1
|
Ren Z, Chen S, Xia X, Jiang C, Tang Y, Liu J, Wang M, Chen Z, Cao J, Wang D, Liu X. Synchronously Restraining the Phase Transition and Structural Defect through a Unique Dopant Strategy for Manganese-Based Layered Cathodes for Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22770-22779. [PMID: 40191949 DOI: 10.1021/acsami.5c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The P2-type sodium manganese-based layered oxide cathodes suffer from an unsatisfactory phase transition and structural defects due to the instability of the bulk and interfacial structure. In this work, we proposed a manganese-based layered oxide cathode, P2-Na0.67Ni0.25Mn0.75O2@Fe2O3@Ta2O5 (Na2575-Fe-Ta), to increase the bulk and interfacial stability synchronously during cycling. Partially substituting Fe ions into the TMO2 layer in the bulk lattice structure mitigates the unfavorable phase transition and suppresses the variation of the lattice parameters during charge and discharge, retarding structural degradation. Moreover, the in situ formed NaTaO3 layer via doping Ta2O5 not only reduces the irreversible release of lattice oxygen but also mitigates electrolyte consumption and parasitic reactions on the electrode-electrolyte interface, which is ascribed to the generation of structural defects after repeated Na+ ion insertion/extraction. Consequently, the well-designed sample delivers 214.9 mA h/g under 0.1 C and exhibits 64.6% capacity retention after 200 cycles under 0.5 C, much better than those of the pristine, 19.5 mA h/g and 9.7%. Herein, we demonstrated that the synergistic improvement of bulk and interfacial stability by doping multiple transition metal ions in a one-step method is promising for the application of Na0.67Ni0.25Mn0.75O2 for sodium-ion batteries.
Collapse
Affiliation(s)
- Zhongmin Ren
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei, Hefei, Anhui 230026, China
| | - Shuaishuai Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Xingnan Xia
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei, Hefei, Anhui 230026, China
| | - Chun Jiang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Yihan Tang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Jian Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Muqin Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenlian Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Jiefeng Cao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Deyu Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Xiaosong Liu
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei, Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Dai J, Li J, Yao Y, Wang YR, Ma M, Bai R, Zhu Y, Rui X, Wu H, Yu Y. Strengthening Transition Metal-Oxygen Interaction in Layered Oxide Cathodes for Stable Sodium-Ion Batteries. ACS NANO 2025; 19:11197-11209. [PMID: 40067949 DOI: 10.1021/acsnano.4c18526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
P2-type layered oxides, such as Na0.67Ni0.33Mn0.67O2, represent a promising class of cathode materials for Sodium-ion batteries (SIBs) due to their high theoretical energy density. However, their cycling stability is often compromised by severe phase transitions and irreversible lattice oxygen redox reactions at high voltages. In this work, we develop a Zn and Al codoping approach to design a Na0.71Ni0.28Zn0.05Mn0.62Al0.05O2 (ZA-NNMO) cathode for stable SIBs. Geometric phase analysis reveals that the introduction of inert Zn significantly mitigates the lattice distortion and transition-metal-ion migration, thereby inhibiting detrimental phase transition and structural collapse. The doped Al element in the Mn site strengthens the Al-O interaction, facilitating reversible O2--O2n- (0 < n < 4) reactions at high voltages and effectively curtailing irreversible lattice oxygen oxidation, as confirmed by in situ differential electrochemical mass spectrometry. As a result, the ZA-NNMO cathode delivers superior electrochemical performance in terms of high output voltage of 3.6 V, highly competitive energy density of 470 W h kg-1 and good cyclability (80.2% of capacity retention after 1400 cycles at 1.0 A g-1). This work presents a robust methodology for improving the reversibility and stability of layered oxide cathodes in SIBs.
Collapse
Affiliation(s)
- Junyi Dai
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China. Hefei, Anhui 230026, China
| | - Jiahao Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China. Hefei, Anhui 230026, China
| | - Yan-Ru Wang
- Instruments Center for Physical Science, University of Science and Technology of China. Hefei, Anhui 230026, China
| | - Mingze Ma
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China. Hefei, Anhui 230026, China
| | - Ruilin Bai
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China. Hefei, Anhui 230026, China
| | - Yinbo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Hengan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China. Hefei, Anhui 230026, China
| |
Collapse
|
3
|
Thanwisai P, Yang S, Yao Z, Meng Z, Hou J, Vanaphuti P, Sultanov M, Wen J, Yang Z, Zhong Y, Wang Y. Anionic-Based Layered Oxide Cathodes with High Electrochemical Performance through Dual-Site Substitutions for Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411928. [PMID: 39910873 DOI: 10.1002/smll.202411928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/21/2025] [Indexed: 02/07/2025]
Abstract
Mn-rich layered oxide cathodes with anionic redox promise high energy density for sodium-ion batteries (SIBs) due to ultra-high capacity derived from both Mn and O redox couples. Nevertheless, instability of the reactions that lead to poor electrochemical stability hinders the cathodes from practical applications. Here, the Al and Zn dual-site substitution strategy is proposed to enhance electrochemical performance. The designed cathode, Na0.73Zn0.03Li0.25Mn0.76Al0.01O2 (AlZn), delivers a high discharge capacity of 242 mAh g-1 with an impressive rate capability (162 mAh g-1 at 1000 mA g-1) and excellent capacity retention (89.69% over 150 cycles). In addition, full-cell SIB based on AlZn coupled with hard carbon exhibits a high energy density of 317 Wh kg-1 (based on both cathode and anode mass) and a reasonable capacity retention of 80.8% after 250 cycles. Revealed by advanced investigations, the synergy of robust Al-O in TM layers and O-Zn-O pillars in Na layers helps alleviate severe inactive spinel/rock-salt phase transformation and intragranular cracks in the AlZn cathode. This consequently leads to greatly enhanced electrochemical performance over the pristine cathode. This work provides insight into improving electrochemical properties of anionic-redox-based layered oxides by Al/Zn co-substitutions toward high-energy SIBs.
Collapse
Affiliation(s)
- Panya Thanwisai
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Songge Yang
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Zeyi Yao
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Zifei Meng
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Jiahui Hou
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Panawan Vanaphuti
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Maksim Sultanov
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
- Department of Physics, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Zhenzhen Yang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yu Zhong
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Yan Wang
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| |
Collapse
|
4
|
Wang S, Liang K, Zhao H, Wu M, He J, Wei P, Ding Z, Li J, Huang X, Ren Y. Electronic structure formed by Y 2O 3-doping in lithium position assists improvement of charging-voltage for high-nickel cathodes. Nat Commun 2025; 16:1. [PMID: 39746907 PMCID: PMC11697207 DOI: 10.1038/s41467-024-52768-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/18/2024] [Indexed: 01/04/2025] Open
Abstract
High-capacity power battery can be attained through the elevation of the cut-off voltage for LiNi0.83Co0.12Mn0.05O2 high-nickel material. Nevertheless, unstable lattice oxygen would be released during the lithium deep extraction. To solve the above issues, the electronic structure is reconstructed by substituting Li+ ions with Y3+ ions. The dopant within the Li layer could transfer electrons to the adjacent lattice oxygen. Subsequently, the accumulated electrons in the oxygen site are transferred to nickel of highly valence state under the action of the reduction coupling mechanism. The modified strategy suppresses the generation of oxygen defects by regulating the local electronic structure, but more importantly, it reduces the concentration of highly reactive Ni4+ species during the charging state, thus avoiding the evolution of an unexpected phase transition. Strengthening the coupling strength between the lithium layers and transition metal layers finally realizes the fast-charging performance improvement and the cycling stability enhancement under high voltage.
Collapse
Affiliation(s)
- Shijie Wang
- School of Materials Science and Engineering, Changzhou University, Changzhou, People's Republic of China
| | - Kang Liang
- School of Materials Science and Engineering, Changzhou University, Changzhou, People's Republic of China
| | - Hongshun Zhao
- School of Materials Science and Engineering, Changzhou University, Changzhou, People's Republic of China
| | - Min Wu
- School of Materials Science and Engineering, Changzhou University, Changzhou, People's Republic of China
| | - Junfeng He
- School of Materials Science and Engineering, Changzhou University, Changzhou, People's Republic of China
| | - Peng Wei
- School of Materials Science and Engineering, Changzhou University, Changzhou, People's Republic of China
| | - Zhengping Ding
- School of Materials Science and Engineering, Changzhou University, Changzhou, People's Republic of China
| | - Jianbin Li
- School of Materials Science and Engineering, Changzhou University, Changzhou, People's Republic of China
| | - Xiaobing Huang
- School of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, People's Republic of China
| | - Yurong Ren
- School of Materials Science and Engineering, Changzhou University, Changzhou, People's Republic of China.
| |
Collapse
|
5
|
Cheng C, Zhuo Z, Xia X, Liu T, Shen Y, Yuan C, Zeng P, Cao D, Zou Y, Guo J, Zhang L. Stabilized Oxygen Vacancy Chemistry toward High-Performance Layered Oxide Cathodes for Sodium-Ion Batteries. ACS NANO 2024; 18:35052-35065. [PMID: 39665775 DOI: 10.1021/acsnano.4c14724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Anionic redox has emerged as a transformative paradigm for high-energy layered transition-metal (TM) oxide cathodes, but it is usually accompanied by the formation of anionic redox-mediated oxygen vacancies (OVs) due to irreversible oxygen release. Additionally, external factor-induced OVs (defined as intrinsic OVs) also play a pivotal role in the physicochemical properties of layered TM oxides. However, an in-depth understanding of the interplay between intrinsic and anionic redox-mediated OVs and the corresponding regulation mechanism of the dynamic evolution of OVs is still missing. Herein, we disclose the strong interrelationship between these OVs and demonstrate that the presence of intrinsic OVs in the TMO2 layers could induce weak integrity of the TM-O frameworks and unlock additional diffusion paths to trigger the generation and migration of anionic redox-mediated OVs. Accordingly, an OV stabilization strategy is proposed by deliberately introducing high-valence Nb5+, which could serve as an important building block in anchoring the oxygen sublattice and preventing the formation of a percolating OV migration network, thereby suppressing the formation/diffusion of anionic redox-mediated OVs. Consequently, superb structural integrity and improved electrochemical performance with reversible anionic redox chemistry are achieved. This work advances our understanding of the role of OVs for developing high-performance energy storage systems utilizing anionic redox.
Collapse
Affiliation(s)
- Chen Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Zengqing Zhuo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xiao Xia
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Tong Liu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yihao Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Cheng Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Pan Zeng
- Institute for Advanced Study, School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Duanyun Cao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| | - Ying Zou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Kuang Y, Wu Y, Zhang H, Sun H. Interface Issues of Layered Transition Metal Oxide Cathodes for Sodium-Ion Batteries: Current Status, Recent Advances, Strategies, and Prospects. Molecules 2024; 29:5988. [PMID: 39770077 PMCID: PMC11677498 DOI: 10.3390/molecules29245988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Sodium-ion batteries (SIBs) hold significant promise in energy storage devices due to their low cost and abundant resources. Layered transition metal oxide cathodes (NaxTMO2, TM = Ni, Mn, Fe, etc.), owing to their high theoretical capacities and straightforward synthesis procedures, are emerging as the most promising cathode materials for SIBs. However, the practical application of the NaxTMO2 cathode is hindered by an unstable interface, causing rapid capacity decay. This work reviewed the critical factors affecting the interfacial stability and degradation mechanisms of NaxTMO2, including air sensitivity and the migration and dissolution of TM ions, which are compounded by the loss of lattice oxygen. Furthermore, the mainstream interface modification approaches for improving electrochemical performance are summarized, including element doping, surface engineering, electrolyte optimization, and so on. Finally, the future developmental directions of these layered NaxTMO2 cathodes are concluded. This review is meant to shed light on the design of superior cathodes for high-performance SIBs.
Collapse
Affiliation(s)
- Yongxin Kuang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (Y.K.); (H.Z.)
| | - Yanxue Wu
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Hangyu Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (Y.K.); (H.Z.)
| | - Huapeng Sun
- Chenjiang Laboratory, School of New Energy, Chenzhou Vocational Technical College, Chenzhou 423000, China
| |
Collapse
|
7
|
Chen S, Cheng C, Xia X, Wang L, Chen T, Shen Y, Zhou X, Xv W, Zhou Z, Zeng P, Zhang L. Reversible Oxygen Redox With Enhanced Structural Stability Through Covalency Modulation for Layered Oxide Cathodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406542. [PMID: 39308242 DOI: 10.1002/smll.202406542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/10/2024] [Indexed: 12/13/2024]
Abstract
P2-type Mn-based layered oxides have emerged as one of the most promising cathode materials for sodium-ion batteries owing to their advantages of facile preparation and high theoretical capacity. However, challenges such as phase transition and irreversible oxygen release during cycling often lead to rapid structural distortion and the formation of oxygen vacancies, ultimately resulting in rapid capacity decay. Herein, a covalency modulation strategy is adopted to address these challenges and successfully achieved a stable P2-type Mn-based layered oxide by introducing strong covalent Ni─O bonds. The robust Ni─O motif plays a crucial role in maintaining the rigidity of transition metal (TM) layered frameworks, which efficiently alleviates the structural distortion and degradation of the coordination environments of local TM sites, thereby achieving durable structural stiffness over extended cycles. In addition, the strong covalent Ni─O bonds can also stabilize the local oxygen environment, effectively suppressing the irreversible oxygen release. Benefiting from these advancements, the as-designed Na0.6Mg0.15Mn0.7Ni0.15O2 cathode displays a full solid-solution behavior with a low volume change of only 0.9% and an enhanced reversibility of lattice oxygen redox (OR) reaction. This investigation emphasizes the crucial role of covalency modulation in regulating OR chemistry and structural integrity to achieve high-energy-density Mn-based layered oxides.
Collapse
Affiliation(s)
- Shuyuan Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Chen Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiao Xia
- Institute of Functional Nano & Soft Materials (FUNSOM), Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lei Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Tong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yihao Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xi Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Weidong Xv
- Institute of Functional Nano & Soft Materials (FUNSOM), Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zheng Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Pan Zeng
- Institute for Advanced Study, School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
8
|
Yan L, Chen W, Zhang H, Lu X, Zou L, Lu J, Pan H. Dual-Site Doping in Transition Metal Oxide Cathode Enables High-Voltage Stability of Na-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401915. [PMID: 38805744 DOI: 10.1002/smll.202401915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Indexed: 05/30/2024]
Abstract
Designing cathode materials that effectively enhancing structural stability under high voltage is paramount for rationally enhancing energy density and safety of Na-ion batteries. This study introduces a novel P2-Na0.73K0.03Ni0.23Li0.1Mn0.67O2 (KLi-NaNMO) cathode through dual-site synergistic doping of K and Li in Na and transition metal (TM) layers. Combining theoretical and experimental studies, this study discovers that Li doping significantly strengthens the orbital overlap of Ni (3d) and O (2p) near the Fermi level, thereby regulates the phase transition and charge compensation processes with synchronized Ni and O redox. The introduction of K further adjusts the ratio of Nae and Naf sites at Na layer with enhanced structural stability and extended lattice space distance, enabling the suppression of TM dissolution, achieving a single-phase transition reaction even at a high voltage of 4.4 V, and improving reaction kinetics. Consequently, KLi-NaNMO exhibits a high capacity (105 and 120 mAh g-1 in the voltage of 2-4.2 V and 2-4.4 V at 0.1 C, respectively) and outstanding cycling performance over 300 cycles under 4.2 and 4.4 V. This work provides a dual-site doping strategy to employ synchronized TM and O redox with improved capacity and high structural stability via electronic and crystal structure modulation.
Collapse
Affiliation(s)
- Lijue Yan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Weixin Chen
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, China
| | - Hehe Zhang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Xia Lu
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, China
| | - Lianfeng Zou
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Jun Lu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huilin Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
9
|
Li M, Lin W, Ji Y, Guan L, Qiu L, Chen Y, Lu Q, Ding X. Recent progress in high-voltage P2-Na x TMO 2 materials and their future perspectives. RSC Adv 2024; 14:24797-24814. [PMID: 39119284 PMCID: PMC11306967 DOI: 10.1039/d4ra04790g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
P2-type layered materials (Na x TMO2) have become attractive cathode electrodes owing to their high theoretical energy density and simple preparation. However, they still face severe phase transition and low conductivity. Current research on Na x TMO2 is mostly focused on the modification of bulk materials, and the application performances have been infrequently addressed. This review summarizes the information on current common P2-Na x TMO2 materials and discusses their sodium-storage mechanisms. Furthermore, modification strategies to improve their performance are addressed for practical applications based on a range of key parameters (output voltage, specific capacity, and lifespan). We also discuss the future development trends and application prospects for P2 cathode materials.
Collapse
Affiliation(s)
- Manni Li
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Weiqi Lin
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Yurong Ji
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Lianyu Guan
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Linyuan Qiu
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Yuhong Chen
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Qiaoyu Lu
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Xiang Ding
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University Fuzhou 350108 China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University Tianjin 300071 China
| |
Collapse
|
10
|
Guo YJ, Jin RX, Fan M, Wang WP, Xin S, Wan LJ, Guo YG. Sodium layered oxide cathodes: properties, practicality and prospects. Chem Soc Rev 2024; 53:7828-7874. [PMID: 38962926 DOI: 10.1039/d4cs00415a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Rechargeable sodium-ion batteries (SIBs) have emerged as an advanced electrochemical energy storage technology with potential to alleviate the dependence on lithium resources. Similar to Li-ion batteries, the cathode materials play a decisive role in the cost and energy output of SIBs. Among various cathode materials, Na layered transition-metal (TM) oxides have become an appealing choice owing to their facile synthesis, high Na storage capacity/voltage that are suitable for use in high-energy SIBs, and high adaptivity to the large-scale manufacture of Li layered oxide analogues. However, going from the lab to the market, the practical use of Na layered oxide cathodes is limited by the ambiguous understanding of the fundamental structure-performance correlation of cathode materials and lack of customized material design strategies to meet the diverse demands in practical storage applications. In this review, we attempt to clarify the fundamental misunderstandings by elaborating the correlations between the electron configuration of the critical capacity-contributing elements (e.g., TM cations and oxygen anion) in oxides and their influence on the Na (de)intercalation (electro)chemistry and storage properties of the cathode. Subsequently, we discuss the issues that hinder the practical use of layered oxide cathodes, their origins and the corresponding strategies to address their issues and accelerate the target-oriented research and development of cathode materials. Finally, we discuss several new Na layered cathode materials that show prospects for next-generation SIBs, including layered oxides with anion redox and high entropy and highlight the use of layered oxides as cathodes for solid-state SIBs with higher energy and safety. In summary, we aim to offer insights into the rational design of high-performance Na layered oxide cathode materials towards the practical realization of sustainable electrochemical energy storage at a low cost.
Collapse
Affiliation(s)
- Yu-Jie Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.
| | - Ruo-Xi Jin
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Min Fan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.
| | - Wen-Peng Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.
| | - Sen Xin
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu-Guo Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Peng X, Zhang H, Yang C, Lui Z, Lin Z, Lei Y, Zhang S, Li S, Zhang S. Promoting threshold voltage of P2-Na 0.67Ni 0.33Mn 0.67O 2 with Cu 2+ cation doping toward high-stability cathode for sodium-ion battery. J Colloid Interface Sci 2024; 659:422-431. [PMID: 38183808 DOI: 10.1016/j.jcis.2023.12.170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
P2-type Na0.67Ni0.33Mn0.67O2 has attracted considerable attraction as a cathode material for sodium-ion batteries owing to its high operating voltage and theoretical specific capacity. However, when the charging voltage is higher than 4.2 V, the Na0.67Ni0.33Mn0.67O2 cathode undergoes a detrimental irreversible phase transition of P2-O2, leading to a drastic decrease in specific capacity. To address this challenge, we implemented a Cu-doping strategy (Na0.67Ni0.23Cu0.1Mn0.67O2) in this work to stabilize the structure of the transition metal layer. The stabilization strategy involved reinforcing the transition metal-oxygen (TMO) bonds, particularly the MnO bond and inhibiting interlayer slip during deep desodiation. As a result, the irreversible phase transition voltage is delayed, with the threshold voltage increasing from 4.2 to 4.4 V. Ex-situ X-ray diffraction measurements revealed that the Na0.67Ni0.23Cu0.1Mn0.67O2 cathode maintains the P2 phase within the voltage window of 2.5-4.3 V, whereas the P2-Na0.67Ni0.33Mn0.67O2 cathode transforms entirely into O2-type Na0.67Ni0.33Mn0.67O2 when the voltage exceeds 4.3 V. Furthermore, absolute P2-O2 phase transition of the Na0.67Ni0.23Cu0.1Mn0.67O2 cathode occurred at 4.6 V, indicating that Cu2+ doping enhances the stability of the layer structure and increases the threshold voltage. The resulting Na0.67Ni0.23Cu0.1Mn0.67O2 cathode exhibited superior electrochemical properties, demonstrating an initial reversible specific capacity of 89.1 mAh/g at a rate of 2C (360 mA g-1) and retaining more than 78 % of its capacity after 500 cycles.
Collapse
Affiliation(s)
- Xiang Peng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Haiyan Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Changsheng Yang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenjiang Lui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Zihua Lin
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Lei
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Shangshang Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengkai Li
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuqi Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Thanwisai P, Vanaphuti P, Yao Z, Hou J, Meng Z, Ma X, Guo H, Gao G, Yang Z, Wang Y. Regulating Anionic Redox via Mg Substitution in Mn-Rich Layered Oxide Cathodes Enabling High Electrochemical Stability for Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306465. [PMID: 37840421 DOI: 10.1002/smll.202306465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/18/2023] [Indexed: 10/17/2023]
Abstract
With the limited resources and high cost of lithium-ion batteries (LIBs) and the ever-increasing market demands, sodium-ion batteries (SIBs) gain much interest due to their economical sustainability, and similar chemistry and manufacturing processes to LIBs. As cathodes play a vital role in determining the energy density of SIBs, Mn-based layered oxides are promising cathodes due to their low cost, environmental friendliness, and high theoretical capacity. However, the main challenge is structural instability upon cycling at high voltage. Herein, Mg is introduced into the P2-type Na0.62 Ni0.25 Mn0.75 O2 cathode to enhance electrochemical stability. By combining electrochemical testing and material characterizations, it is found that substituting 10 mol% Mg can effectively alleviate the P2-O2 phase transition, Jahn-Teller distortion, and irreversible oxygen redox. Moreover, structural integrity is greatly improved. These lead to enhanced electrochemical performances. With the optimized sample, a remarkable capacity retention of 92% in the half cell after 100 cycles and 95% in the full cell after 170 cycles can be achieved. Altogether, this work provides an alternative way to stabilize P2-type Mn-based layer oxide cathodes, which in turn, put forward the development of this material for the next-generation SIBs.
Collapse
Affiliation(s)
- Panya Thanwisai
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Panawan Vanaphuti
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Zeyi Yao
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Jiahui Hou
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Zifei Meng
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Xiaotu Ma
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Hua Guo
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
| | - Guanhui Gao
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
| | - Zhenzhen Yang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yan Wang
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| |
Collapse
|
13
|
Cheng C, Yan T, Yuan C, Hu H, Xia X, Shen Y, Zhou X, Zeng P, Zhang L. Regulating Oxygen Redox Chemistry through the Synergistic Effect of Transition-Metal Vacancy and Substitution Element for Layered Oxide Cathodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306695. [PMID: 37857593 DOI: 10.1002/smll.202306695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Indexed: 10/21/2023]
Abstract
Reversible oxygen redox (OR) is considered as a paradigmatic avenue to boost the energy densities of layered oxide cathodes. However, its activation is largely coupled with the local coordination environment around oxygen, which is usually accompanied with irreversible oxygen release and unfavorable structure distortion. Herein, it is revealed that the synergistic effect of transition-metal (TM) vacancy and substitution element for modulating the OR activity and reversibility of layered Na0.67 MnO2 through multimodal operando synchrotron characterizations and electrochemical investigations. It is disclosed that TM vacancy can not only suppress the complicated phase transition but also stimulate the OR activity by creating nonbonding O 2p states via the Na─O─vacancy configurations. Notably, the substitution element plays a decisive role for regulating the reversibility of vacancy-boosted OR activity: the presence of strong Al─O bonds stabilizes the Mn-O motifs by sharing O with Al in the rigid Mn─O─Al frameworks, which mitigates TM migration and oxygen release induced by TM vacancy, leading to enhanced OR reversibility; while the introduction of weak Zn─O bonds exacerbates TM migration and irreversible oxygen release. This work clarifies the critical role of both TM vacancy and substitution element for regulating the OR chemistry, providing an effective avenue for designing high-performance cathodes employing anionic redox.
Collapse
Affiliation(s)
- Chen Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Tianran Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Cheng Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Haolv Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Xiao Xia
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Yihao Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Xi Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Pan Zeng
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
- Institute for Advanced Study, School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
14
|
Cheng W, Zhao M, Lai Y, Wang X, Liu H, Xiao P, Mo G, Liu B, Liu Y. Recent advances in battery characterization using in situ XAFS, SAXS, XRD, and their combining techniques: From single scale to multiscale structure detection. EXPLORATION (BEIJING, CHINA) 2024; 4:20230056. [PMID: 38854491 PMCID: PMC10867397 DOI: 10.1002/exp.20230056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/05/2023] [Indexed: 06/11/2024]
Abstract
Revealing and clarifying the chemical reaction processes and mechanisms inside the batteries will bring a great help to the controllable preparation and performance modulation of batteries. Advanced characterization techniques based on synchrotron radiation (SR) have accelerated the development of various batteries over the past decade. In situ SR techniques have been widely used in the study of electrochemical reactions and mechanisms due to their excellent characteristics. Herein, the three most wide and important synchrotron radiation techniques used in battery research were systematically reviewed, namely X-ray absorption fine structure (XAFS) spectroscopy, small-angle X-ray scattering (SAXS), and X-ray diffraction (XRD). Special attention is paid to how these characterization techniques are used to understand the reaction mechanism of batteries and improve the practical characteristics of batteries. Moreover, the in situ combining techniques advance the acquisition of single scale structure information to the simultaneous characterization of multiscale structures, which will bring a new perspective to the research of batteries. Finally, the challenges and future opportunities of SR techniques for battery research are featured based on their current development.
Collapse
Affiliation(s)
- Weidong Cheng
- College of Materials Science and EngineeringQiqihar UniversityQiqiharChina
| | - Mengyuan Zhao
- College of Materials Science and EngineeringQiqihar UniversityQiqiharChina
| | - Yuecheng Lai
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
- Chinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Xin Wang
- College of Materials Science and EngineeringQiqihar UniversityQiqiharChina
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
| | - Huanyan Liu
- College of Materials Science and EngineeringQiqihar UniversityQiqiharChina
| | - Peng Xiao
- State Key Laboratory of Heavy Oil Processing, The Key Laboratory of Catalysis of CNPC, College of Chemical EngineeringChina University of PetroleumBeijingChina
| | - Guang Mo
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
| | - Bin Liu
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijingUniversity of Chemical TechnologyBeijingChina
| | - Yunpeng Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
| |
Collapse
|
15
|
Liu H, Hong N, Bugday N, Yasar S, Altin S, Deng W, Deng W, Zou G, Hou H, Long Z, Ji X. High Voltage Ga-Doped P2-Type Na 2/3 Ni 0.2 Mn 0.8 O 2 Cathode for Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307225. [PMID: 38054760 DOI: 10.1002/smll.202307225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Ni/Mn-based oxide cathode materials have drawn great attention due to their high discharge voltage and large capacity, but structural instability at high potential causes rapid capacity decay. How to moderate the capacity loss while maintaining the advantages of high discharge voltage remains challenging. Herein, the replacement of Mn ions by Ga ions is proposed in the P2-Na2/3 Ni0.2 Mn0.8 O2 cathode for improving their cycling performances without sacrificing the high discharge voltage. With the introduction of Ga ions, the relative movement between the transition metal ions is restricted and more Na ions are retained in the lattice at high voltage, leading to an enhanced redox activity of Ni ions, validated by ex situ synchrotron X-ray absorption spectrum and X-ray photoelectron spectroscopy. Additionally, the P2-O2 phase transition is replaced by a P2-OP4 phase transition with a smaller volume change, reducing the lattice strain in the c-axis direction, as detected by operando/ex situ X-ray diffraction. Consequently, the Na2/3 Ni0.21 Mn0.74 Ga0.05 O2 electrode exhibits a high discharge voltage close to that of the undoped materials, while increasing voltage retention from 79% to 93% after 50 cycles. This work offers a new avenue for designing high-energy density Ni/Mn-based oxide cathodes for sodium-ion batteries.
Collapse
Affiliation(s)
- Huanqing Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Ningyun Hong
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Nesrin Bugday
- Department of Chemistry, İnönü (Inonu) University, Malatya, 44280, Turkey
| | - Sedat Yasar
- Department of Chemistry, İnönü (Inonu) University, Malatya, 44280, Turkey
| | - Serdar Altin
- Department of Chemistry, İnönü (Inonu) University, Malatya, 44280, Turkey
| | - Weina Deng
- Hunan Key of Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha, 410022, China
| | - Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zhen Long
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
16
|
Liu M, Wu B, Si D, Dong H, Chen K, Zheng L, Fan XY, Yu L, Xiao B, Chou S, Xiao Y, Wang PF. Electronic States Tailoring and Pinning Effect Boost High-Power Sodium-Ion Storage of Oriented Hollow P2-Type Cathode Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53623-53631. [PMID: 37955137 DOI: 10.1021/acsami.3c14951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Fierce phase transformation and limited sodium ion diffusion dynamics are critical obstacles that hinder the practical energy storage applications of P2-type layered sodium transition metal oxides (NaxTMO2). Herein, a synergistic strategy of electronic state tailoring and pillar effect was carefully implemented by substituting divalent Mg2+ into Na0.67Ni0.33Mn0.67O2 material with unique oriented hollow rodlike structures. Mg2+substitution can not only facilitate the anionic oxygen redox reactions and electronic conductivity through increasing the electronic states at Femi energy but also act as pillars within TMO2 layers to alleviate the severe phase transformation to improve structure stability. Moreover, the oriented hollow structure incorporating sufficient buffer spaces and rationally exposed electrochemically active facets effectively alleviates the stresses induced by low volume changes of 8% and provides more open channels for Na+ ion diffusion without crossing multiple grain boundaries. Hence, the Na0.67Mg0.08Ni0.25Mn0.67O2 cathode showed a superior rate capability with high energy density and cycling stability for sodium-ion storage. The underlying mechanisms of these achievements were deciphered through diversified dynamic analysis and the first principle calculations, providing new insights into P2-type NaxTMO2 cathodes for the infinite prospect as an alternative to lithium-ion batteries.
Collapse
Affiliation(s)
- Mengting Liu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Bin Wu
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, Berlin 12489, Germany
- Institute of Physics, Humboldt University Berlin, Newton-Straße 15, Berlin 12489, Germany
| | - Duo Si
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Haojie Dong
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Kai Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Lu Zheng
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Xin-Yu Fan
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Lianzheng Yu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Bing Xiao
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Yao Xiao
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Peng-Fei Wang
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
17
|
Zhang XL, Huang ZX, Liu YN, Su MY, Li K, Wu XL. Tuning oxygen release of sodium-ion layered oxide cathode through synergistic surface coating and doping. J Colloid Interface Sci 2023; 650:742-751. [PMID: 37441967 DOI: 10.1016/j.jcis.2023.06.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Layered transition metal oxides have the greatest potential for commercial application as cathode materials for sodium-ion batteries. However, transition metal oxides inevitably undergo an irreversible oxygen loss process during cycling, which leads to structural changes in the material and ultimately to severe capacity degradation. In this work, using density function theory (DFT) calculations, the Ni-O bond is revealed to be the weakest of the M-O bonds, which may lead to structural failure. Herein, the synergistic surface CeO2 modification and the trace doping of Ce elements stimulate oxygen redox and improve its reversibility, thus improving the structural stability and electrochemical performance of the material. Theoretical calculations prove that Na0.67Mn0.7Ni0.2Co0.1O2 (MNC) obtains electrons from CeO2, avoiding destruction of the Ni-O bond by over-energy released during the charging process and inhibiting oxygen loss. The capacity retention was 77.37% for 200 cycles at 500 mA g-1, compared to 33.84% for the unmodified Na0.67Mn0.7Ni0.2Co0.1O2. Overall, the present work demonstrates that the synergistic effect of surface coating and doping is an effective strategy for realizing tuning oxygen release and high electrochemical performance.
Collapse
Affiliation(s)
- Xue-Li Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Zhi-Xiong Huang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, Jilin 130024, PR China
| | - Yan-Ning Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Meng-Yuan Su
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Xing-Long Wu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, Jilin 130024, PR China; Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Gan Zhou 341000, China.
| |
Collapse
|
18
|
Wang Y, Zhao X, Jin J, Shen Q, Hu Y, Song X, Li H, Qu X, Jiao L, Liu Y. Boosting the Reversibility and Kinetics of Anionic Redox Chemistry in Sodium-Ion Oxide Cathodes via Reductive Coupling Mechanism. J Am Chem Soc 2023; 145:22708-22719. [PMID: 37813829 DOI: 10.1021/jacs.3c08070] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Activating anionic redox chemistry in layered oxide cathodes is a paradigmatic approach to devise high-energy sodium-ion batteries. Unfortunately, excessive oxygen redox usually induces irreversible lattice oxygen loss and cation migration, resulting in rapid capacity and voltage fading and sluggish reaction kinetics. Herein, the reductive coupling mechanism (RCM) of uncommon electron transfer from oxygen to copper ions is unraveled in a novel P2-Na0.8Cu0.22Li0.08Mn0.67O2 cathode for boosting the reversibility and kinetics of anionic redox reactions. The resultant strong covalent Cu-(O-O) bonding can efficaciously suppress excessive oxygen oxidation and irreversible cation migration. Consequently, the P2-Na0.8Cu0.22Li0.08Mn0.67O2 cathode delivers a marvelous rate capability (134.1 and 63.2 mAh g-1 at 0.1C and 100C, respectively) and outstanding long-term cycling stability (82% capacity retention after 500 cycles at 10C). The intrinsic functioning mechanisms of RCM are fully understood through systematic in situ/ex situ characterizations and theoretical computations. This study opens a new avenue toward enhancing the stability and dynamics of oxygen redox chemistry.
Collapse
Affiliation(s)
- Yao Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Xudong Zhao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Junteng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Qiuyu Shen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Hu
- Helmholtz Institute Ulm (HIU), Helmholtzstraße 11, Ulm 89081, Germany
| | - Xiaobai Song
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Han Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Xuanhui Qu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Yongchang Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Ma X, Yang C, Xu Z, Li R, Song L, Zhang M, Yang M, Jin Y. Structural and electrochemical progress of O3-type layered oxide cathodes for Na-ion batteries. NANOSCALE 2023; 15:14737-14753. [PMID: 37661753 DOI: 10.1039/d3nr02373g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Sodium-ion batteries (SIBs) have attracted great attention being the most promising sustainable energy technology owing to their competitive energy density, great safety and considerable low-cost merits. Nevertheless, the commercialization process of SIBs is still sluggish because of the difficulty in developing high-performance battery materials, especially the cathode materials. The discovery of layered transition metal oxides as the cathode materials of SIBs brings infinite possibilities for practical battery production. Thereinto, the O3-type layered transition metal oxides exhibit attractive advantages in terms of energy density benefiting from their higher sodium content compared to other kinds of layered transition metal oxides. Enormous research studies have largely put forward their progress and explored a wide range of performance improvement approaches from the morphology, coating, doping, phase structure and redox aspects. However, the progress is scattered and has not logically evolved, which is not beneficial for the further development of more advanced cathode materials. Therefore, our work aims to comprehensively review, classify and highlight the most recent advances in O3-type layered transition metal oxides for SIBs, so as to scientifically cognize their progress and remaining challenges and provide reasonable improvement ideas and routes for next-generation high-performance cathode materials.
Collapse
Affiliation(s)
- Xiaowei Ma
- Institute of Energy Supply Technology for High-End Equipment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, P. R. China.
- EYE & ENE Hospital of Fudan University, Fudan University, Shanghai, 200030, P.R. China
| | - Chen Yang
- Institute of Energy Supply Technology for High-End Equipment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, P. R. China.
| | - Ziyang Xu
- Institute of Energy Supply Technology for High-End Equipment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, P. R. China.
| | - Ruiqi Li
- Institute of Energy Supply Technology for High-End Equipment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, P. R. China.
| | - Li Song
- Institute of Energy Supply Technology for High-End Equipment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, P. R. China.
| | - Mingdao Zhang
- Institute of Energy Supply Technology for High-End Equipment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, P. R. China.
| | - Mei Yang
- EYE & ENE Hospital of Fudan University, Fudan University, Shanghai, 200030, P.R. China
| | - Yachao Jin
- Institute of Energy Supply Technology for High-End Equipment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, P. R. China.
| |
Collapse
|
20
|
Hu HY, Wang H, Zhu YF, Li JY, Liu Y, Wang J, Liu HX, Jia XB, Li H, Su Y, Gao Y, Chen S, Wu X, Dou SX, Chou S, Xiao Y. A Universal Strategy Based on Bridging Microstructure Engineering and Local Electronic Structure Manipulation for High-Performance Sodium Layered Oxide Cathodes. ACS NANO 2023; 17:15871-15882. [PMID: 37526621 DOI: 10.1021/acsnano.3c03819] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Due to their high capacity and sufficient Na+ storage, O3-NaNi0.5Mn0.5O2 has attracted much attention as a viable cathode material for sodium-ion batteries (SIBs). However, the challenges of complicated irreversible multiphase transitions, poor structural stability, low operating voltage, and an unstable oxygen redox reaction still limit its practical application. Herein, using O3-NaNi0.5Mn0.5-xSnxO2 cathode materials as the research model, a universal strategy based on bridging microstructure engineering and local electronic structure manipulation is proposed. The strategy can modulate the physical and chemical properties of electrode materials, so as to restrain the unfavorable and irreversible multiphase transformation, improve structural stability, manipulate redox potential, and stabilize the anion redox reaction. The effect of Sn substitution on the intrinsic local electronic structure of the material is articulated by density functional theory calculations. Meanwhile, the universal strategy is also validated by Ti substitution, which could be further extrapolated to other systems and guide the design of cathode materials in the field of SIBs.
Collapse
Affiliation(s)
- Hai-Yan Hu
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, People's Republic of China
| | - Hongrui Wang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Yan-Fang Zhu
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, People's Republic of China
| | - Jia-Yang Li
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, People's Republic of China
| | - Yifeng Liu
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, People's Republic of China
| | - Jingqiang Wang
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, People's Republic of China
| | - Han-Xiao Liu
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, People's Republic of China
| | - Xin-Bei Jia
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, People's Republic of China
| | - Hongwei Li
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, People's Republic of China
| | - Yu Su
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, People's Republic of China
| | - Yun Gao
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, People's Republic of China
| | - Shuangqiang Chen
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, People's Republic of China
| | - Xiongwei Wu
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, People's Republic of China
- College of Electrical and Information Engineering, Hunan University, Changsha 410082, People's Republic of China
- Hunan Yinfeng New Energy Co., Ltd, Changsha 410082, People's Republic of China
| | - Shi Xue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, People's Republic of China
| | - Yao Xiao
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, People's Republic of China
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
21
|
Xing C, Da H, Yang P, Huang J, Gan M, Zhou J, Li Y, Zhang H, Ge B, Fei L. Aluminum Impurity from Current Collectors Reactivates Degraded NCM Cathode Materials toward Superior Electrochemical Performance. ACS NANO 2023; 17:3194-3203. [PMID: 36724114 DOI: 10.1021/acsnano.3c00270] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The huge amount of degraded NCM (LiNi0.5Co0.2Mn0.3O2) cathode materials from spent lithium-ion batteries is arising as a serious environmental issue as well as a severe waste of metal resources, and therefore, direct recycling of them toward usable electrode materials again is environmentally and economically more attractive in contrast to present metallurgical treatments. In this work, we design a robust two-step method for direct recycling of degraded NCM materials, which uses the aluminum impurity from the attached current collector to supplement the transition metal vacancies for simultaneous elemental compensation and structural restoration. This single-element compensation strategy leads to the regeneration of high-quality NCM material with depressed cation disordering and stabilized layered structure. Moreover, the regenerated NCM material with controllable Al doping delivered an outstanding electrochemical performance; specifically, the capacity (158.6 mAh g-1), rate capability (91.6 mAh g-1 at 5 C), and cycling stability (89.6% capacity retention after 200 cycles) of the regenerated NCM material are even comparable with those of fresh materials. The as-established regeneration protocol has its chance in simplifying the industrial recycling process of degraded NCM materials.
Collapse
Affiliation(s)
- Chunxian Xing
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Nanchang University, Nanchang 330031, China
| | - Haoran Da
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Peng Yang
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Nanchang University, Nanchang 330031, China
| | - Jiawei Huang
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Nanchang University, Nanchang 330031, China
| | - Min Gan
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Nanchang University, Nanchang 330031, China
| | - Jian Zhou
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Nanchang University, Nanchang 330031, China
| | - Yong Li
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Nanchang University, Nanchang 330031, China
| | - Haitao Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Linfeng Fei
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Nanchang University, Nanchang 330031, China
| |
Collapse
|
22
|
Xia X, Liu T, Cheng C, Li H, Yan T, Hu H, Shen Y, Ju H, Chan TS, Wu Z, Su Y, Zhao Y, Cao D, Zhang L. Suppressing the Dynamic Oxygen Evolution of Sodium Layered Cathodes through Synergistic Surface Dielectric Polarization and Bulk Site-Selective Co-Doping. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209556. [PMID: 36493783 DOI: 10.1002/adma.202209556] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Utilizing anionic redox activity within layered oxide cathode materials represents a transformational avenue for enabling high-energy-density rechargeable batteries. However, the anionic oxygen redox reaction is often accompanied with irreversible dynamic oxygen evolution, leading to unfavorable structural distortion and thus severe voltage decay and rapid capacity fading. Herein, it is proposed and validated that the dynamic oxygen evolution can be effectively suppressed through the synergistic surface CaTiO3 dielectric coating and bulk site-selective Ca/Ti co-doping for layered Na2/3 Ni1/3 Mn2/3 O2 . The surface dielectric coating layer not only suppresses the surface oxygen release but more importantly inhibits the bulk oxygen migration by creating a reverse electric field through dielectric polarization. Meanwhile, the site-selective doping of oxygen-affinity Ca into Na layers and Ti into transition metal layers effectively stabilizes the bulk oxygen through modulating the O 2p band center and the oxygen migration barrier. Such a strategy also leads to a reversible structural evolution with a low volume change because of the enhanced structural integrality and improved oxygen rigidity. Because of these synergistic advantages, the designed electrode exhibits greatly suppressed voltage decay and capacity fading upon long-term cycling. This study affords a promising strategy for regulating the dynamic oxygen evolution to achieve high-capacity layered cathode materials.
Collapse
Affiliation(s)
- Xiao Xia
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Tong Liu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chen Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Hongtai Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Tianran Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Haolv Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Yihao Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Huanxin Ju
- PHI China Analytical Laboratory, CoreTech Integrated Limited, Nanjing, 211111, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Zhenwei Wu
- Institute of Nonequilibrium Systems, School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Yuefeng Su
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, China
| | - Yu Zhao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Duanyun Cao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| |
Collapse
|
23
|
Zhang L, Guan C, Zheng J, Li H, Li S, Li S, Lai Y, Zhang Z. Rational design of intergrowth P2/O3 biphasic layered structure with reversible anionic redox chemistry and structural evolution for Na-ions batteries. Sci Bull (Beijing) 2023; 68:180-191. [PMID: 36658032 DOI: 10.1016/j.scib.2023.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Layered oxides have attracted unprecedented attention for their outstanding performance in sodium-ion battery cathodes. Among them, the two typical candidates P2 and O3 type materials generally demonstrate large diversities in specific capacity and cycling endurance with their advantages. Thus, composite materials that contain both P2 and O3 have been widely designed and constructed. Nevertheless, the anionic/cationic ions' behavior and structural evolution in such complex structures remain unclear. In this study, a deep analysis of an advanced Na0.732Ni0.273Mg0.096Mn0.63O2 material that contains 78.39 wt% P2 phase and 21.61 wt% O3 phase is performed based on two typical cathodes P2 Na0.67Ni0.33Mn0.67O2 and O3 NaNi0.5Mn0.5O2 that have the same elemental constitution but different crystal structures. Structural analysis and density functional theory (DFT) calculations suggest that the composite is preferred to form a symbiotic structure at the atomic level, and the complex lattice texture of the biphase structure can block unfavorable ion and oxygen migration in the electrode process. Consequently, the biphase structure has significantly improved the electrochemical performance and kept preferable anionic oxygen redox reversibility. Furthermore, the hetero-epitaxy-like structure of the intergrowth of P2 and O3 structures share multi-phase boundaries, where the inconsistency in electrochemical behavior between P2 and O3 phases leads to an interlocking effect to prevent severe structural collapse and relieves the lattice strain from Na+ de/intercalation. Hence, the symbiotic P2/O3 composite materials exhibited a preferable capacity and cyclability (∼130 mAh g-1 at 0.1 C, 73.1% capacity retention after 200 cycles at 1 C), as well as reversible structural evolution. These findings confirmed the advantages of using the bi/multi-phase cathode for high-energy Na-ion batteries.
Collapse
Affiliation(s)
- Liuyun Zhang
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha 410083, China
| | - Chaohong Guan
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingqiang Zheng
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha 410083, China
| | - Huangxu Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Shihao Li
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha 410083, China
| | - Simin Li
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha 410083, China
| | - Yanqing Lai
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha 410083, China
| | - Zhian Zhang
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha 410083, China.
| |
Collapse
|
24
|
Zhao G, Kao CW, Gu Z, Zhou S, Chang LY, Yan T, Cheng C, Yuan C, Li H, Chan TS, Zhang L. Surface Defect Engineering of a Bimetallic Oxide Precatalyst Enables Kinetics-Enhanced Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49680-49688. [PMID: 36315848 DOI: 10.1021/acsami.2c12507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Developing efficient electrocatalysts to accelerate the sluggish conversion of lithium polysulfides (LiPSs) is of paramount importance for improving the performances of lithium-sulfur (Li-S) batteries. However, a consensus has not yet been reached on the in situ evolution of the electrocatalysts as well as the real catalytic active sites. Herein, defective MnV2O6 (D-MVO) is designed as a precatalyst toward LiPSs' adsorption and conversion. We reveal that the introduction of surface V defects can effectively accelerate the in situ sulfurization of D-MVO during the electrochemical cycling process, which acts as the real electrocatalyst for LiPSs' retention and catalysis. The in situ-sulfurized D-MVO demonstrates much higher electrocatalytic activity than the defect-free MVO toward LiPSs' redox conversion. With these merits, the Li-S batteries with D-MVO separators achieve superior long-term cycling performance with a low decay rate of 0.056% per cycle after 1000 cycles at 1C. Even under an elevated sulfur loading of 5.5 mg cm-2, a high areal capacity of 4.21 mAh cm-2 is still retained after 50 cycles at 0.1C. This work deepens the cognition of the dynamic evolution of the electrocatalysts and provides a favorable strategy for designing efficient precatalysts for advanced Li-S batteries using defect engineering.
Collapse
Affiliation(s)
- Gang Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Cheng-Wei Kao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Zhonghao Gu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Shaohui Zhou
- Shanghai Space Technology Co., Ltd., Shanghai 201109, China
| | - Lo-Yueh Chang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Tianran Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Chen Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Cheng Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Hongtai Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
25
|
Cheng C, Chen C, Chu S, Hu H, Yan T, Xia X, Feng X, Guo J, Sun D, Wu J, Guo S, Zhang L. Enhancing the Reversibility of Lattice Oxygen Redox Through Modulated Transition Metal-Oxygen Covalency for Layered Battery Electrodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201152. [PMID: 35315130 DOI: 10.1002/adma.202201152] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Utilizing reversible lattice oxygen redox (OR) in battery electrodes is an essential strategy to overcome the capacity limitation set by conventional transition metal redox. However, lattice OR reactions are often accompanied with irreversible oxygen oxidation, leading to local structural transformations and voltage/capacity fading. Herein, it is proposed that the reversibility of lattice OR can be remarkably improved through modulating transition metal-oxygen covalency for layered electrode of Na-ion batteries. By developing a novel layered P2-Na0.6 Mg0.15 Mn0.7 Cu0.15 O2 electrode, it is demonstrated that the highly electronegative Cu dopants can improve the lattice OR reversibility to 95% compared to 73% for Cu-free counterpart, as directly quantified through high-efficiency mapping of resonant inelastic X-ray scattering. Crucially, the large energetic overlap between Cu 3d and O 2p states dictates the rigidity of oxygen framework, which effectively mitigates the structural distortion of local oxygen environment upon (de)sodiation and leads to the enhanced lattice OR reversibility. The electrode also exhibits a completely solid-solution reaction with an ultralow volume change of only 0.45% and a reversible metal migration upon cycling, which together ensure the improved electrochemical performance. These results emphasize the critical role of transition metal-oxygen covalency for enhancing the reversibility of lattice OR toward high-capacity electrodes employing OR chemistry.
Collapse
Affiliation(s)
- Chen Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Chi Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Shiyong Chu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Haolv Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Tianran Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Xiao Xia
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Xuefei Feng
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Dan Sun
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Jinpeng Wu
- Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shaohua Guo
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| |
Collapse
|