greater than that of pure Zn0.5Cd0.5S under the same conditions. Various characterization tests and theoretical calculations show that the improved photocatalytic efficiency resulted from the formation of a dual S-scheme heterostructure in the ZnCdS/GDY/NiO composite catalyst, which promoted the recombination of relatively useless photogenerated electron holes. Furthermore, strong photogenerated holes and electrons in the more positive valence band (VB) and the more negative conduction band (CB) were retained, which significantly improved the photogenerated carrier separation ability of the composite catalyst, and thus enhances the hydrogen evolution activity.
Collapse
Affiliation(s)
- Bingzhu Li
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| | - Xiaohua Ma
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| | - Minjun Lei
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| |
Collapse
|
2
|
Ma Z, Zhan S, Zhang Y, Kuklin A, Chen Y, Lin Y, Zhang H, Ren X, Ågren H, Zhang Y. An Electron Transfer Mediated Mechanism for Efficient Photoreforming of Waste Plastics Using a Ni 3S 4/ZnCdS Heterojunction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416581. [PMID: 39989159 PMCID: PMC11983256 DOI: 10.1002/adma.202416581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/13/2025] [Indexed: 02/25/2025]
Abstract
The oxidative degradation of plastics in conjunction with the production of clean hydrogen (H2) represents a significant challenge. Herein, a Ni3S4/ZnCdS heterojunction is rationally synthesized and employed for the efficient production of H2 and high-selectivity value-added chemicals from waste plastic. By integrating spectroscopic analysis techniques with density functional theory (DFT) calculations, a solely electron transfer-mediated reaction mechanism is confirmed, wherein Ni3S4 extracts electrons from ZnCdS (ZCS) to promote the spatial segregation of photogenerated electrons and holes, which not only facilitates H2 production but also maintains the high oxidation potential of holes on the ZCS surface, favoring hole-dominated plastic oxidation. Notably, the catalyst exhibited efficient H2 production rates as high as 27.9 and 17.4 mmol g-1 h-1, along with a selectivity of 94.2% and 78.3% in the liquid product toward pyruvate and acetate production from polylactic acid (PLA) and polyethylene terephthalate (PET), respectively. Additionally, carbon yields of 26.5% for pyruvate and 2.2% for acetate are measured after 9 h of photoreforming, representing the highest values reported to date. Overall, this research presents a promising approach for converting plastic waste into H2 fuel and high-selectivity valuable chemical products, offering a potential solution to the growing issue of "White Pollution".
Collapse
Affiliation(s)
- Zehao Ma
- Lab of Optoelectronic Technology for Low Dimensional NanomaterialsSchool of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
| | - Shaoqi Zhan
- Department of Chemistry‐ÅngströmMolecular BiomimeticsUppsala UniversityUppsala75120Sweden
| | - Yule Zhang
- Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060China
| | - Artem Kuklin
- Department of Physics and AstronomyUppsala UniversityBox 516UppsalaSE‐751 20Sweden
| | - Yinxiang Chen
- Lab of Optoelectronic Technology for Low Dimensional NanomaterialsSchool of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
| | - Yingwu Lin
- Lab of Optoelectronic Technology for Low Dimensional NanomaterialsSchool of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060China
| | - Xiaohui Ren
- The State Key Laboratory of Refractories and Metallurgy Key Laboratory for Ferous Metalurgy and Resources Utilization of Ministry of Education & Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steel making Faculty of MaterialsWuhan University of Science and TechnologyWuhan430081China
| | - Hans Ågren
- Department of Physics and AstronomyUppsala UniversityBox 516UppsalaSE‐751 20Sweden
- Faculty of ChemistryWroclaw University of Science and TechnologyWyb. Wyspianskiego 27WroclawPL‐50370Poland
| | - Ye Zhang
- Lab of Optoelectronic Technology for Low Dimensional NanomaterialsSchool of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
| |
Collapse
|
3
|
Liu J, Dong S, Gai S, Li S, Dong Y, Yu C, He F, Yang P. Four Birds with One Stone: A Bandgap-Regulated Multifunctional Schottky Heterojunction for Robust Synergistic Antitumor Therapy upon Endo-/Exogenous Stimuli. ACS NANO 2024; 18:23579-23598. [PMID: 39150904 DOI: 10.1021/acsnano.4c07904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Considering the profound impact of structure on heterojunction catalysts, the rational design of emerging catalysts with optimized energy band structures is required for antitumor efficiency. Herein, we select titanium nitride (TiN) and Pt to develop a multifunctional Schottky heterojunction named Pt/H-TiN&SRF (PHTS) nanoparticles (NPs) with a narrowed bandgap to accomplish "four birds with one stone" involving enzyo/sono/photo three modals and additional ferroptosis. The in situ-grown Pt NPs acted as electron traps that can cause the energy band to bend upward and form a Schottky barrier, thereby facilitating the separation of electron/hole pairs in exogenous stimulation catalytic therapy. In addition, endogenous catalytic reactions based on peroxidase (POD)- and catalase (CAT)-mimicking activities can also be amplified, triggering intense oxidative stress, in which CAT-like activity decomposes endogenous H2O2 into O2 alleviating hypoxia and provides reactants for sonodynamic therapy. Moreover, PHTS NPs can elicit mild photothermal therapy with boosted photothermal properties as well as ferroptosis with loaded ferroptosis inducer sorafenib for effective tumor ablation and apoptosis-ferroptosis synergistic tumor inhibitory effect. In summary, this paper proposes an attractive design for antitumor strategies and highlights findings for heterojunction catalytic therapy with potential in tumor theranostics.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shuyao Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Yushan Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Chenghao Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
4
|
Li T, Wang X, Jin Z, Tsubaki N. Tailoring Advanced CdS Anisotropy-Driven Charge Spatial Vectorial Separation and Migration via In Situ Dual Co-Catalyst Synergistic Layout. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311441. [PMID: 38446057 DOI: 10.1002/smll.202311441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/10/2024] [Indexed: 03/07/2024]
Abstract
Tailoring advanced anisotropy-driven efficient separation and migration of photogenerated carriers is a pivotal stride toward enhancing photocatalytic activity. Here, CdS-MoS2 binary photocatalysts are tailored into a dumbbell shape by leveraging the rod-shaped morphology of CdS and employing an in situ tip-induction strategy. To further enhance the photocatalytic activity, an in situ photo-deposition strategy is incorporated to cultivate MnOx particles on the dumbbell-shaped CdS-MoS2. The in situ deposition of MnOx effectively isolated the oxidatively active sites on the CdS surface, emphasizing the reductively active crystalline face of CdS, specifically the (002) face. Benefiting from its robust activity as a reduction active site, MoS2 adeptly captures photogenerated electrons, facilitating the reduction of H+ to produce hydrogen. The anisotropically driven separation of CdS photogenerated carriers markedly mitigates the Coulomb force or binding force of the photogenerated electrons, thus promoting a smoother migration toward the active site for photocatalytic hydrogen evolution. The hydrogen evolution rate of 35MnOx-CdS-MoS2-3 surpasses that of CdS by nearly an order of magnitude, achieving a quantum efficiency of 22.30% at 450 nm. Under simulated solar irradiation, it attains a rate of 42.86 mmol g-1 h-1. This work imparts valuable insights for the design of dual co-catalysts, anisotropy-driven spatial vectorial charge separation and migration, and the analysis of migration pathways of photogenerated carriers.
Collapse
Affiliation(s)
- Teng Li
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Xuanpu Wang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| |
Collapse
|
5
|
Huang SY, Lin X, Yang HY, Dou XR, Shi WJ, Deng JH, Zhong DC, Gong YN, Lu TB. Covalent Bonding of Salen Metal Complexes with Pyrene Chromophores to Porous Polymers for Photocatalytic Hydrogen Evolution. Inorg Chem 2024; 63:13594-13601. [PMID: 38973091 DOI: 10.1021/acs.inorgchem.4c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The development of low-cost and efficient photocatalysts to achieve water splitting to hydrogen (H2) is highly desirable but remains challenging. Herein, we design and synthesize two porous polymers (Co-Salen-P and Fe-Salen-P) by covalent bonding of salen metal complexes and pyrene chromophores for photocatalytic H2 evolution. The catalytic results demonstrate that the two polymers exhibit excellent catalytic performance for H2 generation in the absence of additional noble-metal photosensitizers and cocatalysts. Particularly, the H2 generation rate of Co-Salen-P reaches as high as 542.5 μmol g-1 h-1, which is not only 6 times higher than that of Fe-Salen-P but also higher than a large amount of reported Pt-assisted photocatalytic systems. Systematic studies show that Co-Salen-P displays faster charge separation and transfer efficiencies, thereby accounting for the significantly improved photocatalytic activity. This study provides a facile and efficient way to fabricate high-performance photocatalysts for H2 production.
Collapse
Affiliation(s)
- Shu-Ying Huang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiao Lin
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hao-Yu Yang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xue-Rong Dou
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wen-Jie Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ji-Hua Deng
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Di-Chang Zhong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yun-Nan Gong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
6
|
Xu D, Shen LL, Qin ZK, Yan S, Wang N, Wang J, Gao YJ. Construction of Reverse Type-II InP/Zn xCd 1-xS Core/Shell Quantum Dots with Low Interface Strain to Enhance Photocatalytic Hydrogen Evolution. Inorg Chem 2024; 63:12582-12592. [PMID: 38917407 DOI: 10.1021/acs.inorgchem.4c01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The InP-based quantum dots (QDs) have attracted much attention in the field of photocatalytic H2 evolution. However, a shell should be used for InP-based photocatalytic systems to passivate the numerous surface defects. Different from the traditional InP-based core/shell QDs with Type-I or Type-II band alignment, herein, the "reverse Type-II" core/shell QDs in which both the conduction and valence bands of shell materials are more negative than those of core materials have been well-designed by regulating the ratio of Cd/Zn of the alloyed ZnxCd1-xS shell. The reverse Type-II band alignment would realize the spatial separation of photogenerated carriers. More importantly, the photogenerated holes tend to rest on the shell in the reverse Type-II QDs, which facilitate hole transfer to the surface, the rate-determining step for solar H2 evolution using QDs. Therefore, the obtained InP/Zn0.25Cd0.75S core/shell QDs exhibit superior photocatalytic activity and stability under visible light irradiation. The rate of solar H2 evolution reaches 376.19 μmol h-1 mg-1 at the initial 46 h, with a turnover number of ∼2,157,000 per QD within 70 h irradiation.
Collapse
Affiliation(s)
- Dongzi Xu
- School of Chemistry and Chemical Engineering, Faculty of Chemistry and Pharmacy, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, P. R. China
| | - Li-Lei Shen
- School of Chemistry and Chemical Engineering, Faculty of Chemistry and Pharmacy, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, P. R. China
| | - Zhi-Kai Qin
- School of Chemistry and Chemical Engineering, Faculty of Chemistry and Pharmacy, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, P. R. China
| | - Shuo Yan
- School of Chemistry and Chemical Engineering, Faculty of Chemistry and Pharmacy, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, P. R. China
| | - Nianxing Wang
- Department of Mechanical and Materials Engineering, University of Turku, Turku 20014, Finland
| | - Jingui Wang
- School of Chemistry and Chemical Engineering, Faculty of Chemistry and Pharmacy, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, P. R. China
| | - Yu-Ji Gao
- School of Chemistry and Chemical Engineering, Faculty of Chemistry and Pharmacy, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, P. R. China
| |
Collapse
|
7
|
Meng L, Chen Q, Li X, Zhang H, Hai Y, Yang Y, Wang X, Luo M. Enhanced Photocatalytic Nitrogen Reduction via Bismuth Nanoparticle-Decorating ZnCdS Solid Solution. Inorg Chem 2024; 63:5065-5075. [PMID: 38442362 DOI: 10.1021/acs.inorgchem.3c04566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The construction of photocatalysts with a surface plasmon resonance effect (SPR) has been demonstrated as a highly effective strategy for enhancing photocatalytic efficiency. In this paper, we synthesized a catalyst with bismuth metal loaded on ZnCdS nanospheres for an efficient photocatalytic nitrogen reduction reaction (PNRR). The SPR effect induced by Bi nanoparticles under light excitation significantly promoted the ammonia production efficiency of the photocatalyst. Under air ambient conditions with lactic acid as the sacrificial agent, the photocatalytic NH4+ yield of 3% Bi@ZnCdS was 58.93 μmol·g-1·h-1, which exhibited an approximately 7.7 times that of the pure phase ZnCdS. The experimental characterization results demonstrate that the incorporation of metallic bismuth enhances the light absorption capacity of the catalyst and improves the separation efficiency of the photogenerated carriers. Theoretical calculations proved that Bi NPs provide more photogenerated electrons to convert N2 to NH3 for solid-solution ZnCdS. This work presents a novel concept for the development of advanced plasma nanomaterials to enhance the photocatalytic nitrogen fixation reaction.
Collapse
Affiliation(s)
- Linghu Meng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Qianji Chen
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Xiaoman Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Hui Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Yan Hai
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Yang Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Xinyan Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Min Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| |
Collapse
|
8
|
Hu X, Xu Y, Tang S, Shi W, Wang X, Yu YX, Zhang WD. Photoreduction of Aqueous Protons Coupling with Alcohol Oxidation on a S-Scheme Heterojunction Photocatalyst MnO/Carbon Nitride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306563. [PMID: 37929642 DOI: 10.1002/smll.202306563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/04/2023] [Indexed: 11/07/2023]
Abstract
Crystalline carbon nitride (CCN), derived from amorphous polymeric CN, is considered as a new generation of metal-free photocatalyst because of its high crystallinity. In order to further promote the photocatalytic performance of CCN, p-type MnO nanoparticles are in situ synthesized and merged with n-type CCN through a one-pot process to form p-n heterojunction. The formed interfacial electric field between the semiconductors with different work functions efficiently breaks the coulomb interaction between MnO and CCN. The prepared catalysts exhibit drastically increased photocatalytic hydrogen evolution (PHE) activity integrated with oxidation of alkyl and aryl alcohols under irradiation of visible light. In the aqueous solution of benzyl alcohol (BzOH), the hydrogen generation rate over MnO/CCN (39.58 µmol h-1) is nearly 7 times and 37 times that of pure CCN (5.76 µmol h-1) and CN (1.06 µmol h-1), respectively, combining with oxidation of BzOH to benzaldehyde. This work proposes an avenue for in situ construction of a novel 2D material-based S-scheme heterojunction and extends its application in solar energy conservation and utilization.
Collapse
Affiliation(s)
- Xuelian Hu
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Yangsen Xu
- Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Shuang Tang
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Wenwu Shi
- Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Xinzhong Wang
- Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Yu-Xiang Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Wei-De Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| |
Collapse
|
9
|
He B, Xiao P, Wan S, Zhang J, Chen T, Zhang L, Yu J. Rapid Charge Transfer Endowed by Interfacial Ni-O Bonding in S-scheme Heterojunction for Efficient Photocatalytic H 2 and Imine Production. Angew Chem Int Ed Engl 2023; 62:e202313172. [PMID: 37908153 DOI: 10.1002/anie.202313172] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Cooperative coupling of H2 evolution with oxidative organic synthesis is promising in avoiding the use of sacrificial agents and producing hydrogen energy with value-added chemicals simultaneously. Nonetheless, the photocatalytic activity is obstructed by sluggish electron-hole separation and limited redox potentials. Herein, Ni-doped Zn0.2 Cd0.8 S quantum dots are chosen after screening by DFT simulation to couple with TiO2 microspheres, forming a step-scheme heterojunction. The Ni-doped configuration tunes the highly active S site for augmented H2 evolution, and the interfacial Ni-O bonds provide fast channels at the atomic level to lower the energy barrier for charge transfer. Also, DFT calculations reveal an enhanced built-in electric field in the heterojunction for superior charge migration and separation. Kinetic analysis by femtosecond transient absorption spectra demonstrates that expedited charge migration with electrons first transfer to Ni2+ and then to S sites. Therefore, the designed catalyst delivers drastically elevated H2 yield (4.55 mmol g-1 h-1 ) and N-benzylidenebenzylamine production rate (3.35 mmol g-1 h-1 ). This work provides atomic-scale insights into the coordinated modulation of active sites and built-in electric fields in step-scheme heterojunction for ameliorative photocatalytic performance.
Collapse
Affiliation(s)
- Bowen He
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Peng Xiao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Sijie Wan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Jianjun Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Tao Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| |
Collapse
|
10
|
Kang W, Guo F, Mao L, Liu Y, Han C, Yuan L. Ni(OH) 2 surface-modified hierarchical ZnIn 2S 4 nanosheets: dual photocatalytic application and mechanistic insights. Phys Chem Chem Phys 2023. [PMID: 38048074 DOI: 10.1039/d3cp04443b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The simultaneous utilization of electrons and holes to couple photocatalytic H2 production with selective biomass transformation has attracted immense interest toward achieving sustainability in the fields of energy and chemical industry. In this study, by assembling highly dispersed Ni(OH)2 onto ZnIn2S4 (ZIS), efficient H2 evolution along with highly selective photocatalytic oxidation of furfuryl alcohol (FA) to furfural (FF) in pure water was achieved under anaerobic conditions. The H2 production and FA conversion rates over the optimal Ni-ZIS sample reached about 686 and 583 μmol g-1 h-1, respectively, about 4.9 and 1.7 folds as those of pure ZIS. Moreover, the formation of by-products with C-C coupling was dramatically suppressed over Ni-ZIS, resulting in higher selectivity for FF (97%), which is about 2.7-fold that of pure ZIS (36%). Deep mechanistic studies were conducted to reveal the structural evolution and cocatalyst effects of Ni(OH)2. This study not only offers a feasible paradigm for modifying the surface of catalysts to tune the photoactivity and selectivity for product-oriented alcohol oxidation coupled with efficient H2 production in water but also reveals the working mechanism of the deposited Ni(OH)2 over ZIS toward coupling reactions.
Collapse
Affiliation(s)
- Wanqiong Kang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Fen Guo
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Lei Mao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Yi Liu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China.
| | - Chuang Han
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Lan Yuan
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| |
Collapse
|
11
|
Cao X, Zhang L, Guo C, Wang M, Guo J, Wang J. Construction of Zn xCd yS with a 3D Hierarchical Structure for Enhanced Photocatalytic Hydrogen Production from Water Splitting. Inorg Chem 2023; 62:18990-18998. [PMID: 37934135 DOI: 10.1021/acs.inorgchem.3c02638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The ZnxCdyS has been proven to have unique photoelectric properties, but its synthesis method and photocatalytic water cracking performance need to be further improved. In this paper, Cd-MOF@ZIF-8 with a MOF-on-MOF (MOF = metal-organic framework) structure was prepared by a simple ion adsorption method. Then, a CdS/ZnxCdyS heterojunction with a 3D hierarchical structure was formed by solvothermal sulfidation. The prepared catalysts with different Zn/Cd ratios show an improved hydrogen production performance for photocatalytic water splitting, and the hydrogen evolution rate of Zn1Cd1S can reach up to 29.2 mmol·g-1·h-1. The excellent photocatalytic activity not only benefits from ZnxCdyS strong light conversion ability but also is closely related to the hierarchical structure and large specific surface area. A type II heterojunction also plays an important role in the spatial separation of photogenerated carriers. This paper provides a simple and feasible idea for the synthesis of a photocatalyst with a large specific surface area using a MOF-on-MOF synthesis strategy.
Collapse
Affiliation(s)
- Xianglei Cao
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang 830046, People's Republic of China
| | - Liugen Zhang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang 830046, People's Republic of China
| | - Changyan Guo
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang 830046, People's Republic of China
- Xinjiang Energy Company, Ltd., Urumqi, Xinjiang 830018, People's Republic of China
| | - Meng Wang
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi, Xinjiang 830002, People's Republic of China
| | - Jia Guo
- Xinjiang Energy Company, Ltd., Urumqi, Xinjiang 830018, People's Republic of China
| | - Jide Wang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang 830046, People's Republic of China
| |
Collapse
|
12
|
Zhao J, Li K, She H, Zhang Y, Huang J, Wang L, Cheng F, Wang Q. Highly efficient photocatalytic hydrogen production by ZnCdS composite catalyst modified with NiCoP nanosheets prepared by LDH precursor. J Colloid Interface Sci 2023; 649:416-425. [PMID: 37354798 DOI: 10.1016/j.jcis.2023.06.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
The unique characteristics and diverse applications of 2D transition metal phosphides have aroused significant interest. In this paper, we successfully prepared 2D NiCoP modified ZnCdS composite. The NiCoP nanosheets were successfully obtained by phosphating layered double hydroxide (LDH) precursor. The results show that the ZnCdS-8%NiCoP has the highest photocatalytic performance among all the composite photocatalysts with the H2 evolution rate of 1370.1 µmol h-1, which is 17.9 folds higher than obtained with pure ZnCdS. Detailed analysis reveal that NiCoP nanosheets functions as an excellent electron acceptor, speeding up the directed migration of electrons. Furthermore, the rational mechanism of photocatalytic has been presented based on density function theory (DFT) calculations, which is well congruent with experimental results. Our research offers a simple, environmentally benign, and scalable technique for making highly effective photocatalysts, as well as a novel perspective on transition metal phosphides rational design.
Collapse
Affiliation(s)
- Jiale Zhao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Kexin Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Houde She
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Yang Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jingwei Huang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Feixiang Cheng
- College of Chemistry and Environment Science, Qujing Normal University, Qujing 655011, China
| | - Qizhao Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; School of Environment Science and Engineering, Chang'an University, Xi'an 710064, China.
| |
Collapse
|
13
|
Ding L, Wang S, Tang Y, Chen X, Zhou H. Exposing high-activity (111) facet CoO octahedral loading MXene quantum dots for efficient and stable photocatalytic H 2 evolution. Dalton Trans 2023; 52:12347-12359. [PMID: 37592915 DOI: 10.1039/d3dt02090h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Photocatalytic splitting of water for hydrogen generation is a green and renewable solution for converting solar energy to chemical energy; thus, the development of high-performance and stable photocatalytic materials has emerged as a research hotspot recently. Herein, a heterostructure composite photocatalyst of octahedral CoO uniformly modified with novel nitrogen-doped MXene quantum dots (N-MQDs) is successfully designed using a typical solvothermal approach. The optimum photocatalytic hydrogen evolution efficiency of the prepared N-MQDs@CoO heterojunction composite is 82.54 μmol g-1 h-1 with visible light, which is 16.57 times higher compared to the pure CoO. A series of photoelectrochemical tests were further performed to elucidate the photocatalytic hydrogen evolution mechanism. The remarkable improvement of activity is primarily attributed to the synergistic interaction between the closely spaced interface contacts and energy level matching among high conductivity Ti3C2 MXene quantum dots with CoO octahedra, dramatically hastening the segregation and transfer of photo-generated carriers. This study provides new ideas for the construction of MXene quantum dot-based co-photocatalysts with highly efficient photocatalytic performance and stability toward solar energy conversion applications.
Collapse
Affiliation(s)
- Lan Ding
- State Key Laboratory of Heavy Oil Processing Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum-Beijing, Beijing 102249, China.
| | - Siyang Wang
- State Key Laboratory of Heavy Oil Processing Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum-Beijing, Beijing 102249, China.
| | - Yaoyao Tang
- State Key Laboratory of Heavy Oil Processing Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum-Beijing, Beijing 102249, China.
| | - Xinyi Chen
- State Key Laboratory of Heavy Oil Processing Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum-Beijing, Beijing 102249, China.
| | - Hongjun Zhou
- State Key Laboratory of Heavy Oil Processing Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
14
|
Bai FY, Han JR, Chen J, Yuan Y, Wei K, Shen YS, Huang YF, Zhao H, Liu J, Hu ZY, Li Y, Su BL. The three-dimensionally ordered microporous CaTiO 3 coupling Zn 0.3Cd 0.7S quantum dots for simultaneously enhanced photocatalytic H 2 production and glucose conversion. J Colloid Interface Sci 2023; 638:173-183. [PMID: 36736118 DOI: 10.1016/j.jcis.2023.01.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Glucose conversion assisted photocatalytic water splitting technology to simultaneously produce H2 and high value-added chemicals is a promising method for alleviating the energy shortage and environmental crisis. In this work, we constructing type II heterojunction by in-situ coupling Zn0.3Cd0.7S quantum dots (ZCS QDs) on three-dimensionally ordered microporous CaTiO3 (3DOM CTO) for photocatalytic H2 production and glucose conversion. The DFT calculations demonstrate that substitution of Zn on the Cd site improves the separation and transmission of photogenerated carriers. Therefore, 3DOM CTO-ZCS composite exhibits best H2 production performance (2.81 mmol g-1h-1) and highest apparent quantum efficiency (AQY) (5.56 %) at 365 nm, which are about 47 and 18 times that of CTO nanoparticles (NPs). The improved catalytic performance ascribed to not only good mass diffusion and exchange, highly efficient light harvesting of 3DOM structure, but also the efficient charges separation of type Ⅱ heterojunction. The investigation on photocatalytic mechanism indicates that the glucose is mainly converted to gluconic acid and lactic acid, and the control reaction step is gluconic acid to lactic acid. The selectivity for gluconic acid on 3DOM CTO-ZCS is 85.65 %. Our work here proposes a green sustainable method to achieve highly efficient H2 production and selective conversion of glucose to gluconic acid.
Collapse
Affiliation(s)
- Fang-Yuan Bai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Jing-Ru Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Jun Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Yue Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Ke Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Yuan-Sheng Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Yi-Fu Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Jing Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China.
| | - Zhi-Yi Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Yu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China.
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium.
| |
Collapse
|
15
|
Li X, Li Q, Shang W, Lou Y, Chen J. Methylthio-functionalized UiO-66 to promote the electron-hole separation of ZnIn 2S 4 for boosting hydrogen evolution under visible light illumination. Dalton Trans 2023; 52:6730-6738. [PMID: 37129147 DOI: 10.1039/d3dt00477e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Solar-driven water splitting offers a leading-edge approach to storing abundant and intermittent solar energy and producing hydrogen as a clean and sustainable energy carrier. More importantly, constructing well-designed photocatalysts is a promising approach to develop clean hydrogen energy. In this paper, flower spherical UiO-66-(SCH3)2/ZnIn2S4 (UiOSC/ZIS) photocatalysts are successfully synthesized by a simple two-step hydrothermal method, and they exhibit high hydrogen production activity in light-driven water splitting. The optimized 30-UiOSC/ZIS (the content of UiOSC was 30 mg) composite exhibits optimal hydrogen production activity with a hydrogen production of 3433 μmol g-1 h-1, which is 5 and 235 times higher than that of pure ZIS and UiOSC, respectively. In addition, a long-cycling stability test has shown that the UiOSC/ZIS composite has good stability and recyclability. Experimental and characterization results show the formation of a type-II heterojunction between UiOSC and ZIS. This effectively suppresses the recombination of electrons-holes and promotes the carrier transfer, thus significantly improving the hydrogen production performance. This research further promotes the application of UiO-66-(SCH3)2 in the field of photocatalytic hydrogen production and provides a reference for the rational design of UiO-66-based composite photocatalysts.
Collapse
Affiliation(s)
- Xiang Li
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Qiulin Li
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Wenjing Shang
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Jinxi Chen
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
16
|
Xu Q, Liu L, Xia H, Wu X, Dai J, Liu J, Fang D, Xu G. Nanoarchitectonics of Co9S8/Zn0.5Cd0.5S nanocomposite for efficient photocatalytic hydrogen evolution. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
17
|
He B, Wang Z, Xiao P, Chen T, Yu J, Zhang L. Cooperative Coupling of H 2 O 2 Production and Organic Synthesis over a Floatable Polystyrene-Sphere-Supported TiO 2 /Bi 2 O 3 S-Scheme Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203225. [PMID: 35944441 DOI: 10.1002/adma.202203225] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Cooperative coupling of photocatalytic H2 O2 production with organic synthesis has an expansive perspective in converting solar energy into storable chemical energy. However, traditional powder photocatalysts suffer from severe agglomeration, limited light absorption, poor gas reactant accessibility, and reusable difficulty, which greatly hinders their large-scale application. Herein, floatable composite photocatalysts are synthesized by immobilizing hydrophobic TiO2 and Bi2 O3 on lightweight polystyrene (PS) spheres via hydrothermal and photodeposition methods. The floatable photocatalysts are not only solar transparent, but also upgrade the contact between reactants and photocatalysts. Thus, the floatable step-scheme (S-scheme) TiO2 /Bi2 O3 photocatalyst exhibits a drastically enhanced H2 O2 yield of 1.15 mm h-1 and decent furfuryl alcohol conversion to furoic acid synchronously. Furthermore, the S-scheme mechanism and dynamics are systematically investigated by in situ irradiated X-ray photoelectron spectroscopy and femtosecond transient absorption spectrum analyses. In situ Fourier transform infrared spectroscopy and density functional theory calculations reveal the mechanism of furoic acid evolution. The ingenious design of floatable photocatalysts not only furnishes insight into maximizing photocatalytic reaction kinetics but also provides a new route for highly efficient heterogeneous catalysis.
Collapse
Affiliation(s)
- Bowen He
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Zhongliao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Peng Xiao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Tao Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
18
|
Ultra-sensitive electroanalysis of toxic 2,4-DNT on o-CoxFe1-xSe2 solid solution: Fe-doping-induced c-CoSe2 phase transition to form electron-rich active sites. Anal Chim Acta 2022; 1227:340291. [DOI: 10.1016/j.aca.2022.340291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022]
|
19
|
Wang K, Xie H, Li Y, Wang G, Jin Z. Anchoring highly-dispersed ZnCdS nanoparticles on NiCo Prussian blue Analogue-derived cubic-like NiCoP forms an S-scheme heterojunction for improved hydrogen evolution. J Colloid Interface Sci 2022; 628:64-78. [DOI: 10.1016/j.jcis.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
|
20
|
Li X, Li Q, Zhang T, Lou Y, Chen J. Ni 2P NPs loaded on methylthio-functionalized UiO-66 for boosting visible-light-driven photocatalytic H 2 production. Dalton Trans 2022; 51:12282-12289. [PMID: 35899810 DOI: 10.1039/d2dt01205g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The UiO-66 family shows promising photocatalytic prospects in water splitting for hydrogen evolution under visible light irradiation due to its suitable band gap and adequate active sites. In this work, novel Ni2P/UiO-66-(SCH3)2 composites were prepared by a simple solvothermal method. These as-synthesized samples were fully characterized by XRD, SEM, TEM, HRTEM, EDS, and XPS methods. The effectiveness of visible light driven photocatalytic water-splitting to produce hydrogen was investigated in the presence of sacrificial agents. The results showed that the optimal hydrogen yield of 5 wt% Ni2P/UiO-66-(SCH3)2 is 3724.22 μmol g-1 h-1, reaching almost 187 times that of pristine UiO-66-(SCH3)2 (19.93 μmol g-1 h-1). Meanwhile, long term cycling stability tests also showed that Ni2P/UiO-66-(SCH3)2 composites present an excellent photocatalytic H2 production stability. Photoelectrochemical performance analysis revealed that the high catalytic activity of the composite materials could be associated with the synergistic effect of UiO-66-(SCH3)2 and Ni2P. Light stimulates UiO-66-(SCH3)2 to generate electrons and holes, and Ni2P as a cocatalyst could effectively transmit electrons and boost photogenerated charge separation. This work provides a reference for exploring UiO-66 family catalysts with good catalytic activity.
Collapse
Affiliation(s)
- Xiang Li
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Qiulin Li
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Tiantian Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Jinxi Chen
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
21
|
Qi S, Zhang K, Zhang Y, Zhang R, Xu H. Synthesis of WS2/Zn0.5Cd0.5S Nanoheterostructured Photocatalyst and Its Visible Light Catalytic Performance. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02403-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|