1
|
Song S, He F, Xia Q, Park HS, Zhang X, Li W, Yang P. Research Advances in Rare-Earth-Based Solid Electrolytes for All-Solid-State Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502008. [PMID: 40270277 DOI: 10.1002/smll.202502008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/06/2025] [Indexed: 04/25/2025]
Abstract
All-solid-state batteries (ASSBs) and solid-state electrolytes (SSE) have emerged as promising alternative energy storage devices for traditional lithium-ion batteries, drawing significant attention from researchers. Notably, SSE materials incorporating rare earth elements have demonstrated remarkable advancements in terms of ionic conductivity, electrochemical stability, and cycle-reversible performance. The unique electron layer structures of rare earth elements facilitate diverse energy level transitions. Meanwhile, their relatively large ionic radius contributes to excellent ionic conductivity, mechanical strength, and electrochemical properties in the electrolyte. This paper offers a comprehensive review of rare-earth-based oxide solid electrolytes, rare-earth-based sulfide solid electrolytes, rare-earth-based halide solid electrolytes, and composite polymer electrolytes enriched with rare earth elements. The characteristics, applications, modification methods, and underlying mechanisms of these SSE materials are investigated, offering valuable insights and inspiration for the design of future SSE materials. Additionally, this paper systematically presents solutions for improving the performance of ASSBs and explores the ion transmission in these batteries. Finally, the research direction, optimization methods, and development prospects of rare-earth-based solid electrolytes are analyzed and forecasted.
Collapse
Affiliation(s)
- Shanshan Song
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Qing Xia
- The Hong Kong Polytechnic University, Hong Kong, 100872, P. R. China
| | - Ho Seok Park
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Suwon, 440-746, Republic of Korea
- School of Chemical Engineering Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Xiao Zhang
- The Hong Kong Polytechnic University, Hong Kong, 100872, P. R. China
| | - Wenwu Li
- School of Chemical Engineering Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
2
|
Sun J, Du Y, Liu Y, Yan D, Li X, Kim DH, Lin Z, Zhou X. Recent advances in potassium metal batteries: electrodes, interfaces and electrolytes. Chem Soc Rev 2025; 54:2543-2594. [PMID: 39918241 DOI: 10.1039/d4cs00845f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The exceptional theoretical capacity of potassium metal anodes (687 mA h g-1), along with their low electrochemical potential, makes potassium metal batteries (PMBs) highly attractive for achieving high energy density. This review first provides an overview of potassium metal anodes, including their origin, current development status, and distinctive advantages compared to other metal anodes. Then, it discusses the composition and characteristics of emerging breakthrough PMBs, such as K-S, K-O2, K-CO2 batteries, and anode-free metal batteries. Subsequently, we delve into the pivotal challenges and theoretical research pertaining to PMBs, such as potassium metal nucleation/stripping, dendritic growth in PMBs, and unstable interfaces. Furthermore, we comprehensively examine the latest strategies in electrode design (including alloy, host, and current collector design), interface engineering (such as artificial solid electrolyte interphase layers, barrier layer design, and separator modification), and electrolyte optimization concerning nucleation, cycling stability, coulombic efficiency, and the development of PMBs. Finally, we introduce key characterization techniques, including in situ liquid phase secondary ion mass spectrometry, titration gas chromatography, neutron-based characterization, and computational simulation. This review will propel advancements in electrodes, separators, and electrolytes for innovative PMBs and other similar alkali metal batteries.
Collapse
Affiliation(s)
- Jianlu Sun
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Yichen Du
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Yijiang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
- College of Chemistry and Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Dongbo Yan
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xiaodong Li
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Dong Ha Kim
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Xiaosi Zhou
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
3
|
Hu Y, Fu H, Geng Y, Yang X, Fan L, Zhou J, Lu B. Chloro-Functionalized Ether-Based Electrolyte for High-Voltage and Stable Potassium-Ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202403269. [PMID: 38597257 DOI: 10.1002/anie.202403269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/11/2024]
Abstract
Ether-based electrolyte is beneficial to obtaining good low-temperature performance and high ionic conductivity in potassium ion batteries. However, the dilute ether-based electrolytes usually result in ion-solvent co-intercalation of graphite, poor cycling stability, and hard to withstand high voltage cathodes above 4.0 V. To address the aforementioned issues, an electron-withdrawing group (chloro-substitution) was introduced to regulate the solid-electrolyte interphase (SEI) and enhance the oxidative stability of ether-based electrolytes. The dilute (~0.91 M) chloro-functionalized ether-based electrolyte not only facilitates the formation of homogeneous dual halides-based SEI, but also effectively suppress aluminum corrosion at high voltage. Using this functionalized electrolyte, the K||graphite cell exhibits a stability of 700 cycles, the K||Prussian blue (PB) cell (4.3 V) delivers a stability of 500 cycles, and the PB||graphite full-cell reveals a long stability of 6000 cycles with a high average Coulombic efficiency of 99.98 %. Additionally, the PB||graphite full-cell can operate under a wide temperature range from -5 °C to 45 °C. This work highlights the positive impact of electrolyte functionalization on the electrochemical performance, providing a bright future of ether-based electrolytes application for long-lasting, wide-temperature, and high Coulombic efficiency PIBs and beyond.
Collapse
Affiliation(s)
- Yanyao Hu
- School of Physics and Electronics, Hunan University, 410082, Changsha, China
| | - Hongwei Fu
- School of Physics and Electronics, Hunan University, 410082, Changsha, China
| | - Yuanhui Geng
- School of Physics and Electronics, Hunan University, 410082, Changsha, China
| | - Xiaoteng Yang
- School of Physics and Electronics, Hunan University, 410082, Changsha, China
| | - Ling Fan
- School of Physics and Electronics, Hunan University, 410082, Changsha, China
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University, 410083, Changsha, China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, 410082, Changsha, China
| |
Collapse
|
4
|
Chen W, Zhang D, Fu H, Li J, Yu X, Zhou J, Lu B. Restructuring Electrolyte Solvation by a Partially and Weakly Solvating Cosolvent toward High-Performance Potassium-Ion Batteries. ACS NANO 2024; 18:12512-12523. [PMID: 38701404 DOI: 10.1021/acsnano.4c02108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Ether-based electrolytes are among the most important electrolytes for potassium-ion batteries (PIBs) due to their low polarization voltage and notable compatibility with potassium metal. However, their development is hindered by the strong binding between K+ and ether solvents, leading to [K+-solvent] cointercalation on graphite anodes. Herein, we propose a partially and weakly solvating electrolyte (PWSE) wherein the local solvation environment of the conventional 1,2-dimethoxyethane (DME)-based electrolyte is efficiently reconfigured by a partially and weakly solvating diethoxy methane (DEM) cosolvent. For the PWSE in particular, DEM partially participates in the solvation shell and weakens the chelation between K+ and DME, facilitating desolvation and suppressing cointercalation behavior. Notably, the solvation structure of the DME-based electrolyte is transformed into a more cation-anion-cluster-dominated structure, consequently promoting thin and stable solid-electrolyte interphase (SEI) generation. Benefiting from optimized solvation and SEI generation, the PWSE enables a graphite electrode with reversible K+ (de)intercalation (for over 1000 cycles) and K with reversible plating/stripping (the K||Cu cell with an average Coulombic efficiency of 98.72% over 400 cycles) and dendrite-free properties (the K||K cell operates over 1800 h). We demonstrate that rational PWSE design provides an approach to tailoring electrolytes toward stable PIBs.
Collapse
Affiliation(s)
- Weijie Chen
- School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Dianwei Zhang
- School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Hongwei Fu
- School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Jinfan Li
- School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Xinzhi Yu
- School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, Guangdong Province 511300, China
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University, Changsha 410082, P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
5
|
Wang Y, Yang X, Meng Y, Wen Z, Han R, Hu X, Sun B, Kang F, Li B, Zhou D, Wang C, Wang G. Fluorine Chemistry in Rechargeable Batteries: Challenges, Progress, and Perspectives. Chem Rev 2024; 124:3494-3589. [PMID: 38478597 DOI: 10.1021/acs.chemrev.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The renewable energy industry demands rechargeable batteries that can be manufactured at low cost using abundant resources while offering high energy density, good safety, wide operating temperature windows, and long lifespans. Utilizing fluorine chemistry to redesign battery configurations/components is considered a critical strategy to fulfill these requirements due to the natural abundance, robust bond strength, and extraordinary electronegativity of fluorine and the high free energy of fluoride formation, which enables the fluorinated components with cost effectiveness, nonflammability, and intrinsic stability. In particular, fluorinated materials and electrode|electrolyte interphases have been demonstrated to significantly affect reaction reversibility/kinetics, safety, and temperature tolerance of rechargeable batteries. However, the underlining principles governing material design and the mechanistic insights of interphases at the atomic level have been largely overlooked. This review covers a wide range of topics from the exploration of fluorine-containing electrodes, fluorinated electrolyte constituents, and other fluorinated battery components for metal-ion shuttle batteries to constructing fluoride-ion batteries, dual-ion batteries, and other new chemistries. In doing so, this review aims to provide a comprehensive understanding of the structure-property interactions, the features of fluorinated interphases, and cutting-edge techniques for elucidating the role of fluorine chemistry in rechargeable batteries. Further, we present current challenges and promising strategies for employing fluorine chemistry, aiming to advance the electrochemical performance, wide temperature operation, and safety attributes of rechargeable batteries.
Collapse
Affiliation(s)
- Yao Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Xu Yang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Yuefeng Meng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Zuxin Wen
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Ran Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Xia Hu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Feiyu Kang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Baohua Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Dong Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
6
|
Ruan D, Cui Z, Fan J, Wang D, Wu Y, Ren X. Recent advances in electrolyte molecular design for alkali metal batteries. Chem Sci 2024; 15:4238-4274. [PMID: 38516064 PMCID: PMC10952095 DOI: 10.1039/d3sc06650a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024] Open
Abstract
In response to societal developments and the growing demand for high-energy-density battery systems, alkali metal batteries (AMBs) have emerged as promising candidates for next-generation energy storage. Despite their high theoretical specific capacity and output voltage, AMBs face critical challenges related to high reactivity with electrolytes and unstable interphases. This review, from the perspective of electrolytes, analyzes AMB failure mechanisms, including interfacial side reactions, active materials loss, and metal dendrite growth. It then reviews recent advances in innovative electrolyte molecular designs, such as ether, ester, sulfone, sulfonamide, phosphate, and salt, aimed at overcoming the above-mentioned challenges. Finally, we propose the current molecular design principles and future promising directions that can help future precise electrolyte molecular design.
Collapse
Affiliation(s)
- Digen Ruan
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhuangzhuang Cui
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Jiajia Fan
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Dazhuang Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Yiying Wu
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Xiaodi Ren
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
7
|
Chen Z, Wang L, Zheng J, Huang Y, Huang H, Li C, Shao Y, Wu X, Rui X, Tao X, Yang H, Yu Y. Unraveling the Nucleation and Growth Mechanism of Potassium Metal on 3D Skeletons for Dendrite-Free Potassium Metal Batteries. ACS NANO 2024; 18:8496-8510. [PMID: 38456818 DOI: 10.1021/acsnano.4c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Designing three-dimensional (3D) porous carbonaceous skeletons for K metal is one of the most promising strategies to inhibit dendrite growth and enhance the cycle life of potassium metal batteries. However, the nucleation and growth mechanism of K metal on 3D skeletons remains ambiguous, and the rational design of suitable K hosts still presents a significant challenge. In this study, the relationships between the binding energy of skeletons toward K and the nucleation and growth of K are systematically studied. It is found that a high binding energy can effectively decrease the nucleation barrier, reduce nucleation volume, and prevent dendrite growth, which is applied to guide the design of 3D current collectors. Density functional theory calculations show that P-doped carbon (P-carbon) exhibits the highest binding energy toward K compared to other elements (e.g., N, O). As a result, the K@P-PMCFs (P-binding porous multichannel carbon nanofibers) symmetric cell demonstrates an excellent cycle stability of 2100 h with an overpotential of 85 mV in carbonate electrolytes. Similarly, the perylene-3,4,9,10-tetracarboxylic dianhydride || K@P-PMCFs cell achieves ultralong cycle stability (85% capacity retention after 1000 cycles). This work provides a valuable reference for the rational design of 3D current collectors.
Collapse
Affiliation(s)
- Zhihao Chen
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lifeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiale Zheng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yingshan Huang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijuan Huang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chunyang Li
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Shao
- Jiujiang DeFu Technology Co. Ltd., Jiujiang, Jiangxi 332000, China
| | - Xiaojun Wu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xinyong Tao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Hai Yang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
- National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Sun J, Duan L, Yuan Z, Li X, Yan D, Zhou X. Hydroxyl-Decorated Carbon Cloth with High Potassium Affinity Enables Stable Potassium Metal Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311314. [PMID: 38212283 DOI: 10.1002/smll.202311314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Highly anticipated potassium metal batteries possess abundant potassium reserves and high theoretical capacity but currently suffer from poor cycling stability as a result of dendritic growth and volume expansion. Here, carbon cloths modified with different functional groups treated with ethylene glycol, ethanolamine, and ethylenediamine are designed as 3D hosts, exhibiting different wettability to molten potassium. Among them, the hydroxyl-decorated carbon cloth with a high affinity for potassium can achieve molten potassium perfusion (K@EG-CC) within 3 s. By efficiently inducing the uniform deposition of metal potassium, buffing its volume expansion, and lowering local current density, the developed K@EG-CC anode alleviates the dendrite growth issue. The K@EG-CC||K@EG-CC symmetric battery can be cycled stably for 2100 h and has only a small voltage hysteresis of ≈93 mV at 0.5 mA cm-2 . Moreover, the high-voltage plateau, high energy density, and long cycle life of K metal full batteries can be realized with a low-cost KFeSO4 F@carbon nanotube cathode. This study provides a simple strategy to promote the commercial applications of potassium metal batteries.
Collapse
Affiliation(s)
- Jianlu Sun
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Liping Duan
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zeyu Yuan
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaodong Li
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Dongbo Yan
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaosi Zhou
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
9
|
Cheng L, Lan H, Gao Y, Dong S, Wang Y, Tang M, Sun X, Huang W, Wang H. Realizing Low-Temperature Graphite-based Rechargeable Potassium-Ion Full Battery. Angew Chem Int Ed Engl 2024; 63:e202315624. [PMID: 38151704 DOI: 10.1002/anie.202315624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
Graphite (Gr) has been considered as the most promising anode material for potassium-ion batteries (PIBs) commercialization due to its high theoretical specific capacity and low cost. However, Gr-based PIBs remain unfeasible at low temperature (LT), suffering from either poor kinetics based on conventional carbonate electrolytes or K+ -solvent co-intercalation issue based on typical ether electrolytes. Herein, a high-performance Gr-based LT rechargeable PIB is realized for the first time by electrolyte chemistry. Applying unidentate-ether-based molecule as the solvent dramatically weakens the K+ -solvent interactions and lowers corresponding K+ de-solvation kinetic barrier. Meanwhile, introduction of steric hindrance suppresses co-intercalation of K+ -solvent into Gr, greatly elevating operating voltage and cyclability of the full battery. Consequently, the as-prepared Gr||prepotassiated 3,4,9,10-perylene-tetracarboxylicacid-dianhydride (KPTCDA) full PIB can reversibly charge/discharge between -30 and 45 °C with a considerable energy density up to 197 Wh kgcathode -1 at -20 °C, hopefully facilitating the development of LT PIBs.
Collapse
Affiliation(s)
- Liwei Cheng
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Hao Lan
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Yong Gao
- School of Chemistry Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Shuai Dong
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Yingyu Wang
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Mengyao Tang
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Xinyu Sun
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Wenrui Huang
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Hua Wang
- School of Chemistry, Beihang University, Beijing, 100191, China
| |
Collapse
|
10
|
Li C, Xu Y, Deng W, Zhou Y, Guo X, Chen Y, Li R. Regulating Interlayer-Spacing of Vanadium Phosphates for High-Capacity and Long-Life Aqueous Iron-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305766. [PMID: 37771178 DOI: 10.1002/smll.202305766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/20/2023] [Indexed: 09/30/2023]
Abstract
Although the research on aqueous batteries employing metal as the anode is still mainly focused on the aqueous zinc-ion battery, aqueous iron-ion batteries are considered as promising aqueous batteries owing to the lower cost, higher specific capacity, and better stability. However, the sluggish Fe2+ (de)intercalation leads to unsatisfactory specific capacity and poor electrochemical stability, which makes it difficult to find cathode materials with excellent electrochemical properties. Herein, phenylamine (PA)-intercalated VOPO4 materials with expanded interlayer spacing are synthesized and applied successfully in aqueous iron-ion batteries. Owing to enough diffusion space from the expanded interlayer, which can boost fast Fe2+ diffusion, the aqueous iron-ion battery shows a high specific capacity of 170 mAh g-1 at 0.2 A g-1 , excellent rate performance, and cycle stability (96.2% capacity retention after 2200 cycles). This work provides a new direction for cathode material design in the development of aqueous iron-ion batteries.
Collapse
Affiliation(s)
- Chang Li
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yushuang Xu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wenjun Deng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yi Zhou
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xinyu Guo
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yan Chen
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Rui Li
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
11
|
Chen D, Zhu T, Shen S, Cao Y, Mao Y, Wang W, Bao E, Jiang H. In situ synthesis of VS 4/Ti 3C 2T x MXene composites as modified separators for lithium-sulfur battery. J Colloid Interface Sci 2023; 650:480-489. [PMID: 37421750 DOI: 10.1016/j.jcis.2023.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Lithium-sulfur (Li-S) batteries are regarded as highly prospective energy storage devices. However, problems such as low sulfur utilization, poor cycle performance, and insufficient rate capability hinder the commercial development of Li-S batteries. Three-dimensional (3D) structure materials have been applied to modify the separator of Li-S batteries to suppress the diffusion of lithium polysulfides (LiPSs) and inhibit the transmembrane diffusion of Li+. A vanadium sulfide/titanium carbide (VS4/Ti3C2Tx) MXene composite with a 3D conductive network structure has been synthesized in situ by a simple hydrothermal reaction. VS4 is uniformly loaded on the Ti3C2Tx nanosheets through vanadium-carbon(V-C) bonds, which effectively inhibits the self-stacking of Ti3C2Tx. The synergistic action of VS4 and Ti3C2Tx substantially reduces the shuttle of LiPSs, improves interfacial charge transfer, and boosts the kinetics of LiPSs conversion, consequently increasing the rate performance and cycle stability of the battery. The assembled battery has a specific discharge capacity of 657 mAhg-1 after 500 cycles at 1C, with a high capacity retention rate of 71%. The construction of VS4/Ti3C2Tx composite with a 3D conductive network structure provides a feasible strategy for the application of polar semiconductor materials in Li-S batteries. It also provides an effective solution for the design of high-performance Li-S batteries.
Collapse
Affiliation(s)
- Dong Chen
- Jiangsu Xinhua Semiconductor Technology Co., Ltd, China
| | - Tianjiao Zhu
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shen Shen
- Jiangsu Xinhua Semiconductor Technology Co., Ltd, China
| | - Yongan Cao
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yangyang Mao
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenju Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Encai Bao
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Hongfu Jiang
- Jiangsu Xinhua Semiconductor Technology Co., Ltd, China.
| |
Collapse
|
12
|
Zhou B, Li T, Hu A, Li B, Li R, Zhao C, Chen N, He M, Liu J, Long J. Scalable fabrication of ultra-fine lithiophilic nanoparticles encapsulated in soft buffered hosts for long-life anode-free Li 2S-based cells. NANOSCALE 2023; 15:15318-15327. [PMID: 37682066 DOI: 10.1039/d3nr03035k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Minimizing the amount of metallic lithium (Li) to zero excess to achieve an anode-free configuration can help achieve safer, higher energy density, and more economical Li metal batteries. Nevertheless, removal of excess Li creates challenges for long-term cycling performance in Li metal batteries due to the lithiophobic copper foils as anodic current collectors. Here, we improve the long-term cycling performance of anode-free Li metal batteries by modifying the anode-free configuration. Specifically, a lithiophilic Au nanoparticle-anchored reduced graphene oxide (Au/rGO) film is used as an anodic modifier to reduce the Li nucleation overpotential and inhibit dendrite growth by forming a lithiophilic LixAu alloy and solid solution, which is convincingly evidenced by density functional theory calculations and experimentally. Meanwhile, the flexible rGO film can also act as a buffer layer to endure the volume expansion during repeated Li plating/stripping processes. In addition, the Au/rGO film promotes a homogeneous distribution of the electric field over the entire anodic surface, thus ensuring a uniform deposition of Li during the electrodeposition process, which is convincingly evidenced by finite element simulations. As expected, the Li||Au/rGO-Li half-cell shows a highly stable long-term cycling performance for at least 500 cycles at 0.5 mA cm-2 and 0.5 mA h cm-2. A Li2S-based anode-free full cell allows achieving a stable operation life of up to 200 cycles with a capacity retention of 63.3%. This work provides a simple and scalable fabrication method to achieve anode-free Li2S-based cells with high anodic interface stability and a long lifetime.
Collapse
Affiliation(s)
- Bo Zhou
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China.
- Zhangjiajie Institute of Aeronautical Engineering, 1#, Xueyuan Rd, Wulingshan Avenue, Zhangjiajie 427000, Hunan, China
| | - Ting Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China.
| | - Anjun Hu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China.
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Baihai Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Runjing Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China.
| | - Chuan Zhao
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China.
| | - Nian Chen
- The First Affiliated Hospital, Department of Medical Cosmetic, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Miao He
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jing Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China.
| | - Jianping Long
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China.
| |
Collapse
|
13
|
Wen J, Fu H, Zhang D, Ma X, Wu L, Fan L, Yu X, Zhou J, Lu B. Nonfluorinated Antisolvents for Ultrastable Potassium-Ion Batteries. ACS NANO 2023; 17:16135-16146. [PMID: 37561922 DOI: 10.1021/acsnano.3c05165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A robust interface between the electrode and electrolyte is essential for the long-term cyclability of potassium-ion batteries (PIBs). An effective strategy for achieving this objective is to enhance the formation of an anion-derived, robust, and stable solid-electrolyte interphase (SEI) via electrolyte structure engineering. Herein, inspired by the application of antisolvents in recrystallization, we propose a nonfluorinated antisolvent strategy to optimize the electrolyte solvation structure. In contrast to the conventional localized superconcentrated electrolyte introducing high-fluorinated ether solvent, the anion-cation interaction is considerably enhanced by introducing a certain amount of nonfluorinated antisolvent into a phosphate-based electrolyte, thereby promoting the formation of a thin and stable SEI to ensure excellent cycling performance of PIBs. Consequently, the nonfluorinated antisolvent electrolyte exhibits superior stability in the K||graphite cell (negligible capacity degradation after 1000 cycles) and long-term cycling in the K||K symmetric cell (>2200 h), as well as considerably improved oxidation stability. This study demonstrates the feasibility of optimized electrolyte engineering with a nonfluorinated antisolvent, providing an approach to realizing superior electrochemical energy storage systems in PIBs.
Collapse
Affiliation(s)
- Jie Wen
- School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Hongwei Fu
- School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Dianwei Zhang
- School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Xuemei Ma
- School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Lichen Wu
- School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Ling Fan
- School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Xinzhi Yu
- School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, Guangdong Province 511300, China
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University, Changsha 410082, P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
14
|
Tu J, Tong H, Wang P, Wang D, Yang Y, Meng X, Hu L, Wang H, Chen Q. Octahedral/Tetrahedral Vacancies in Fe 3 O 4 as K-Storage Sites: A Case of Anti-Spinel Structure Material Serving as High-Performance Anodes for PIBs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301606. [PMID: 37086133 DOI: 10.1002/smll.202301606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/25/2023] [Indexed: 05/03/2023]
Abstract
Potassium-ion batteries (PIBs) have attracted more and more attention as viable alternatives to lithium-ion batteries (LIBs) due to the deficiency and uneven distribution of lithium resources. However, it is shown that potassium storage in some compounds through reaction or intercalation mechanisms cannot effectively improve the capacity and stability of anodes for PIBs. The unique anti-spinel structure of magnetite (Fe3 O4 ) is densely packed with thirty-two O atoms to form a face-centered cubic (fcc) unit cell with tetrahedral/octahedral vacancies in the O-closed packing structure, which can serve as K+ storage sites according to the density functional theory (DFT) calculation results. In this work, carbon-coated Fe3 O4 @C nanoparticles are prepared as high-performance anodes for PIBs, which exhibit high reversible capacity (638 mAh g-1 at 0.05 A g-1 ) and hyper stable cycling performance at ultrahigh current density (150 mAh g-1 after 9000 cycles at 10 A g-1 ). In situ XRD, ex-situ Fe K-edge XAFS, and DFT calculations confirm the storage of K+ in tetrahedral/octahedral vacancies.
Collapse
Affiliation(s)
- Jinwei Tu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science & Engineering University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Huigang Tong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science & Engineering University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Peichen Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science & Engineering University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Dongdong Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science & Engineering University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yang Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science & Engineering University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiangfu Meng
- The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Lin Hu
- The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Hui Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science & Engineering University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qianwang Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science & Engineering University of Science and Technology of China, Hefei, 230026, P. R. China
- The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
15
|
Feng Y, Lv Y, Fu H, Parekh M, Rao AM, Wang H, Tai X, Yi X, Lin Y, Zhou J, Lu B. Co-activation for enhanced K-ion storage in battery anodes. Natl Sci Rev 2023; 10:nwad118. [PMID: 37389185 PMCID: PMC10306327 DOI: 10.1093/nsr/nwad118] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 07/01/2023] Open
Abstract
The relative natural abundance of potassium and potentially high energy density has established potassium-ion batteries as a promising technology for future large-scale global energy storage. However, the anodes' low capacity and high discharge platform lead to low energy density, which impedes their rapid development. Herein, we present a possible co-activation mechanism between bismuth (Bi) and tin (Sn) that enhances K-ion storage in battery anodes. The co-activated Bi-Sn anode delivered a high capacity of 634 mAh g-1, with a discharge plateau as low as 0.35 V, and operated continuously for 500 cycles at a current density of 50 mA g-1, with a high Coulombic efficiency of 99.2%. This possible co-activation strategy for high potassium storage may be extended to other Na/Zn/Ca/Mg/Al ion battery technologies, thus providing insights into how to improve their energy storage ability.
Collapse
Affiliation(s)
- Yanhong Feng
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yawei Lv
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Hongwei Fu
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Mihir Parekh
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC 29643, USA
| | - Apparao M Rao
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC 29643, USA
| | - He Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiaolin Tai
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xianhui Yi
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha 410082, China
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| |
Collapse
|
16
|
Ding H, Wang J, Zhou J, Wang C, Lu B. Building electrode skins for ultra-stable potassium metal batteries. Nat Commun 2023; 14:2305. [PMID: 37085541 PMCID: PMC10121571 DOI: 10.1038/s41467-023-38065-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
In nature, the human body is a perfect self-organizing and self-repairing system, with the skin protecting the internal organs and tissues from external damages. In this work, inspired by the human skin, we design a metal electrode skin (MES) to protect the metal interface. MES can increase the flatness of electrode and uniform the electric field distribution, inhibiting the growth of dendrites. In detail, an artificial film made of fluorinated graphene oxide serves as the first protection layer. At molecular level, fluorine is released and in-situ formed a robust SEI as the second protection "skin" for metal anode. As a result, Cu@MES | | K asymmetric cell is able to achieve an unprecedented cycle life (over 1600 cycles). More impressively, the full cell of K@MES | | Prussian blue exhibits a long cycle lifespan over 5000 cycles. This work illustrates a mechanism for metal electrode protection and provides a strategy for the applying bionics in batteries.
Collapse
Affiliation(s)
- Hongbo Ding
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China
| | - Jue Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jiang Zhou
- School of Materials Science and Engineering and Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha, 410083, China
| | - Chengxin Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275, China.
| | - Bingan Lu
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China.
| |
Collapse
|
17
|
Zhou X, Wang Z, Wang Y, Du F, Li Y, Su Y, Wang M, Ma M, Yang G, Ding S. Graphene supported FeS 2 nanoparticles with sandwich structure as a promising anode for High-Rate Potassium-Ion batteries. J Colloid Interface Sci 2023; 636:73-82. [PMID: 36621130 DOI: 10.1016/j.jcis.2022.12.168] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/24/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
Pyrite FeS2 now emerges as a promising anode for potassium-ion batteries (PIBs) due to its low cost and high theoretical capacity. However, the significant volume expansion, low electrical conductivity, and the ambiguous mechanism related to potassium storage severely hinder its development for PIBs anodes. Herein, FeS2 nanostructures are skillfully dispersed on the graphene surface layer by layer (FeS2@C-rGO) to form a sandwich structure by using Fe-based metal organic framework (Fe-MOF) as precursors. The unique structural design can improve the transfer kinetics of K+ and effectively buffer the volume expansion during cycling, thereby enhancing the potassium storage performance. As a result, the FeS2@C-rGO delivers a high capacity of 550 mAh/g at a current density of 0.1 A/g. At a high rate of 2 A/g, the capacity can maintain 171 mAh/g even after 500 cycles. Moreover, the electrochemical reaction mechanism and potassium storage behavior are revealed by in-situ X-ray diffractionand density functional theory calculations. This work not only provides a novel insight into the structural design of electrode materials for high-performance PIBs, but also proposes a valuable understanding of the potassium storage mechanism of the FeS2-based anode.
Collapse
Affiliation(s)
- Xinyu Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ziwei Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yajun Wang
- Shaanxi Yulin Energy Group Energy and Chemical Research Institute Co., Ltd., Yulin 719000, China
| | - Fan Du
- Shaanxi Yulin Energy Group Energy and Chemical Research Institute Co., Ltd., Yulin 719000, China
| | - Yinhuan Li
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyue Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingming Ma
- Shaanxi Yulin Energy Group Energy and Chemical Research Institute Co., Ltd., Yulin 719000, China
| | - Guorui Yang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shujiang Ding
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
18
|
Cao J, Qian G, Lu X, Lu X. Advanced Composite Lithium Metal Anodes with 3D Frameworks: Preloading Strategies, Interfacial Optimization, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205653. [PMID: 36517114 DOI: 10.1002/smll.202205653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Lithium (Li) metal is regarded as the most promising anode candidate for next-generation rechargeable storage systems due to its impeccable capacity and the lowest electrochemical potential. Nevertheless, the irregular dendritic Li, unstable interface, and infinite volume change, which are the intrinsic drawbacks rooted in Li metal, give a seriously negative effect on the practical commercialization for Li metal batteries. Among the numerous optimization strategies, designing a 3D framework with high specific surface area and sufficient space is a convincing way out to ameliorate the above issues. Due to the Li-free property of the 3D framework, a Li preloading process is necessary before the 3D framework that matches with the electrolyte and cathode. How to achieve homogeneous integration with Li and 3D framework is essential to determine the electrochemical performance of Li metal anode. Herein, this review overviews the recent general fabrication methods of 3D framework-based composite Li metal anode, including electrodeposition, molten Li infusion, and pressure-derived fabrication, with the focus on the underlying mechanism, design criteria, and interfacial optimization. These results can give specific perspectives for future Li metal batteries with thin thickness, low N/P ratio, lean electrolyte, and high energy density (>350 Wh Kg-1 ).
Collapse
Affiliation(s)
- Jiaqi Cao
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Guoyu Qian
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Xueyi Lu
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Xia Lu
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| |
Collapse
|
19
|
Pandit B, Rondiya SR, Shaikh SF, Ubaidullah M, Amaral R, Dzade NY, Goda ES, Ul Hassan Sarwar Rana A, Singh Gill H, Ahmad T. Regulated electrochemical performance of manganese oxide cathode for potassium-ion batteries: A combined experimental and first-principles density functional theory (DFT) investigation. J Colloid Interface Sci 2023; 633:886-896. [PMID: 36495810 DOI: 10.1016/j.jcis.2022.11.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
Abstract
Potassium-ion batteries (KIBs) are promising energy storage devices owing to their low cost, environmental-friendly, and excellent K+ diffusion properties as a consequence of the small Stoke's radius. The evaluation of cathode materials for KIBs, which are perhaps the most favorable substitutes to lithium-ion batteries, is of exceptional importance. Manganese dioxide (α-MnO2) is distinguished by its tunnel structures and plenty of electroactive sites, which can host cations without causing fundamental structural breakdown. As a result of the satisfactory redox kinetics and diffusion pathways of K+ in the structure, α-MnO2 nanorods cathode prepared through hydrothermal method, reversibly stores K+ at a fast rate with a high capacity and stability. It has a first discharge capacity of 142 mAh/g at C/20, excellent rate execution up to 5C, and a long cycling performance with a demonstration of moderate capacity retention up to 100 cycles. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) simulations confirm that the K+ intercalation/deintercalation occurs through 0.46 K movement between MnIV/MnIII redox pairs. First-principles density functional theory (DFT) calculations predict a diffusion barrier of 0.31 eV for K+ through the 1D tunnel of α-MnO2 electrode, which is low enough to promote faster electrochemical kinetics. The nanorod structure of α-MnO2 facilitates electron conductive connection and provides a strong electrode-electrolyte interface for the cathode, resulting in a very consistent and prevalent execution cathode material for KIBs.
Collapse
Affiliation(s)
- Bidhan Pandit
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain.
| | - Sachin R Rondiya
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, UK; Department of Materials Engineering, Indian Institute of Science (IISc), Bengaluru 560012, Karnataka, India
| | - Shoyebmohamad F Shaikh
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohd Ubaidullah
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ricardo Amaral
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, United States
| | - Nelson Y Dzade
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, UK; Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, United States
| | - Emad S Goda
- Organic Nanomaterials Lab, Department of Chemistry, Hannam University, Daejeon 34054, Republic of Korea; Fire Protection Laboratory, National Institute of Standards, 136, Giza 12211, Egypt
| | - Abu Ul Hassan Sarwar Rana
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville VIC 3010, Australia
| | - Harjot Singh Gill
- University Centre for Research & Development, Mechanical Department, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
20
|
Jiang HW, Qin Y, Nie YM, Su ZF, Long YF, Wen Y, Su J. In Situ Preparation of High-Performance Silicon-Based Integrated Electrodes Using Cross-Linked Cyclodextrins. ACS OMEGA 2023; 8:5683-5691. [PMID: 36816701 PMCID: PMC9933195 DOI: 10.1021/acsomega.2c07182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The strategy of material modification for improving the stability of silicon electrodes is laborious and costly, while the conventional binders cannot withstand the repeated massive volume variability of silicon-based materials. Hence, there is a demand to settle the silicon-based materials' problems with green and straightforward solutions. This paper presents a high-performance silicon anode with a binder obtained by in situ thermal cross-linking of citric acid (CA) and β-cyclodextrin (β-CD) during the electrode preparation process. The Si electrode with a binder synthesized by the one-pot method shows excellent cycling performance. It maintains a specific capacity of 1696 mAh·g-1 after 200 cycles at a high current of 0.5 C. Furthermore, the carbonylation of β-CD to carbonyl-β-CD (c-β-CD) introduced better water solubility, and the c-β-CD can generate multidimensional connections with CA and Si, which significantly enhances the specific capacity to 1941 mAh·g-1 at 0.5 C. The results demonstrate that the prepared integrated electrode facilitates the formation of a stable and controllable solid electrolyte interface layer of Si and accommodates Si's repeated giant volume variations.
Collapse
Affiliation(s)
- Hao-wen Jiang
- School
of Chemistry and Chemical Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Yu Qin
- School
of Chemistry and Chemical Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Yi-ming Nie
- School
of Chemistry and Chemical Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Zhi-fang Su
- School
of Chemistry and Chemical Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Yun-fei Long
- School
of Chemistry and Chemical Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Yanxuan Wen
- School
of Chemistry and Chemical Engineering, Guangxi
University, Nanning, Guangxi 530004, China
- Guangxi
Key Laboratory of Processing for Non-ferrous Metallic and Featured
Materials, Guangxi University, Nanning 530004, China
| | - Jing Su
- School
of Chemistry and Chemical Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| |
Collapse
|
21
|
Ke R, Du L, Han B, Xu H, Meng H, Zeng H, Zheng Z, Deng Y. Biobased Self-Growing Approach toward Tailored, Integrated High-Performance Flexible Lithium-Ion Battery. NANO LETTERS 2022; 22:9327-9334. [PMID: 36449360 DOI: 10.1021/acs.nanolett.2c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Here we present an innovative, universal, scalable, and straightforward strategy for cultivating a resilient, flexible lithium-ion battery (LIB) based on the bacterial-based self-growing approach. The electrodes and separator layers are integrated intrinsically into one unity of sandwich bacterial cellulose integrated film (SBCIF), with various active material combinations and tailored mechanical properties. The flexible LIB thereof showcases prominent deformation tolerance and multistage foldability due to the unique self-generated wavy-like structure. The LTO|LFP (Li4Ti5O12 and LiFePO4) SBCIF-based flexible LIB demonstrates reliable long-term electrochemical stability with high flexibility, by exhibiting a high capacity retention (>95%) after 500 cycles at 1C/1C after experiencing a 10 000 bending/flattening treatment. The LTO|LFP SBCIF battery subjected to a simultaneous bending/flattening and cycling experiment shows an extraordinary capacity retention rate (>68%) after 200 cycles at 1C/1C. The biobased self-growing approach offers an exciting and promising pathway toward the tailored, integrated high-performance flexible LIBs.
Collapse
Affiliation(s)
- Ruohong Ke
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Leilei Du
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Bing Han
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- School of Advanced Materials, Peking University, Shenzhen 518055, China
| | - Hongli Xu
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Hong Meng
- School of Advanced Materials, Peking University, Shenzhen 518055, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yonghong Deng
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
22
|
Reasonable Intrinsic Microstructure of Microcrystalline Graphite for High-rate and Long-life Potassium-Ion Batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Liu X, Sun Y, Tong Y, Li H. Unique Spindle-Like Bismuth-Based Composite toward Ultrafast Potassium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204045. [PMID: 36047969 DOI: 10.1002/smll.202204045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Bismuth (Bi)-based materials have attracted great attention as anodes in potassium ion batteries (PIBs) for their high theoretical capacity and suitable voltage range. Herein, the authors report a unique spindle-like structured Bi@N-doped carbon composite (SPB@NC) consisting of interconnected nano-Bi coated heteroatom-doped hard carbon layer via an interesting in situ carbon thermal reduction method. The special interconnected Bi nanoparticles gradually form porous structure with ample inner voids for accommodating volume variations while the N-doped carbon layer not only keeps the electrode stable, but also contributes to rapid electron/ion transfer. As a result, such a robust framework endows SPB@NC fast potassium storage with outstanding capacity of 276.5 mAh g-1 at 30 A g-1 (i.e., 1 min for discharge/charge) and durable cycling performance of 299.3 mAh g-1 at 5 A g-1 after 2000 cycles. Notably, a full cell assembled with potassium vanadate cathode is promising for practical applications. A series of ex situ techniques reveals the in-depth potassium storage mechanism and kinetics reactions. This work illuminates helpful insights into Bi-based anodes for PIBs.
Collapse
Affiliation(s)
- Xi Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Yingjuan Sun
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Yong Tong
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Hongyan Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
24
|
Hao Z, Shi X, Zhu W, Zhang X, Yang Z, Li L, Hu Z, Zhao Q, Chou S. Bismuth nanoparticles embedded in a carbon skeleton as an anode for high power density potassium-ion batteries. Chem Sci 2022; 13:11376-11381. [PMID: 36320573 PMCID: PMC9533415 DOI: 10.1039/d2sc04217g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Bismuth is a promising anode for potassium-ion batteries (PIBs) due to its suitable redox potential, large theoretical capacity, and superior electronic conductivity. Herein, we report a Bi@C (Bi nanoparticles uniformly embedded in a carbon skeleton) composite anode which delivers a superior rate performance of 244.3 mA h g-1 at 10.0 A g-1 and a reversible capacity of 255.6 mA h g-1 after 200 cycles in an optimized ether-based electrolyte. The outstanding electrochemical performance results from its robust structural design with fast reaction kinetics, which are confirmed by both experimental characterization studies and first-principles calculations. The reversible potassium storage mechanism of the Bi@C composite was also investigated by in situ X-ray diffraction. In addition, the full PIB cell assembled with a Bi@C composite anode and nickel-based Prussian blue analogue cathode exhibits high discharge voltage (3.18 V), remarkable power density (>10 kW kg-1), and an excellent capacity retention of 87.8% after 100 cycles. The results demonstrate that the PIBs with Bi anodes are promising candidates for power-type energy storage devices.
Collapse
Affiliation(s)
- Zhiqiang Hao
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 China
| | - Xiaoyan Shi
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 China
| | - Wenqing Zhu
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 China
| | - Xiaoyue Zhang
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 China
| | - Zhuo Yang
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 China
| | - Lin Li
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 China
| | - Zhe Hu
- College of Materials Science and Engineering, Shenzhen University Shenzhen 518055 China
| | - Qing Zhao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University Tianjin 300071 China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 China
| |
Collapse
|
25
|
Guo W, Geng C, Sun Z, Jiang J, Ju Z. Microstructure-controlled amorphous carbon anode via pre-oxidation engineering for superior potassium-ion storage. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Chen J, Yu D, Zhu Q, Liu X, Wang J, Chen W, Ji R, Qiu K, Guo L, Wang H. Low-Temperature High-Areal-Capacity Rechargeable Potassium-Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205678. [PMID: 35853459 DOI: 10.1002/adma.202205678] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Indexed: 06/15/2023]
Abstract
High mass loading and high areal capacity are key metrics for commercial batteries, which are usually limited by the large charge-transfer impedance in thick electrodes. This can be kinetically deteriorated under low temperatures, and the realization of high-areal-capacity batteries in cold climates remains challenging. Herein, a low-temperature high-areal-capacity rechargeable potassium-tellurium (K-Te) battery is successfully fabricated by knocking down the kinetic barriers in the cathode and pairing it with stable anode. Specifically, the in situ electrochemical self-reconstruction of amorphous Cu1.4 Te in a thick electrode is realized simply by coating micro-sized Te on the Cu collector, significantly improving its ionic conductivity. Meanwhile, the optimized electrolyte enables fast ion transportation and a stable K-metal anode at a large current density and areal capacity. Consequently, this K-Te battery achieves a high areal capacity of 1.25 mAh cm-2 at -40 °C, which greatly exceeds those of most reported works. This work highlights the significance of electrode design and electrolyte engineering for high areal capacity at low temperatures, and represents a critical step toward practical applications of low-temperature batteries.
Collapse
Affiliation(s)
- Jiangchun Chen
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Dandan Yu
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, China
| | - Qiaonan Zhu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Xiaozhi Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiawei Wang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Runa Ji
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Keliang Qiu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Lin Guo
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Hua Wang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
27
|
Li J, Hu Y, Xie H, Peng J, Fan L, Zhou J, Lu B. Weak Cation-Solvent Interactions in Ether-Based Electrolytes Stabilizing Potassium-ion Batteries. Angew Chem Int Ed Engl 2022; 61:e202208291. [PMID: 35713155 DOI: 10.1002/anie.202208291] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 11/10/2022]
Abstract
Conventional ether-based electrolytes exhibited a low polarization voltage in potassium-ion batteries, yet suffered from ion-solvent co-intercalation phenomena in a graphite anode, inferior potassium-metal performance, and limited oxidation stability. Here, we reveal that weakening the cation-solvent interactions could suppress the co-intercalation behaviour, enhance the potassium-metal performance, and improve the oxidation stability. Consequently, the graphite anode exhibits K+ intercalation behaviour (K||graphite cell operates 200 cycles with 86.6 % capacity retention), the potassium metal shows highly stable plating/stripping (K||Cu cell delivers 550 cycles with average Coulombic efficiency of 98.9 %) and dendrite-free (symmetric K||K cell operates over 1400 hours) properties, and the electrolyte exhibits high oxidation stability up to 4.4 V. The ion-solvent interaction tuning strategy provides a promising method to develop high-performance electrolytes and beyond.
Collapse
Affiliation(s)
- Jinfan Li
- School of Physics and Electronics, Hunan University, Changsha, P. R. China
| | - Yanyao Hu
- School of Physics and Electronics, Hunan University, Changsha, P. R. China
| | - Huabin Xie
- School of Physics and Electronics, Hunan University, Changsha, P. R. China
| | - Jun Peng
- School of Physics and Electronics, Hunan University, Changsha, P. R. China
| | - Ling Fan
- School of Physics and Electronics, Hunan University, Changsha, P. R. China
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University, Changsha, P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, P. R. China
| |
Collapse
|
28
|
Xiang H, Liu X, Deng N, Cheng B, Kang W. A Novel EDOT/F Co-doped PMIA Nanofiber Membrane as Separator for High-Performance Lithium-Sulfur Battery. Chem Asian J 2022; 17:e202200669. [PMID: 35924719 DOI: 10.1002/asia.202200669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/02/2022] [Indexed: 11/07/2022]
Abstract
In this study, a novel fluorine-containing emulsion and 3, 4-ethylene dioxyethiophene (EDOT) co-doped poly-m-phenyleneisophthalamide (PMIA) nanofiber membrane (EDOT/F-PMIA),as the separator of lithium-sulfur battery, was tactfully prepared via electrospinning. The multi-scale EDOT/F-PMIA nanofiber membrane can be served as the matrix to fabricate gel polymer electrolyte (GPE).Furthermore,under the influence of fluorine-containing emulsion and EDOT, the PMIA-based GPE possessed excellent thermostability, eminent mechanical property and well-distributed lithium-ions flux. Especially, the pore size of the nanofiber membrane decreased after adding the fluorine-containing emulsion and EDOT. And the element S and O in EDOT with lone pair electrons were capable of binding with the lithium polysulfides, which was conducive to inhibiting the "shuttle effect" of lithium polysulfides by combining the physical confinement and chemical binding.Therefore, the lithium-sulfur battery assembled with the EDOT/F-PMIA separator exhibited excellent electrochemical performance, which delivered a high initial capacity of 851.9 mAh g -1 and maintained a discharge capacity of 641.1 mAh g -1 after 200 cycles with a capacity retention rate of 75.2% at 0.5 C.
Collapse
Affiliation(s)
- Hengying Xiang
- TJPU: Tiangong University, School of Textile Science and Engineering, CHINA
| | - Xia Liu
- Tiangong University, School of Textile Science and Engineering, CHINA
| | - Nanping Deng
- Tiangong University, School of Textile Science and Engineering, CHINA
| | - Bowen Cheng
- Tiangong University, School of Textile Science and Engineering, CHINA
| | - Weimin Kang
- Tiangong University, 399 Binshui West Road, Xiqing District, Tianjin, CHINA
| |
Collapse
|
29
|
Sun H, Wang W, Zeng L, Liu C, Liang S, Xie W, Gao S, Liu S, Wang X. High-capacity and ultrastable lithium storage in SnSe 2-SnO 2@NC microbelts enabled by heterostructures. Dalton Trans 2022; 51:12071-12079. [PMID: 35880698 DOI: 10.1039/d2dt01951e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ingenious design of high-performance tin-based lithium-ion batteries (LIBs) is challenging due to their poor conductivity and drastic volume change during continuous lithiation/delithiation cycles. Herein, we present a strategy to confine heterostructured SnSe2-SnO2 nanoparticles into macroscopic nitrogen-doped carbon microbelts (SnSe2-SnO2@NC) as anode materials for LIBs. The composites exhibit an excellent specific capacity of 436.3 mA h g-1 even at 20 A g-1 and an ultrastable specific capacity of 632.7 mA h g-1 after 2800 cycles at 5 A g-1. Density Functional Theory (DFT) calculations reveal that metallic SnSe2-SnO2 heterostructures endow the lithium atoms at the interface with high adsorption energy, which promotes the anchoring of Li atoms, and enhances the electrical conductivity of the anode materials. This demonstrates the superior Li+ storage performance of the SnSe2-SnO2@NC microbelts as anode materials.
Collapse
Affiliation(s)
- Haibin Sun
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Wenjie Wang
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Lianduan Zeng
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Congcong Liu
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Shuangshuang Liang
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Wenhe Xie
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Shasha Gao
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Shenghong Liu
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Xiao Wang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
30
|
Li H, Liu M, Zhao C, Le Z, Wei W, Nie P, Hou M, Xu T, Gao S, Wang L, Chang L. Highly Dispersed Antimony-Bismuth Alloy Encapsulated in Carbon Nanofibers for Ultrastable K-Ion Batteries. J Phys Chem Lett 2022; 13:6587-6596. [PMID: 35833749 DOI: 10.1021/acs.jpclett.2c01032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antimony-based alloys have appealed to an ever-increasing interest for potassium ion storage due to their high theoretical capacity and safe voltage. However, sluggish kinetics and the large radius of K+ lead to limited rate performance and severe capacity fading. In this Letter, highly dispersed antimony-bismuth alloy nanoparticles confined in carbon fibers are fabricated through an electrospinning technology followed by heat treatment. The BiSb nanoparticles are uniformly confined into the carbon fibers, which facilitate rapid electron transport and inhibit the volume change during cycling owing to the synergistic effect of the BiSb alloy and carbon confinement engineering. Furthermore, the effect of a potassium bis(fluorosulfonyl)imide (KFSI) electrolyte with different concentrations has been investigated. Theoretical calculation demonstrates that the incorporation of Bi metal is favorable for potassium adsorption. The combination of delicate nanofiber morphology and electrolyte chemistry endows the fiber composite with an improved reversible capacity of 274.4 mAh g-1, promising rate capability, and cycling stability upon 500 cycles.
Collapse
Affiliation(s)
- Huiming Li
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education & College of Chemistry, Jilin Normal University, Changchun 130103, China
| | - Meiqi Liu
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education & College of Chemistry, Jilin Normal University, Changchun 130103, China
| | - Chunsheng Zhao
- Songyuan Vocational Technical College, Songyuan 138001, China
| | - Zaiyuan Le
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Wenxian Wei
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education & College of Chemistry, Jilin Normal University, Changchun 130103, China
| | - Ping Nie
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education & College of Chemistry, Jilin Normal University, Changchun 130103, China
| | - Meiqi Hou
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education & College of Chemistry, Jilin Normal University, Changchun 130103, China
| | - Tianhao Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education & College of Chemistry, Jilin Normal University, Changchun 130103, China
| | - Shuang Gao
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education & College of Chemistry, Jilin Normal University, Changchun 130103, China
| | - Limin Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Limin Chang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education & College of Chemistry, Jilin Normal University, Changchun 130103, China
| |
Collapse
|
31
|
Hu Y, Fan L, Rao AM, Yu W, Zhuoma C, Feng Y, Qin Z, Zhou J, Lu B. Cyclic-anion salt for high-voltage stable potassium metal batteries. Natl Sci Rev 2022; 9:nwac134. [PMID: 36196119 PMCID: PMC9522405 DOI: 10.1093/nsr/nwac134] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Electrolyte anions are critical for achieving high-voltage stable potassium-metal batteries (PMBs). However, the common anions cannot simultaneously prevent the formation of ‘dead K’ and the corrosion of Al current collector, resulting in poor cycling stability. Here, we demonstrate cyclic anion of hexafluoropropane-1,3-disulfonimide-based electrolytes that can mitigate the ‘dead K’ and remarkably enhance the high-voltage stability of PMBs. Particularly, even using low salt concentration (0.8 M) and additive-free carbonate-based electrolytes, the PMBs with a high-voltage polyanion cathode (4.4 V) also exhibit excellent cycling stability of 200 cycles with a good capacity retention of 83%. This noticeable electrochemical performance is due to the highly efficient passivation ability of the cyclic anions on both anode and cathode surfaces. This cyclic-anion-based electrolyte design strategy is also suitable for lithium and sodium-metal battery technologies.
Collapse
Affiliation(s)
- Yanyao Hu
- School of Physics and Electronics, Hunan University , Changsha 410083, China
| | - Ling Fan
- School of Physics and Electronics, Hunan University , Changsha 410083, China
| | - Apparao M Rao
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University , Clemson, SC 29634, USA
| | - Weijian Yu
- School of Physics and Electronics, Hunan University , Changsha 410083, China
| | - Caixiang Zhuoma
- School of Physics and Electronics, Hunan University , Changsha 410083, China
| | - Yanhong Feng
- School of Physics and Electronics, Hunan University , Changsha 410083, China
| | - Zhihui Qin
- School of Physics and Electronics, Hunan University , Changsha 410083, China
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University , Changsha 410083, China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University , Changsha 410083, China
| |
Collapse
|
32
|
Li J, Hu Y, Xie H, Peng J, Fan L, Zhou J, Lu B. Weak Cation–solvent Interactions in Ether‐based Electrolytes Stabilizing Potassium‐ion Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinfan Li
- Hunan University School of Physics and Electronics CHINA
| | - Yanyao Hu
- Hunan University School of Physics and Electronics CHINA
| | - Huabin Xie
- Hunan University School of Physics and Electronics CHINA
| | - Jun Peng
- Hunan University School of Physics and Electronics CHINA
| | - Ling Fan
- Hunan University School of Physics and Electronics Lushao Road 410083 Changsha CHINA
| | - Jiang Zhou
- Central South University School of Materials Science and Engineering CHINA
| | - Bingan Lu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education and State Key Laboratory for Chemo/Biosensing and Chemometrics Physics and electonics South Lushan Road 410082 Changsha CHINA
| |
Collapse
|
33
|
Gu Y, Ru Pei Y, Zhao M, Cheng Yang C, Jiang Q. Sn-, Sb- and Bi-Based Anodes for Potassium Ion Battery. CHEM REC 2022; 22:e202200098. [PMID: 35686885 DOI: 10.1002/tcr.202200098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Indexed: 01/20/2023]
Abstract
Owing to the abundant resources of potassium resources, potassium ion batteries (PIBs) hold great potential in various energy storage devices. However, the poor lifespan of PIBs anodes limit their merchant applications. The exploitation of anode materials with high performance is one of the critical factors to the development of PIBs. Metallic Sn-, Sb-, and Bi-based materials, show promising future thanks to their high theoretical capacities and safe working voltage. However, the rapid capacity decay caused by the large K+ is still a pivotal challenge. In this review, recent progresses on alloying anodes were summarized. Schemes, such as ultra-small nanoparticles, hetero-element doping, and electrolyte optimization are effective strategies to improve their electrochemical properties. This review provides an outlook on the nanostructures and their synthesis methods for the alloying-type materials, and will stimulate their intensive study for practical application in the near future.
Collapse
Affiliation(s)
- Yan Gu
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Ya Ru Pei
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Ming Zhao
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Chun Cheng Yang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
34
|
Nathan MGT, Yu H, Kim G, Kim J, Cho JS, Kim J, Kim J. Recent Advances in Layered Metal-Oxide Cathodes for Application in Potassium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105882. [PMID: 35478355 PMCID: PMC9218662 DOI: 10.1002/advs.202105882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/18/2022] [Indexed: 05/13/2023]
Abstract
To meet future energy demands, currently, dominant lithium-ion batteries (LIBs) must be supported by abundant and cost-effective alternative battery materials. Potassium-ion batteries (KIBs) are promising alternatives to LIBs because KIB materials are abundant and because KIBs exhibit intercalation chemistry like LIBs and comparable energy densities. In pursuit of superior batteries, designing and developing highly efficient electrode materials are indispensable for meeting the requirements of large-scale energy storage applications. Despite using graphite anodes in KIBs instead of in sodium-ion batteries (NIBs), developing suitable KIB cathodes is extremely challenging and has attracted considerable research attention. Among the various cathode materials, layered metal oxides have attracted considerable interest owing to their tunable stoichiometry, high specific capacity, and structural stability. Therefore, the recent progress in layered metal-oxide cathodes is comprehensively reviewed for application to KIBs and the fundamental material design, classification, phase transitions, preparation techniques, and corresponding electrochemical performance of KIBs are presented. Furthermore, the challenges and opportunities associated with developing layered oxide cathode materials are presented for practical application to KIBs.
Collapse
Affiliation(s)
| | - Hakgyoon Yu
- Department of Energy Convergence EngineeringCheongju UniversityCheongjuChungbuk28503Republic of Korea
| | - Guk‐Tae Kim
- Department of Energy Convergence EngineeringCheongju UniversityCheongjuChungbuk28503Republic of Korea
| | - Jin‐Hee Kim
- Department of Biomedical Laboratory ScienceCollege of Health Science Cheongju UniversityCheongjuChungbuk28503Republic of Korea
| | - Jung Sang Cho
- Department of Engineering ChemistryChungbuk National UniversityChungbuk28644Republic of Korea
| | - Jeha Kim
- Department of Energy Convergence EngineeringCheongju UniversityCheongjuChungbuk28503Republic of Korea
| | - Jae‐Kwang Kim
- Department of Energy Convergence EngineeringCheongju UniversityCheongjuChungbuk28503Republic of Korea
| |
Collapse
|
35
|
Shen D, Rao AM, Zhou J, Lu B. High-Potential Cathodes with Nitrogen Active Centres for Quasi-Solid Proton-Ion Batteries. Angew Chem Int Ed Engl 2022; 61:e202201972. [PMID: 35294100 DOI: 10.1002/anie.202201972] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Indexed: 01/09/2023]
Abstract
Although proton-ion batteries have received considerable attention owing to their reliability, safety, toxin-free nature, and low cost, their development remains in the early stages because of lacking proper electrolytes and cathodes for facilitating a high output voltage and stable cycle performance. We present a novel cathode based on active nitrogen centre, which provides a flat discharge plateau at 1 V with a capacity of 115 mAh g-1 and excellent stability. Moreover, a quasi-solid electrolyte was developed to overcome the issue of corrosion, broaden the potential window of the electrolyte, and prevent the active material from dissolving. While using the unique as-developed electrolyte, the newly designed cathode retained 89.67 % of its original capacity after 2000 cycles. Finally, we demonstrated the excellent cycle performance of the as-developed metal-free, flexible, soft-packed battery. Notably, even when a portion of the battery was cut off, it continued to function normally.
Collapse
Affiliation(s)
- Dongyang Shen
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Apparao M Rao
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC, USA
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China.,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, P. R. China.,Hunan Provincial Key Laboratory of Multi-electron based Energy Storage Devices, Hunan University, Changsha, China
| |
Collapse
|
36
|
Manarin E, Corsini F, Trano S, Fagiolari L, Amici J, Francia C, Bodoardo S, Turri S, Bella F, Griffini G. Cardanol-Derived Epoxy Resins as Biobased Gel Polymer Electrolytes for Potassium-Ion Conduction. ACS APPLIED POLYMER MATERIALS 2022; 4:3855-3865. [PMID: 35601462 PMCID: PMC9112699 DOI: 10.1021/acsapm.2c00335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/20/2022] [Indexed: 05/04/2023]
Abstract
In this study, biobased gel polymer electrolyte (GPE) membranes were developed via the esterification reaction of a cardanol-based epoxy resin with glutaric anhydride, succinic anhydride, and hexahydro-4-methylphthalic anhydride. Nonisothermal differential scanning calorimetry was used to assess the optimal curing time and temperature of the formulations, evidencing a process activation energy of ∼65-70 kJ mol-1. A rubbery plateau modulus of 0.65-0.78 MPa and a crosslinking density of 2 × 10-4 mol cm-3 were found through dynamic mechanical analysis. Based on these characteristics, such biobased membranes were tested for applicability as GPEs for potassium-ion batteries (KIBs), showing an excellent electrochemical stability toward potassium metal in the -0.2-5 V voltage range and suitable ionic conductivity (10-3 S cm-1) at room temperature. This study demonstrates the practical viability of these biobased materials as efficient GPEs for the fabrication of KIBs, paving the path to increased sustainability in the field of next-generation battery technologies.
Collapse
Affiliation(s)
- Eleonora Manarin
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Francesca Corsini
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Sabrina Trano
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Lucia Fagiolari
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Julia Amici
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Carlotta Francia
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Silvia Bodoardo
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Stefano Turri
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Federico Bella
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Gianmarco Griffini
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
37
|
High crystallinity potassium nickel hexacyanoferrate nanoparticles synthesized by improved precipitation way as cathodes for potassium-ion batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Luo Y, Ouyang Z, Lin Y, Song X, He S, Zhao J, Xiao Y, Lei S, Yuan C, Cheng B. Revealing the synergistic mechanism of multiply nanostructured V 2O 3 hollow nanospheres integrated with doped N, Ni heteroatoms, in-situ grown carbon nanotubes and coated carbon nanolayers for the enhancement of lithium-sulfur batteries. J Colloid Interface Sci 2022; 612:760-771. [PMID: 35030347 DOI: 10.1016/j.jcis.2021.12.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022]
Abstract
Lithium sulfur (Li-S) batteries are regarded as one of the most promising future energy storage candidates on account of high theoretical specific capacity of 1675 mAh g-1 and energy density of 2600 Wh kg-1. However, their practical application is seriously hindered due to the poor conductivity and volume expansion of sulfur, the weak redox kinetics of lithium polysulfide (LPS), and the severe shuttle effect of LPS. Herein, V2O3@N,Ni-C nanostructures, multiply integrated with zero-dimensional (0D) V2O3 nanoparticles, 1D carbon nanotubes, 2D carbon coating layers and graphene, 3D hollow spheres, and doped N and Ni heteroatoms, were synthesized via a solvothermal method followed by chemical vapor deposition. After being used as a modifier for traditional commercial separator of Li-S batteries, the shuttle effect of LPS can be effectively suppressed owing to the abundant active physical and chemical adsorption sites derived from large specific surface area, rich porosity, and tremendous polarity of the V2O3 nanoparticles with multiple secondary nanostructure integration. Meanwhile, the transfer of Li+ ions and electrons can be effectively enhanced by the highly conductive 2D carbon network, and the kinetics of redox reaction (Li2Sn ↔ Li2S) can be accelerated by the doped N and Ni heteroatoms, leading to a synergistic promotion on the reutilization of the adsorbed LPS. Additionally, the unique 3D hollow structure can not only enhance the penetration of electrolyte, but also buffer the volume expansion of sulfur to some extent. Therefore, the rate capacity and cycling performance can be significantly enhanced by the multifunction synergism of adsorption, conductivity, catalysis, and volume buffering. An initial discharge capacity of 1590.4 mAh g-1can be achieved at 0.1C, and the discharge capacity of 803.5 mAh g-1can be still exhibited when increasing to 2C. After a long period of 500 cycles, additionally, the discharge specific capacity of 1142.2 mAh g-1 and capacity attenuation of 0.0617% per cycle can be obtained at 1C.
Collapse
Affiliation(s)
- Yahui Luo
- School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, PR China
| | - Zhiyong Ouyang
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi 330031, PR China
| | - Yang Lin
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi 330031, PR China
| | - Xueyou Song
- School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, PR China
| | - Song He
- School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, PR China
| | - Jie Zhao
- School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, PR China
| | - Yanhe Xiao
- School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, PR China
| | - Shuijin Lei
- School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, PR China
| | - Cailei Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, Jiangxi 330022, China
| | - Baochang Cheng
- School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, PR China; Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi 330031, PR China.
| |
Collapse
|
39
|
Luo W, Feng Y, Shen D, Zhou J, Gao C, Lu B. Engineering Ion Diffusion by CoS@SnS Heterojunction for Ultrahigh-Rate and Stable Potassium Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16379-16385. [PMID: 35353493 DOI: 10.1021/acsami.2c02679] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transitional metal sulfides (TMSs) are considered as promising anode candidates for potassium storage because of their ultrahigh theoretical capacity and low cost. However, TMSs suffer from low electronic, ionic conductivity and significant volume expansion during potassium ion intercalation. Here, we construct a carbon-coated CoS@SnS heterojunction which effectively alleviates the volume change and improves the electrochemical performance of TMSs. The mechanism analysis and density functional theory (DFT) calculation prove the acceleration of K-ion diffusion by the built-in electric field in the CoS@SnS heterojunction. Specifically, the as-prepared material maintains 81% of its original capacity after 2000 cycles at 500 mA g-1. In addition, when the current density is set at 2000 mA g-1, it can still deliver a high discharge capacity of 210 mAh g-1. Moreover, the full cell can deliver a high capacity of 400 mAh g-1 even after 150 cycles when paired with a perylene-3,4,9,10-tetracarboxydiimide (PTCDI) cathode. This work is expected to provide a material design idea dealing with the unstable and low rate capability problems of potassium-ion batteries.
Collapse
Affiliation(s)
- Wendi Luo
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yanhong Feng
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Dongyang Shen
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| | - Caitian Gao
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha 410082, China
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
- Hunan Provincial Key Laboratory of Multi-electron based Energy Storage Devices, Hunan University, Changsha 410082, China
| |
Collapse
|
40
|
Guo Y, Wang W, Lei H, Wang M, Jiao S. Alternate Storage of Opposite Charges in Multisites for High-Energy-Density Al-MOF Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110109. [PMID: 35112402 DOI: 10.1002/adma.202110109] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The limited active sites of cathode materials in aluminum-ion batteries restrict the storage of more large-sized Al-complex ions, leading to a low celling of theoretical capacity. To make the utmost of active sites, an alternate storage mechanism of opposite charges (AlCl4 - anions and AlCl2 + cations) in multisites is proposed herein to achieve an ultrahigh capacity in Al-metal-organic framework (MOF) battery. The bipolar ligands (oxidized from 18π to 16π electrons and reduced from 18π to 20π electrons in a planar cyclic conjugated system) can alternately uptake and release AlCl4 - anions and AlCl2 + cations in charge/discharge processes, which can double the capacity of unipolar ligands. Moreover, the high-density active Cu sites (Cu nodes) in the 2D Cu-based MOF can also store AlCl2 + cations for a higher capacity. The rigid and extended MOF structure can address the problems of high solubility and poor stability of small organic molecules. As a result, three-step redox reactions with two-electron transfer in each step are demonstrated in charge/discharge processes, achieving high reversible capacity (184 mAh g-1 ) and energy density (177 Wh kg-1 ) of the optimized cathode in an Al-MOF battery. The findings provide a new insight for the rational design of stable high-energy Al-MOF batteries.
Collapse
Affiliation(s)
- Yuxi Guo
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wei Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Haiping Lei
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
41
|
Shen D, Rao AM, Zhou J, Lu B. High‐Potential Cathodes with Nitrogen Active Centres for Quasi‐Solid Proton‐Ion Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Dongyang Shen
- School of Physics and Electronics Hunan University Changsha 410082 P. R. China
| | - Apparao M. Rao
- Department of Physics and Astronomy Clemson Nanomaterials Institute Clemson University Clemson, SC USA
| | - Jiang Zhou
- School of Materials Science and Engineering Central South University Changsha 410083 P. R. China
| | - Bingan Lu
- School of Physics and Electronics Hunan University Changsha 410082 P. R. China
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body Hunan University Changsha 410082 P. R. China
- Hunan Provincial Key Laboratory of Multi-electron based Energy Storage Devices Hunan University Changsha China
| |
Collapse
|
42
|
Cheng C, Ding M, Yan T, Jiang J, Mao J, Feng X, Chan TS, Li N, Zhang L. Anionic Redox Activities Boosted by Aluminum Doping in Layered Sodium-Ion Battery Electrode. SMALL METHODS 2022; 6:e2101524. [PMID: 35084117 DOI: 10.1002/smtd.202101524] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Sodium-ion batteries (SIBs) have attracted widespread attention for large-scale energy storage, but one major drawback, i.e., the limited capacity of cathode materials, impedes their practical applications. Oxygen redox reactions in layered oxide cathodes are proven to contribute additionally high specific capacity, while such cathodes often suffer from irreversible structural transitions, causing serious capacity fading and voltage decay upon cycling, and the formation process of the oxidized oxygen species remains elusive. Herein, a series of Al-doped P2-type Na0.6 Ni0.3 Mn0.7 O2 cathode materials for SIBs are reported and the corresponding charge compensation mechanisms are investigated qualitatively and quantitatively. The combined analyses reveal that Al doping boosts the reversible oxygen redox reactions through the reductive coupling reactions between orphaned O 2p states in NaOAl local configurations and Ni4+ ions, as directly evidenced by X-ray absorption fine structure results. Additionally, Al doping also induces an increased interlayer spacing and inhibits the unfavorable P2 to O2 phase transition upon desodiation/sodiation, which is common in P2-type Mn-based cathode materials, leading to the great improvement in capacity retention and rate capability. This work provides deeper insights into the development of structurally stable and high-capacity layered cathode materials for SIBs with anion-cation synergetic contributions.
Collapse
Affiliation(s)
- Chen Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Manling Ding
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Tianran Yan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jinsen Jiang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jing Mao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xuefei Feng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Ning Li
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, China
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Liang Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
43
|
Cao J, Xie Y, Yang Y, Wang X, Li W, Zhang Q, Ma S, Cheng S, Lu B. Achieving Uniform Li Plating/Stripping at Ultrahigh Currents and Capacities by Optimizing 3D Nucleation Sites and Li 2 Se-Enriched SEI. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104689. [PMID: 35072352 PMCID: PMC8948610 DOI: 10.1002/advs.202104689] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/02/2022] [Indexed: 05/10/2023]
Abstract
Lithium (Li) has garnered considerable attention as an alternative anodes of next-generation high-performance batteries owing to its prominent theoretical specific capacity. However, the commercialization of Li metal anodes (LMAs) is significantly compromised by non-uniform Li deposition and inferior electrolyte-anode interfaces, particularly at high currents and capacities. Herein, a hierarchical three-dimentional structure with CoSe2 -nanoparticle-anchored nitrogen-doped carbon nanoflake arrays is developed on a carbon fiber cloth (CoSe2 -NC@CFC) to regulate the Li nucleation/plating process and stabilize the electrolyte-anode interface. Owing to the enhanced lithiophilicity endowed by CoSe2 -NC, in situ-formed Li2 Se and Co nanoparticles during initial Li nucleation, and large void space, CoSe2 -NC@CFC can induce homogeneous Li nucleation/plating, optimize the solid electrolyte interface, and mitigate volume change. Consequently, the CoSe2 -NC@CFC can accommodate Li with a high areal capacity of up to 40 mAh cm-2 . Moreover, the Li/CoSe2 -NC@CFC anodes possess outstanding cycling stability and lifespan in symmetric cells, particularly under ultrahigh currents and capacities (1600 h at 10 mA cm-2 /10 mAh cm-2 and 5 mA cm-2 /20 mAh cm-2 ). The Li/CoSe2 -NC@CFC//LiFePO4 full cell delivers impressive long-term performance and favorable flexibility. The developed CoSe2 -NC@CFC provides insights into the development of advanced Li hosts for flexible and stable LMAs.
Collapse
Affiliation(s)
- Jiaqi Cao
- College of Physics and Information EngineeringInstitute of Micro‐Nano Devices and Solar CellsFuzhou UniversityFuzhou350108China
| | - Yonghui Xie
- College of Physics and Information EngineeringInstitute of Micro‐Nano Devices and Solar CellsFuzhou UniversityFuzhou350108China
| | - Yang Yang
- College of Physics and Information EngineeringInstitute of Micro‐Nano Devices and Solar CellsFuzhou UniversityFuzhou350108China
| | - Xinghui Wang
- College of Physics and Information EngineeringInstitute of Micro‐Nano Devices and Solar CellsFuzhou UniversityFuzhou350108China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhou350108China
- Jiangsu Collaborative Innovation Center of Photovolatic Science and EngineeringChangzhou213164China
| | - Wangyang Li
- College of Physics and Information EngineeringInstitute of Micro‐Nano Devices and Solar CellsFuzhou UniversityFuzhou350108China
| | - Qiaoli Zhang
- College of Materials Science and EngineeringFuzhou UniversityFuzhou350108China
| | - Shun Ma
- College of Physics and Information EngineeringInstitute of Micro‐Nano Devices and Solar CellsFuzhou UniversityFuzhou350108China
| | - Shuying Cheng
- College of Physics and Information EngineeringInstitute of Micro‐Nano Devices and Solar CellsFuzhou UniversityFuzhou350108China
- Jiangsu Collaborative Innovation Center of Photovolatic Science and EngineeringChangzhou213164China
| | - Bingan Lu
- School of Physics and ElectronicsState Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyHunan UniversityChangshaHunan410082China
| |
Collapse
|
44
|
Cai M, Zhang H, Zhang Y, Xiao B, Wang L, Li M, Wu Y, Sa B, Liao H, Zhang L, Chen S, Peng DL, Wang MS, Zhang Q. Boosting the potassium-ion storage performance enabled by engineering of hierarchical MoSSe nanosheets modified with carbon on porous carbon sphere. Sci Bull (Beijing) 2022; 67:933-945. [DOI: 10.1016/j.scib.2022.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
|
45
|
Jahandideh H, Macairan JR, Bahmani A, Lapointe M, Tufenkji N. Fabrication of graphene-based porous materials: traditional and emerging approaches. Chem Sci 2022; 13:8924-8941. [PMID: 36091205 PMCID: PMC9365090 DOI: 10.1039/d2sc01786e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
The anisotropic nature of ‘graphenic’ nanosheets enables them to form stable three-dimensional porous materials. The use of these porous structures has been explored in several applications including electronics and batteries, environmental remediation, energy storage, sensors, catalysis, tissue engineering, and many more. As method of fabrication greatly influences the final pore architecture, and chemical and mechanical characteristics and performance of these porous materials, it is essential to identify and address the correlation between property and function. In this review, we report detailed analyses of the different methods of fabricating porous graphene-based structures – with a focus on graphene oxide as the base material – and relate these with the resultant morphologies, mechanical responses, and common applications of use. We discuss the feasibility of the synthesis approaches and relate the GO concentrations used in each methodology against their corresponding pore sizes to identify the areas not explored to date. Due to their anisotropic nature, graphene nanosheets can be used to form 3-dimensional porous materials using template-free and template-directed methodologies. These fabrication strategies are found to influence the properties of the final structure.![]()
Collapse
Affiliation(s)
- Heidi Jahandideh
- Department of Chemical Engineering, McGill University, Montreal, QC H3A 0C5, Canada
- McGill Institute for Advanced Materials (MIAM), McGill University, Montreal, Quebec, Canada
| | - Jun-Ray Macairan
- Department of Chemical Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | - Aram Bahmani
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Mathieu Lapointe
- Department of Chemical Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, QC H3A 0C5, Canada
- McGill Institute for Advanced Materials (MIAM), McGill University, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Tao R, Gao C, Xie E, Wang B, Lu B. A stable and high-energy aqueous aluminum based battery. Chem Sci 2022; 13:10066-10073. [PMID: 36128225 PMCID: PMC9430682 DOI: 10.1039/d2sc03455g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Aqueous aluminum ion batteries (AAIBs) have received growing attention because of their low cost, safe operation, eco-friendliness, and high theoretical capacity. However, one of the biggest challenges for AAIBs is...
Collapse
Affiliation(s)
- Renqian Tao
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University Lanzhou 730000 P. R. China
| | - Caitian Gao
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University Changsha 410082 P. R. China
| | - Erqing Xie
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University Lanzhou 730000 P. R. China
| | - Bin Wang
- School of Physics and Electronic Engineering, Xinxiang University Xinxiang 453000 P. R. China
| | - Bingan Lu
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University Changsha 410082 P. R. China
| |
Collapse
|