1
|
Park J, Kim J, Choe G, Jung Y, Lee JY. Conductive hydrogel luminal filler for peripheral nerve regeneration. Biomaterials 2025; 317:123103. [PMID: 39827510 DOI: 10.1016/j.biomaterials.2025.123103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 12/06/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Peripheral nerve injuries impair quality of life due to pain and loss of sensory and motor functions. Current treatments like autografts and nerve guidance conduits (NGCs) have limitations in functional restoration. Luminal fillers can enhance the effectiveness of NGCs by providing beneficial intraneural environments. In this study, we devised a novel injectable conductive luminal filler that allows for electrically active environments and efficient electrical stimulation of nerves. We developed injectable conductive hydrogel as a luminal filler for NGCs, composed of pluronic-coated reduced graphene oxide (rGO) and gelatin-based polymers, that gels spontaneously under physiological conditions. This filler combines nerve-like softness (0.31 ± 0.02 kPa), appropriate conductivity (2.7 ± 0.3 mS/cm), quick gelation (<5 min), and in vivo degradability. In a rat peripheral nerve defect model, the conductive hydrogel filler with electrical stimulation showed promising results in nerve regrowth, myelination, and functional recovery, performing comparably to autografts. This study underscores the potential of conductive fillers in enhancing nerve regeneration therapies.
Collapse
Affiliation(s)
- Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Junghyun Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Goeun Choe
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
2
|
Tang Y, Feng S, Yao K, Cheung SW, Wang K, Zhou X, Xiang L. Exogenous electron generation techniques for biomedical applications: Bridging fundamentals and clinical practice. Biomaterials 2025; 317:123083. [PMID: 39798242 DOI: 10.1016/j.biomaterials.2025.123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/14/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025]
Abstract
Endogenous bioelectrical signals are quite crucial in biological development, governing processes such as regeneration and disease progression. Exogenous stimulation, which mimics endogenous bioelectrical signals, has demonstrated significant potential to modulate complex biological processes. Consequently, increasing scientific efforts have focused on developing methods to generate exogenous electrons for biological applications, primarily relying on piezoelectric, acoustoelectric, optoelectronic, magnetoelectric, and thermoelectric principles. Given the expanding body of literature on this topic, a systematic and comprehensive review is essential to foster a deeper understanding and facilitate clinical applications of these techniques. This review synthesizes and compares these methods for generating exogenous electrical signals, their underlying principles (e.g., semiconductor deformation, photoexcitation, vibration and relaxation, and charge separation), biological mechanisms, potential clinical applications, and device designs, highlighting their advantages and limitations. By offering a comprehensive perspective on the critical role of exogenous electrons in biological systems, elucidating the principles of various electron-generation techniques, and exploring possible pathways for developing medical devices utilizing exogenous electrons, this review aims to advance the field and support therapeutic innovation.
Collapse
Affiliation(s)
- Yufei Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shuqi Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Keyi Yao
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Sze Wing Cheung
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Kai Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Xuemei Zhou
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China.
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Zou Y, Zhang G, Yang Y, Huang H, Li Z, Chen X, Zheng D, Lu YG, Niu G. Advanced techniques and innovations in peripheral nerve repair: a comprehensive review for clinical and experimental reference. Rev Neurosci 2025; 36:243-265. [PMID: 39566026 DOI: 10.1515/revneuro-2024-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/17/2024] [Indexed: 11/22/2024]
Abstract
Peripheral nerve injury, resulting from various physical and chemical causes, has a high incidence and significant functional impact. This injury, affecting both sensory and motor functions, can severely diminish quality of life and cause mental health issues. Consequently, it is a major focus of current research. Recent advancements in peripheral nerve repair technology, including the application of new techniques and materials, have expanded the options for nerve repair methods. A comprehensive article that combines the pathological process of peripheral nerve repair with these methods is needed to advance research in this field. This review aims to provide a comprehensive overview of various techniques for repairing peripheral nerve injuries. Beginning with the histopathology of nerve injury, it evaluates these techniques in detail to offer clinical guidance. This review summarizes the advantages and disadvantages of various peripheral nerve repair methods, including photobiological modulation therapy, suture repair, nerve graft repair, vein graft catheter repair, muscle graft repair, laser welding repair, nerve catheter repair, nerve sliding repair technology, growth factor-assisted repair, stem cell therapy, and exosome therapy. Additionally, it explores future directions in the treatment of peripheral nerve injuries, providing valuable references for experimental research and clinical treatment.
Collapse
Affiliation(s)
- Yuchun Zou
- Fujian Key Laboratory of Oral Diseases, 74551 School and Hospital of Stomatology, Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University , Fuzhou 350004, China
| | - Gonghang Zhang
- Fujian Key Laboratory of Oral Diseases, 74551 School and Hospital of Stomatology, Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University , Fuzhou 350004, China
- School of Stomatology, 74551 Fujian Medical University , Fuzhou 350004, China
| | - Yuchen Yang
- Fujian Key Laboratory of Oral Diseases, 74551 School and Hospital of Stomatology, Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University , Fuzhou 350004, China
- School of Stomatology, 74551 Fujian Medical University , Fuzhou 350004, China
| | - Hankai Huang
- Fujian Key Laboratory of Oral Diseases, 74551 School and Hospital of Stomatology, Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University , Fuzhou 350004, China
- School of Stomatology, 74551 Fujian Medical University , Fuzhou 350004, China
| | - Zongxu Li
- Fujian Key Laboratory of Oral Diseases, 74551 School and Hospital of Stomatology, Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University , Fuzhou 350004, China
- School of Stomatology, 74551 Fujian Medical University , Fuzhou 350004, China
| | - Xiaohang Chen
- Fujian Key Laboratory of Oral Diseases, 74551 School and Hospital of Stomatology, Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University , Fuzhou 350004, China
- Department of Preventive Dentistry, 74551 School and Hospital of Stomatology, Fujian Medical University , 246 Yangqiao Middle Road, Fuzhou 350001, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, 74551 School and Hospital of Stomatology, Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University , Fuzhou 350004, China
| | - You-Guang Lu
- Fujian Key Laboratory of Oral Diseases, 74551 School and Hospital of Stomatology, Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University , Fuzhou 350004, China
- Department of Preventive Dentistry, 74551 School and Hospital of Stomatology, Fujian Medical University , 246 Yangqiao Middle Road, Fuzhou 350001, China
| | - Gang Niu
- Fujian Key Laboratory of Oral Diseases, 74551 School and Hospital of Stomatology, Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University , Fuzhou 350004, China
- Department of Maxillofacial Surgery, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Middle Road, Fuzhou 350002, China
| |
Collapse
|
4
|
Wang J, Fang J, Weng Z, Nan L, Chen Y, Shan J, Chen F, Liu J. Advanced development of conductive biomaterials for enhanced peripheral nerve regeneration: a review. RSC Adv 2025; 15:12997-13009. [PMID: 40271417 PMCID: PMC12013703 DOI: 10.1039/d5ra01107h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Peripheral nerve injury (PNI), as a major cause of disability worldwide, makes it difficult to achieve effective repair and regeneration. Including autologous nerve transplantation, traditional therapies are restricted by surgical intricacy, donor scarcity, and inconsistent recovery effects. As to nerve guidance conduits (NGCs), conductive materials have brought novel pathways for PNI repair. Such materials boost nerve regeneration via electrical stimulation and bring key mechanical stability and biophysical signaling. This review summarizes the progress in conductive materials for PNI therapy while emphasizing their functions in electrical stimulation (ES), bioelectric signal transmission, and cell behavior guidance, as well as revealing the design and function needs of nerve conduits. Additionally, our review highlights the demand for follow-up studies to accentuate material optimization and improve real-time electrical signal supervision. Accordingly, this research is insightful and contributes to developing PNI repair. This results in more efficacious therapies and enhanced outcomes.
Collapse
Affiliation(s)
- Jianguang Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China
| | - Jiaqi Fang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China
| | - Zhijie Weng
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China
| | - Liping Nan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China
| | - Yunfeng Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China
| | - Junkuan Shan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China
| | - Feng Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Stomatological Hospital, School of Stomatology, Fudan University Shanghai 201102 China
| | - Junjian Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China
| |
Collapse
|
5
|
Liu C, Sun M, Lin L, Luo Y, Peng L, Zhang J, Qiu T, Liu Z, Yin J, Yu M. Potentially commercializable nerve guidance conduits for peripheral nerve injury: Past, present, and future. Mater Today Bio 2025; 31:101503. [PMID: 40018056 PMCID: PMC11867546 DOI: 10.1016/j.mtbio.2025.101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 03/01/2025] Open
Abstract
Peripheral nerve injuries are a prevalent global issue that has garnered great concern. Although autografts remain the preferred clinical approach to repair, their efficacy is hampered by factors like donor scarcity. The emergence of nerve guidance conduits as novel tissue engineering tools offers a promising alternative strategy. This review aims to interpret nerve guidance conduits and their commercialization from both clinical and laboratory perspectives. To enhance comprehension of clinical situations, this article provides a comprehensive analysis of the clinical efficacy of nerve conduits approved by the United States Food and Drug Administration. It proposes that the initial six months post-transplantation is a critical window period for evaluating their efficacy. Additionally, this study conducts a systematic discussion on the research progress of laboratory conduits, focusing on biomaterials and add-on strategies as pivotal factors for nerve regeneration, as supported by the literature analysis. The clinical conduit materials and prospective optimal materials are thoroughly discussed. The add-on strategies, together with their distinct obstacles and potentials are deeply analyzed. Based on the above evaluations, the development path and manufacturing strategy for the commercialization of nerve guidance conduits are envisioned. The critical conclusion promoting commercialization is summarized as follows: 1) The optimization of biomaterials is the fundamental means; 2) The phased application of additional strategies is the emphasized direction; 3) The additive manufacturing techniques are the necessary tools. As a result, the findings of this research provide academic and clinical practitioners with valuable insights that may facilitate future commercialization endeavors of nerve guidance conduits.
Collapse
Affiliation(s)
- Chundi Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Mouyuan Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lining Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yaxian Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lianjie Peng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jingyu Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Tao Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhichao Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
6
|
Yao X, Xue T, Chen B, Zhou X, Ji Y, Gao Z, Liu B, Yang J, Shen Y, Sun H, Gu X, Dai B. Advances in biomaterial-based tissue engineering for peripheral nerve injury repair. Bioact Mater 2025; 46:150-172. [PMID: 39760068 PMCID: PMC11699443 DOI: 10.1016/j.bioactmat.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Peripheral nerve injury is a common clinical disease. Effective post-injury nerve repair remains a challenge in neurosurgery, and clinical outcomes are often unsatisfactory, resulting in social and economic burden. Particularly, the repair of long-distance nerve defects remains a challenge. The existing nerve transplantation strategies show limitations, including donor site morbidity and immune rejection issues. The multiple studies have revealed the potential of tissue engineering strategies based on biomaterials in the repair of peripheral nerve injuries. We review the events of regeneration after peripheral nerve injury, evaluates the efficacy of existing nerve grafting strategies, and delves into the progress in the construction and application strategies of different nerve guidance conduits. A spotlight is cast on the materials, technologies, seed cells, and microenvironment within these conduits to facilitate optimal nerve regeneration. Further discussion was conducted on the approve of nerve guidance conduits and potential future research directions. This study anticipates and proposes potential avenues for future research, aiming to refine existing strategies and uncover innovative approaches in biomaterial-based nerve repair. This study endeavors to synthesize the collective insights from the fields of neuroscience, materials science, and regenerative medicine, offering a multifaceted perspective on the role of biomaterials in advancing the frontiers of peripheral nerve injury treatment.
Collapse
Affiliation(s)
- Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Tong Xue
- Department of Paediatrics and Clinical Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Bingqian Chen
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu Province, 215500, PR China
| | - Xinyang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Jiawen Yang
- Department of Paediatrics and Clinical Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
- Research and Development Center for E-Learning, Ministry of Education, Beijing, 100816, PR China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Bin Dai
- Department of Orthopedics, Binhai County People's Hospital, Binhai, Jiangsu Province, 224500, PR China
| |
Collapse
|
7
|
Bi S, He C, Zhou Y, Liu R, Chen C, Zhao X, Zhang L, Cen Y, Gu J, Yan B. Versatile conductive hydrogel orchestrating neuro-immune microenvironment for rapid diabetic wound healing through peripheral nerve regeneration. Biomaterials 2025; 314:122841. [PMID: 39293307 DOI: 10.1016/j.biomaterials.2024.122841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Diabetic wound (DW), notorious for prolonged healing processes due to the unregulated immune response, neuropathy, and persistent infection, poses a significant challenge to clinical management. Current strategies for treating DW primarily focus on alleviating the inflammatory milieu or promoting angiogenesis, while limited attention has been given to modulating the neuro-immune microenvironment. Thus, we present an electrically conductive hydrogel dressing and identify its neurogenesis influence in a nerve injury animal model initially by encouraging the proliferation and migration of Schwann cells. Further, endowed with the synergizing effect of near-infrared responsive release of curcumin and nature-inspired artificial heterogeneous melanin nanoparticles, it can harmonize the immune microenvironment by restoring the macrophage phenotype and scavenging excessive reactive oxygen species. This in-situ formed hydrogel also exhibits mild photothermal therapy antibacterial efficacy. In the infected DW model, this hydrogel effectively supports nerve regeneration and mitigates the immune microenvironment, thereby expediting the healing progress. The versatile hydrogel exhibits significant therapeutic potential for application in DW healing through fine-tuning the neuro-immune microenvironment.
Collapse
Affiliation(s)
- Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Changyuan He
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610000, China
| | - Yannan Zhou
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Chong Chen
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610000, China
| | - Xueshan Zhao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Li Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China.
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China.
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610000, China.
| |
Collapse
|
8
|
Wang P, You J, Liu G, Wang Q, Zhang L, Lu X, Qin J, Dong Z, Yi B, Huang Q. The Combination of Aligned PDA-Fe@PLCL Conduit with Aligned GelMA Hydrogel Promotes Peripheral Nerve Regeneration. Adv Healthc Mater 2025; 14:e2403370. [PMID: 39718234 DOI: 10.1002/adhm.202403370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/01/2024] [Indexed: 12/25/2024]
Abstract
Biomaterial-assisted therapeutic strategies enable precise modulation to direct endogenous cellular responses and harness regenerative capabilities for nerve repair. However, achieving effective cellular engagement during nerve remodeling remains challenging. Herein, a novel composite nerve guidance conduit (NGC), the GelMA/PLys@PDA-Fe@PLCL conduit is developed by combining aligned poly(l-lactide-co-caprolactone) (PLCL) nanofibers modified with polydopamine (PDA), ferrous iron (Fe3⁺), and polylysine (PLys) with aligned methacrylate-anhydride gelatin (GelMA) hydrogel nanofibers. PDA films exhibit strong adhesion and metal coordination properties, allowing Fe3⁺ irons to chelate with phenolic hydroxyl groups of dopamine derivatives, forming a metal-phenolic network on PLCL. PLys molecules are then grafted onto PDA-Fe3⁺ coating via Schiff base and Michael addition reactions. This multifunctional coating enhances surface roughness and zeta potential of PLCL nanofibers, imparts superhydrophilicity with anisotropic wetting behavior, and maintains wet tensile properties of substrates. In vitro studies show that the PLys@PDA-Fe coating significantly promotes aligned distribution of Schwann cells, improves cell adhesion and differentiation, and demonstrates notable antioxidant and anti-inflammatory properties. When implanted into nerve defects in rats, the multifunctional coating conduit combined with aligned GelMA hydrogel effectively accelerates axonal regeneration, remyelination, and angiogenesis, leading to enhanced motor function recovery. Overall, the GelMA/PLys@PDA-Fe@PLCL conduit presents a promising strategy for advancing peripheral nerve repair.
Collapse
Affiliation(s)
- Penghui Wang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jiongming You
- Department of Orthopedic, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, WenZhou, Zhejiang, 325000, China
| | - Guang Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Qiming Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Linjie Zhang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Zhihui Dong
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Bingcheng Yi
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
- Department of Traditional Chinese Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
| | - Qun Huang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
9
|
Zhu Y, Song C, Yao D, Qiao F, Zou Y, Lv Y. Liquid Metal-Based Conductive Nerve Guidance Conduit Combined With Electrical Stimulation Boosts Peripheral Nerve Repair. J Biomed Mater Res A 2025; 113:e37880. [PMID: 39893555 DOI: 10.1002/jbm.a.37880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
The combination of nerve guide conduits (NGCs) and electrical stimulation (ES) is an effective treatment for peripheral nerve injury (PNI). Flexible conductive materials with mechanical properties similar to those of biological tissues have been shown to have better long-term biointegration and functionality than rigid conductive materials. In this study, liquid metal (LM)-based conductive polycaprolactone/gelatin/polypyrrole/LM (PCL/Gel/PPy/LM, PGPL) NGC was combined with exogenous ES to repair PNI. PGPL membranes had good hydrophilicity, degradability, and mechanical properties, and its conductivity reached 0.66 ± 0.02 S/m. In vitro studies showed that the combination of PGPL membranes and ES (2 Hz, 100 mV/cm, 30 min/d) could significantly increase the expression of neuromarkers and had a better pro-neural differentiation effect. In vivo studies demonstrated that PGPL NGCs in combination with ES (2 Hz, 200 mV/mm, 30 min/d) could effectively promote morphological reconstruction and functional recovery of the sciatic nerve in rats. At 3 months post-surgery, PGPL NGCs combined with ES restored the nerve conduction velocity to 73.85% ± 5.45% of the normal value. The LM-based NGCs prepared in this study could effectively repair long sciatic nerve defects, which may further expand the application of LM in the field of nerve tissue engineering.
Collapse
Affiliation(s)
- Yujie Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, P. R. China
| | - Chenchen Song
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Dongdong Yao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Fangyu Qiao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Yang Zou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, P. R. China
- School of Environmental Engineering, Wuhan Textile University, Wuhan, P. R. China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, P. R. China
| |
Collapse
|
10
|
Cui X, Huang C, Huang Y, Zhang Y, Wu J, Wang G, Zhou XZ, Zhang J, Wang L, Cheng L, Zhang KQ. Amplification of Metalloregulatory Proteins in Macrophages by Bioactive ZnMn@SF Hydrogels for Spinal Cord Injury Repair. ACS NANO 2024; 18:33614-33628. [PMID: 39579147 DOI: 10.1021/acsnano.4c12236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Macrophages are rapidly activated and polarized toward the M1 phenotype after spinal cord injury (SCI), and inhibiting M1-like macrophages has emerged as a promising SCI treatment approach. Metalloregulatory proteins, which sense specific metal ions with high affinity and specificity, play a critical role in immune regulation. Here, we screened various bioactive metal ions associated with metalloregulatory proteins and discovered that Zn2+ and Mn2+ effectively suppressed M1 polarization. Based on these findings, mildly alkaline ZnMn-based layered double hydroxides (ZnMn-LDHs) self-assembled from Zn2+ coordinated with Mn2+ were developed to inhibit M1-like macrophages. ZnMn-LDHs effectively neutralized the acidic environment and promoted the expression of metalloregulatory proteins, including metallothionein (MT), superoxide dismutase 1 (SOD1), and superoxide dismutase 2 (SOD2), thereby eliciting robust M1-like macrophage inhibition. More importantly, nerve growth factor (NGF) released by macrophages following the regulation by ZnMn-LDHs promoted the elongation and spreading of Schwann cells. By integrating ZnMn-LDHs with silk fibroin (SF), ZnMn@SF injectable hydrogels were constructed for SCI repair. An in vivo animal model further revealed the excellent anti-inflammatory effects of the ZnMn@SF hydrogels in treating SCI, which promoted functional recovery. Our findings underscore the importance of metalloregulatory proteins regulated by metal ions in inhibiting M1-like macrophages, providing a promising therapeutic strategy for SCI treatment.
Collapse
Affiliation(s)
- Xiaoliang Cui
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Cheng Huang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yechen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yuxuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jie Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Gang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Xiao-Zhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jun Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Li Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Wei S, Xiong F, Gu H, Zhang Z, Xuan H, Jin Y, Xue Y, Li B, Feng W, Yuan H. Highly aligned electroactive ultrafine fibers promote the differentiation of mesenchymal stem cells into Schwann-like cells for nerve regeneration. Int J Biol Macromol 2024; 279:135388. [PMID: 39255892 DOI: 10.1016/j.ijbiomac.2024.135388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
This study investigates the efficacy of a novel tissue-engineered scaffold for nerve repair and functional reconstruction following injury. Utilizing stable jet electrospinning, we fabricated aligned ultrafine fibers from dopamine and poly(L-lactic acid) (PLLA), further developing a biomimetic, oriented, and electroactive scaffold comprising poly(pyrrole) (PPy), polydopamine (PDA), and PLLA through dual in situ polymerizations. The scaffold demonstrated enhanced cell adhesion and reactive oxygen species (ROS) scavenging capabilities and promoted the differentiation of mesenchymal stem cells (MSCs) into Schwann-like cells, essential for nerve regeneration. In vivo assessments revealed significant peripheral nerve regeneration in 10 mm sciatic nerve defects in rats, with observations made 12 weeks post-transplantation. This included facilitated myelination and increased muscle density on the injured side, leading to improved motor function recovery. Our results suggest that the aligned PPy/PDA/PLLA fibrous scaffold offers a promising approach for promoting the differentiation of MSCs into Schwann-like cells conducive to nerve regeneration and represents a significant advancement in nerve repair technologies. This study provides a foundational basis for future research into tissue-engineered solutions for nerve damage, potentially impacting clinical strategies for nerve reconstruction.
Collapse
Affiliation(s)
- Shuo Wei
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Feng Xiong
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Haonan Gu
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Zhuojun Zhang
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Hongyun Xuan
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Yan Jin
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Ye Xue
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Biyun Li
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, PR China.
| | - Wei Feng
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China; School of Medicine, Shanghai University, Shanghai 200444, PR China.
| | - Huihua Yuan
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, PR China.
| |
Collapse
|
12
|
Wang X, Chen K, Xu D, Wu S, Wu P, Ji Z, Kuang J, Zhang KY, Liu S, Zhao Q. Cyclometalated Iridium(III) Complexes Containing Viologen-Modified Phenylpyridine Ligands as Electroluminochromic Active Molecules for Information Display. SMALL METHODS 2024; 8:e2400113. [PMID: 38552252 DOI: 10.1002/smtd.202400113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/03/2024] [Indexed: 11/22/2024]
Abstract
Electroluminochromic (ELC) materials have garnered significant research interest because of their potential applications in lighting, displaying, and sensing. These materials exhibit reversible modulation of photoluminescence under low-voltage stimuli. Here five phosphorescent iridium(III) complexes are reported featuring viologen-substituted 2-phenylpyridine (Vppy) ligands acting as electroactive components. Four of the complexes are bis-cyclometalated and coordinated with either neutral bipyridine derivatives or negatively charged 2-picolinate. The remaining complex is heteroleptic tris-cyclometalated, containing one Vppy and two 2-phenylquinoline ligands. Upon photoexcitation, the bis-cyclometalated complexes exhibit orange to red phosphorescence originating from mixed triplet metal-to-ligand charge transfer (3MLCT) and intraligand (3IL) dπ(Ir)/π(Vppy) → π*(Vppy) state, whereas the tris-cyclometalated complex is non-emissive due to a low Ir(IV/III) oxidation potential favoring oxidative quenching by the viologen pendants. When the cationic viologens are electrochemically reduced to their neutral form, the bis-cyclometalated complexes show a remarkable blue-shift in their phosphorescence maxima due to increased energy levels of the Vppy molecular orbitals. In the case of the tris-cyclometalated complex, reduction of the viologen groups interrupts the quenching process, leading to a luminescence turn-on. These complexes are used to develop ELC devices, which exhibit reversible luminescence response in terms of color or on-off switching under a low voltage of 2 V.
Collapse
Affiliation(s)
- Xuecheng Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Kun Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Dandong Xu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Shuzi Wu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Pengcheng Wu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Zhixin Ji
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Jianru Kuang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Kenneth Yin Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| |
Collapse
|
13
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Omidian H, Wilson RL. Polydopamine Applications in Biomedicine and Environmental Science. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3916. [PMID: 39203091 PMCID: PMC11355457 DOI: 10.3390/ma17163916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
This manuscript explores the multifaceted applications of polydopamine (PDA) across various scientific and industrial domains. It covers the chemical aspects of PDA and its potential in bone tissue engineering, implant enhancements, cancer treatment, and nanotechnology. The manuscript investigates PDA's roles in tissue engineering, cell culture technologies, surface modifications, drug delivery systems, and sensing techniques. Additionally, it highlights PDA's contributions to microfabrication, nanoengineering, and environmental applications. Through detailed testing and assessment, the study identifies limitations in PDA-related research, such as synthesis complexity, incomplete mechanistic understanding, and biocompatibility variability. It also proposes future research directions aimed at improving synthesis techniques, expanding biomedical applications, and enhancing sensing technologies to optimize PDA's efficacy and scalability.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
15
|
Liu K, Tang W, Jin S, Hao X, Hu Y, Zhou T, Zhou C, Chen G, Cui Y, Liu Q, Zhang Z. PLCL/SF/NGF nerve conduit loaded with RGD-TA-PPY hydrogel promotes regeneration of sciatic nerve defects in rats through PI3K/AKT signalling pathways. J Cell Mol Med 2024; 28:e18544. [PMID: 39098996 PMCID: PMC11298313 DOI: 10.1111/jcmm.18544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024] Open
Abstract
Peripheral nerve defect are common clinical problem caused by trauma or other diseases, often leading to the loss of sensory and motor function in patients. Autologous nerve transplantation has been the gold standard for repairing peripheral nerve defects, but its clinical application is limited due to insufficient donor tissue. In recent years, the application of tissue engineering methods to synthesize nerve conduits for treating peripheral nerve defect has become a current research focus. This study introduces a novel approach for treating peripheral nerve defects using a tissue-engineered PLCL/SF/NGF@TA-PPy-RGD conduit. The conduit was fabricated by combining electrospun PLCL/SF with an NGF-loaded conductive TA-PPy-RGD gel. The gel, synthesized from RGD-modified tannic acid (TA) and polypyrrole (PPy), provides growth anchor points for nerve cells. In vitro results showed that this hybrid conduit could enhance PC12 cell proliferation, migration, and reduce apoptosis under oxidative stress. Furthermore, the conduit activated the PI3K/AKT signalling pathway in PC12 cells. In a rat model of sciatic nerve defect, the PLCL/SF/NGF@TA-PPy-RGD conduit significantly improved motor function, gastrocnemius muscle function, and myelin sheath axon thickness, comparable to autologous nerve transplantation. It also promoted angiogenesis around the nerve defect. This study suggests that PLCL/SF/NGF@TA-PPy-RGD conduits provide a conducive environment for nerve regeneration, offering a new strategy for peripheral nerve defect treatment, this study provided theoretical basis and new strategies for the research and treatment of peripheral nerve defect.
Collapse
Affiliation(s)
- Kunyu Liu
- Department of OrthopedicThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Weilong Tang
- Department of OrthopedicThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Shixin Jin
- Department of OrthopedicThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xin Hao
- Department of OrthopedicThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yuhang Hu
- Department of OrthopedicThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Tianyi Zhou
- Department of OrthopedicThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Chenliang Zhou
- Department of OrthopedicThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Guanghua Chen
- Department of OrthopedicThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yifeng Cui
- Department of Hepatic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Qianqi Liu
- Department of UltrasoundThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhenyu Zhang
- Department of OrthopedicThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
16
|
Yu L, Bennett CJ, Lin CH, Yan S, Yang J. Scaffold design considerations for peripheral nerve regeneration. J Neural Eng 2024; 21:10.1088/1741-2552/ad628d. [PMID: 38996412 PMCID: PMC11883895 DOI: 10.1088/1741-2552/ad628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Peripheral nerve injury (PNI) represents a serious clinical and public health problem due to its high incurrence and poor spontaneous recovery. Compared to autograft, which is still the best current practice for long-gap peripheral nerve defects in clinics, the use of polymer-based biodegradable nerve guidance conduits (NGCs) has been gaining momentum as an alternative to guide the repair of severe PNI without the need of secondary surgery and donor nerve tissue. However, simple hollow cylindrical tubes can barely outperform autograft in terms of the regenerative efficiency especially in critical sized PNI. With the rapid development of tissue engineering technology and materials science, various functionalized NGCs have emerged to enhance nerve regeneration over the past decades. From the aspect of scaffold design considerations, with a specific focus on biodegradable polymers, this review aims to summarize the recent advances in NGCs by addressing the onerous demands of biomaterial selections, structural designs, and manufacturing techniques that contributes to the biocompatibility, degradation rate, mechanical properties, drug encapsulation and release efficiency, immunomodulation, angiogenesis, and the overall nerve regeneration potential of NGCs. In addition, several commercially available NGCs along with their regulation pathways and clinical applications are compared and discussed. Lastly, we discuss the current challenges and future directions attempting to provide inspiration for the future design of ideal NGCs that can completely cure long-gap peripheral nerve defects.
Collapse
Affiliation(s)
- Le Yu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Carly Jane Bennett
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Chung-Hsun Lin
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Jian Yang
- Biomedical Engineering Program, Westlake University, Hangzhou, Zhejiang 310030, People’s Republic of China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, People’s Republic of China
| |
Collapse
|
17
|
Li L, Chu Z, Li S, Zheng T, Wei S, Zhao Y, Liu P, Lu Q. BDNF-loaded chitosan-based mimetic mussel polymer conduits for repair of peripheral nerve injury. Front Cell Dev Biol 2024; 12:1431558. [PMID: 39011392 PMCID: PMC11246889 DOI: 10.3389/fcell.2024.1431558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Care for patients with peripheral nerve injury is multifaceted, as traditional methods are not devoid of limitations. Although the utilization of neural conduits shows promise as a therapeutic modality for peripheral nerve injury, its efficacy as a standalone intervention is limited. Hence, there is a pressing need to investigate a composite multifunctional neural conduit as an alternative treatment for peripheral nerve injury. In this study, a BDNF-loaded chitosan-based mimetic mussel polymer conduit was prepared. Its unique adhesion characteristics allow it to be suture-free, improve the microenvironment of the injury site, and have good antibacterial properties. Researchers utilized a rat sciatic nerve injury model to evaluate the progression of nerve regeneration at the 12-week postoperative stage. The findings of this study indicate that the chitosan-based mimetic mussel polymer conduit loaded with BDNF had a substantial positive effect on myelination and axon outgrowth. The observed impact demonstrated a favorable outcome in terms of sciatic nerve regeneration and subsequent functional restoration in rats with a 15-mm gap. Hence, this approach is promising for nerve tissue regeneration during peripheral nerve injury.
Collapse
Affiliation(s)
- Lei Li
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Ziyue Chu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shihao Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tong Zheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shusheng Wei
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yunpeng Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peilai Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qunshan Lu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
18
|
Liu K, Yan S, Liu Y, Liu J, Li R, Zhao L, Liu B. Conductive and alignment-optimized porous fiber conduits with electrical stimulation for peripheral nerve regeneration. Mater Today Bio 2024; 26:101064. [PMID: 38698883 PMCID: PMC11063606 DOI: 10.1016/j.mtbio.2024.101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Autologous nerve transplantation (ANT) is currently considered the gold standard for treating long-distance peripheral nerve defects. However, several challenges associated with ANT, such as limited availability of donors, donor site injury, mismatched nerve diameters, and local neuroma formation, remain unresolved. To address these issues comprehensively, we have developed porous poly(lactic-co-glycolic acid) (PLGA) electrospinning fiber nerve guide conduits (NGCs) that are optimized in terms of alignment and conductive coating to facilitate peripheral nerve regeneration (PNR) under electrical stimulation (ES). The physicochemical and biological properties of aligned porous PLGA fibers and poly(3,4-ethylenedioxythiophene):polystyrene sodium sulfonate (PEDOT:PSS) coatings were characterized through assessments of electrical conductivity, surface morphology, mechanical properties, hydrophilicity, and cell proliferation. Material degradation experiments demonstrated the biocompatibility in vivo of electrospinning fiber films with conductive coatings. The conductive NGCs combined with ES effectively facilitated nerve regeneration. The designed porous aligned NGCs with conductive coatings exhibited suitable physicochemical properties and excellent biocompatibility, thereby significantly enhancing PNR when combined with ES. This combination of porous aligned NGCs with conductive coatings and ES holds great promise for applications in the field of PNR.
Collapse
Affiliation(s)
- Kai Liu
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, 130021, China
| | - Shuai Yan
- Department of Operating Room, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yao Liu
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, 130021, China
- Department of Sport Medicine, Orthopedics Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Jianfeng Liu
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, 130021, China
| | - Ruijun Li
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, 130021, China
| | - Lirong Zhao
- Department of Ultrasound, The First Hospital of Jilin University, Changchun, 130021, China
| | - Bin Liu
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, 130021, China
| |
Collapse
|
19
|
Zhou Z, Liu J, Xiong T, Liu Y, Tuan RS, Li ZA. Engineering Innervated Musculoskeletal Tissues for Regenerative Orthopedics and Disease Modeling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310614. [PMID: 38200684 DOI: 10.1002/smll.202310614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Musculoskeletal (MSK) disorders significantly burden patients and society, resulting in high healthcare costs and productivity loss. These disorders are the leading cause of physical disability, and their prevalence is expected to increase as sedentary lifestyles become common and the global population of the elderly increases. Proper innervation is critical to maintaining MSK function, and nerve damage or dysfunction underlies various MSK disorders, underscoring the potential of restoring nerve function in MSK disorder treatment. However, most MSK tissue engineering strategies have overlooked the significance of innervation. This review first expounds upon innervation in the MSK system and its importance in maintaining MSK homeostasis and functions. This will be followed by strategies for engineering MSK tissues that induce post-implantation in situ innervation or are pre-innervated. Subsequently, research progress in modeling MSK disorders using innervated MSK organoids and organs-on-chips (OoCs) is analyzed. Finally, the future development of engineering innervated MSK tissues to treat MSK disorders and recapitulate disease mechanisms is discussed. This review provides valuable insights into the underlying principles, engineering methods, and applications of innervated MSK tissues, paving the way for the development of targeted, efficacious therapies for various MSK conditions.
Collapse
Affiliation(s)
- Zhilong Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Jun Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Tiandi Xiong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Yuwei Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, P. R. China
| | - Rocky S Tuan
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
20
|
Sharifi M, Kamalabadi-Farahani M, Salehi M, Ebrahimi-Barough S, Alizadeh M. Recent advances in enhances peripheral nerve orientation: the synergy of micro or nano patterns with therapeutic tactics. J Nanobiotechnology 2024; 22:194. [PMID: 38643117 PMCID: PMC11031871 DOI: 10.1186/s12951-024-02475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
Several studies suggest that topographical patterns influence nerve cell fate. Efforts have been made to improve nerve cell functionality through this approach, focusing on therapeutic strategies that enhance nerve cell function and support structures. However, inadequate nerve cell orientation can impede long-term efficiency, affecting nerve tissue repair. Therefore, enhancing neurites/axons directional growth and cell orientation is crucial for better therapeutic outcomes, reducing nerve coiling, and ensuring accurate nerve fiber connections. Conflicting results exist regarding the effects of micro- or nano-patterns on nerve cell migration, directional growth, immunogenic response, and angiogenesis, complicating their clinical use. Nevertheless, advances in lithography, electrospinning, casting, and molding techniques to intentionally control the fate and neuronal cells orientation are being explored to rapidly and sustainably improve nerve tissue efficiency. It appears that this can be accomplished by combining micro- and nano-patterns with nanomaterials, biological gradients, and electrical stimulation. Despite promising outcomes, the unclear mechanism of action, the presence of growth cones in various directions, and the restriction of outcomes to morphological and functional nerve cell markers have presented challenges in utilizing this method. This review seeks to clarify how micro- or nano-patterns affect nerve cell morphology and function, highlighting the potential benefits of cell orientation, especially in combined approaches.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | | | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
21
|
Zhang Z, Ma M. Strategies to enhance the ability of nerve guidance conduits to promote directional nerve growth. Biomed Eng Online 2024; 23:40. [PMID: 38582838 PMCID: PMC10998375 DOI: 10.1186/s12938-024-01233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
Severely damaged peripheral nerves will regenerate incompletely due to lack of directionality in their regeneration, leading to loss of nerve function. To address this problem, various nerve guidance conduits (NGCs) have been developed to provide guidance for nerve repair. However, their clinical application is still limited, mainly because its effect in promoting nerve repair is not as good as autologous nerve transplantation. Therefore, it is necessary to enhance the ability of NGCs to promote directional nerve growth. Strategies include preparing various directional structures on NGCs to provide contact guidance, and loading various substances on them to provide electrical stimulation or neurotrophic factor concentration gradient to provide directional physical or biological signals.
Collapse
Affiliation(s)
- Ziyue Zhang
- South China University of Technology School of Medicine, Guangzhou, China.
| | - Muyuan Ma
- South China University of Technology School of Medicine, Guangzhou, China
| |
Collapse
|
22
|
Zhao Y, Liu Y, Lu C, Sun D, Kang S, Wang X, Lu L. Reduced Graphene Oxide Fibers Combined with Electrical Stimulation Promote Peripheral Nerve Regeneration. Int J Nanomedicine 2024; 19:2341-2357. [PMID: 38469057 PMCID: PMC10926921 DOI: 10.2147/ijn.s449160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Background The treatment of long-gap peripheral nerve injury (PNI) is still a substantial clinical problem. Graphene-based scaffolds possess extracellular matrix (ECM) characteristic and can conduct electrical signals, therefore have been investigated for repairing PNI. Combined with electrical stimulation (ES), a well performance should be expected. We aimed to determine the effects of reduced graphene oxide fibers (rGOFs) combined with ES on PNI repair in vivo. Methods rGOFs were prepared by one-step dimensionally confined hydrothermal strategy (DCH). Surface characteristics, chemical compositions, electrical and mechanical properties of the samples were characterized. The biocompatibility of the rGOFs were systematically explored both in vitro and in vivo. Total of 54 Sprague-Dawley (SD) rats were randomized into 6 experimental groups: a silicone conduit (S), S+ES, S+rGOFs-filled conduit (SGC), SGC+ES, nerve autograft, and sham groups for a 10-mm sciatic defect. Functional and histological recovery of the regenerated sciatic nerve at 12 weeks after surgery in each group of SD rats were evaluated. Results rGOFs exhibited aligned micro- and nano-channels with excellent mechanical and electrical properties. They are biocompatible in vitro and in vivo. All 6 groups exhibited PNI repair outcomes in view of neurological and morphological recovery. The SGC+ES group achieved similar therapeutic effects as nerve autograft group (P > 0.05), significantly outperformed other treatment groups. Immunohistochemical analysis showed that the expression of proteins related to axonal regeneration and angiogenesis were relatively higher in the SGC+ES. Conclusion The rGOFs had good biocompatibility combined with excellent electrical and mechanical properties. Combined with ES, the rGOFs provided superior motor nerve recovery for a 10-mm nerve gap in a murine acute transection injury model, indicating its excellent repairing ability. That the similar therapeutic effects as autologous nerve transplantation make us believe this method is a promising way to treat peripheral nerve defects, which is expected to guide clinical practice in the future.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yang Liu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Cheng Lu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Daokuan Sun
- School of Materials Science and Engineering, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Shiqi Kang
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Xin Wang
- School of Materials Science and Engineering, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Laijin Lu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
23
|
Li Y, Liu S, Zhang J, Wang Y, Lu H, Zhang Y, Song G, Niu F, Shen Y, Midgley AC, Li W, Kong D, Zhu M. Elastic porous microspheres/extracellular matrix hydrogel injectable composites releasing dual bio-factors enable tissue regeneration. Nat Commun 2024; 15:1377. [PMID: 38355941 PMCID: PMC10866888 DOI: 10.1038/s41467-024-45764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Injectable biomaterials have garnered increasing attention for their potential and beneficial applications in minimally invasive surgical procedures and tissue regeneration. Extracellular matrix (ECM) hydrogels and porous synthetic polymer microspheres can be prepared for injectable administration to achieve in situ tissue regeneration. However, the rapid degradation of ECM hydrogels and the poor injectability and biological inertness of most polymeric microspheres limit their pro-regenerative capabilities. Here, we develop a biomaterial system consisting of elastic porous poly(l-lactide-co-ε-caprolactone) (PLCL) microspheres mixed with ECM hydrogels as injectable composites with interleukin-4 (IL-4) and insulin-like growth factor-1 (IGF-1) dual-release functionality. The developed multifunctional composites have favorable injectability and biocompatibility, and regulate the behavior of macrophages and myogenic cells following injection into muscle tissue. The elicited promotive effects on tissue regeneration are evidenced by enhanced neomusle formation, vascularization, and neuralization at 2-months post-implantation in a male rat model of volumetric muscle loss. Our developed system provides a promising strategy for engineering bioactive injectable composites that demonstrates desirable properties for clinical use and holds translational potential for application as a minimally invasive and pro-regenerative implant material in multiple types of surgical procedures.
Collapse
Affiliation(s)
- Yi Li
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Siyang Liu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jingjing Zhang
- Chifeng Municipal Hospital, Chifeng, 024000, Inner Mongolia, China
| | - Yumeng Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Hongjiang Lu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yuexi Zhang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, Zhejiang, China
| | - Guangzhou Song
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Fanhua Niu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yufan Shen
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Adam C Midgley
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Wen Li
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Deling Kong
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Meifeng Zhu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
24
|
Wang Y, Guo J, Cao X, Zhao Y. Developing conductive hydrogels for biomedical applications. SMART MEDICINE 2024; 3:e20230023. [PMID: 39188512 PMCID: PMC11235618 DOI: 10.1002/smmd.20230023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 08/28/2024]
Abstract
Conductive hydrogels have attracted copious attention owing to their grateful performances, such as similarity to biological tissues, compliance, conductivity and biocompatibility. A diversity of conductive hydrogels have been developed and showed versatile potentials in biomedical applications. In this review, we highlight the recent advances in conductive hydrogels, involving the various types and functionalities of conductive hydrogels as well as their applications in biomedical fields. Furthermore, the current challenges and the reasonable outlook of conductive hydrogels are also given. It is expected that this review will provide potential guidance for the advancement of next-generation conductive hydrogels.
Collapse
Affiliation(s)
- Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Jiahui Guo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Xinyue Cao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
25
|
Convertino D, Nencioni M, Russo L, Mishra N, Hiltunen VM, Bertilacchi MS, Marchetti L, Giacomelli C, Trincavelli ML, Coletti C. Interaction of graphene and WS 2 with neutrophils and mesenchymal stem cells: implications for peripheral nerve regeneration. NANOSCALE 2024; 16:1792-1806. [PMID: 38175567 DOI: 10.1039/d3nr04927b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Graphene and bidimensional (2D) materials have been widely used in nerve conduits to boost peripheral nerve regeneration. Nevertheless, the experimental and commercial variability in graphene-based materials generates graphene forms with different structures and properties that can trigger entirely diverse biological responses from all the players involved in nerve repair. Herein, we focus on the graphene and tungsten disulfide (WS2) interaction with non-neuronal cell types involved in nerve tissue regeneration. We synthesize highly crystalline graphene and WS2 with scalable techniques such as thermal decomposition and chemical vapor deposition. The materials were able to trigger the activation of a neutrophil human model promoting Neutrophil Extracellular Traps (NETs) production, particularly under basal conditions, although neutrophils were not able to degrade graphene. Of note is that pristine graphene acts as a repellent for the NET adhesion, a beneficial property for nerve conduit long-term applications. Mesenchymal stem cells (MSCs) have been proposed as a promising strategy for nerve regeneration in combination with a conduit. Thus, the interaction of graphene with MSCs was also investigated, and reduced viability was observed only on specific graphene substrates. Overall, the results confirm the possibility of regulating the cell response by varying graphene properties and selecting the most suitable graphene forms.
Collapse
Affiliation(s)
- Domenica Convertino
- Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy.
| | - Martina Nencioni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy.
| | - Lara Russo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy.
| | - Neeraj Mishra
- Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy.
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, Italy
| | - Vesa-Matti Hiltunen
- Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy.
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, Italy
| | | | - Laura Marchetti
- Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy.
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy.
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy.
| | | | - Camilla Coletti
- Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy.
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, Italy
| |
Collapse
|
26
|
Convertino D, Trincavelli ML, Giacomelli C, Marchetti L, Coletti C. Graphene-based nanomaterials for peripheral nerve regeneration. Front Bioeng Biotechnol 2023; 11:1306184. [PMID: 38164403 PMCID: PMC10757979 DOI: 10.3389/fbioe.2023.1306184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Emerging nanotechnologies offer numerous opportunities in the field of regenerative medicine and have been widely explored to design novel scaffolds for the regeneration and stimulation of nerve tissue. In this review, we focus on peripheral nerve regeneration. First, we introduce the biomedical problem and the present status of nerve conduits that can be used to guide, fasten and enhance regeneration. Then, we thoroughly discuss graphene as an emerging candidate in nerve tissue engineering, in light of its chemical, tribological and electrical properties. We introduce the graphene forms commonly used as neural interfaces, briefly review their applications, and discuss their potential toxicity. We then focus on the adoption of graphene in peripheral nervous system applications, a research field that has gained in the last years ever-increasing attention. We discuss the potential integration of graphene in guidance conduits, and critically review graphene interaction not only with peripheral neurons, but also with non-neural cells involved in nerve regeneration; indeed, the latter have recently emerged as central players in modulating the immune and inflammatory response and accelerating the growth of new tissue.
Collapse
Affiliation(s)
- Domenica Convertino
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | | | | | - Laura Marchetti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Camilla Coletti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| |
Collapse
|
27
|
Jiang Z, Zhang W, Liu C, Xia L, Wang S, Wang Y, Shao K, Han B. Facilitation of Cell Cycle and Cellular Migration of Rat Schwann Cells by O-Carboxymethyl Chitosan to Support Peripheral Nerve Regeneration. Macromol Biosci 2023; 23:e2300025. [PMID: 37282815 DOI: 10.1002/mabi.202300025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/03/2023] [Indexed: 06/08/2023]
Abstract
O-carboxymethyl chitosan (CM-chitosan), holds high potential as a valuable biomaterial for nerve guidance conduits (NGCs). However, the lack of explicit bioactivity on neurocytes and poor duration that does not match nerve repair limit the restorative effects. Herein, CM-chitosan-based NGC is designed to induce the reconstruction of damaged peripheral nerves without addition of other activation factors. CM-chitosan possesses excellent performance in vitro for nerve tissue engineering, such as increasing the organization of filamentous actin and the expression of phospho-Akt, and facilitating the cell cycle and migration of Schwann cells. Moreover, CM-chitosan exhibits increased longevity upon cross-linking (C-CM-chitosan) with 1, 4-Butanediol diglycidyl ether, and C-CM-chitosan fibers possess appropriate biocompatibility. In order to imitate the structure of peripheral nerves, multichannel bioactive NGCs are prepared from lumen fillers of oriented C-CM-chitosan fibers and outer warp-knitted chitosan pipeline. Implantation of the C-CM-chitosan NGCs to rats with 10-mm defects of peripheral nerves effectively improve nerve function reconstruction by increasing the sciatic functional index, decreasing the latent periods of heat tingling, enhancing the gastrocnemius muscle, and promoting nerve axon recovery, showing regenerative efficacy similar to that of autograft. The results lay a theoretical foundation for improving the potential high-value applications of CM-chitosan-based bioactive materials in nerve tissue engineering.
Collapse
Affiliation(s)
- Zhiwen Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Wei Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Chenqi Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Lixin Xia
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Shuo Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Yanting Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Kai Shao
- Department of Central Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, P. R. China
| | - Baoqin Han
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| |
Collapse
|
28
|
Mankavi F, Ibrahim R, Wang H. Advances in Biomimetic Nerve Guidance Conduits for Peripheral Nerve Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2528. [PMID: 37764557 PMCID: PMC10536071 DOI: 10.3390/nano13182528] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Injuries to the peripheral nervous system are a common clinical issue, causing dysfunctions of the motor and sensory systems. Surgical interventions such as nerve autografting are necessary to repair damaged nerves. Even with autografting, i.e., the gold standard, malfunctioning and mismatches between the injured and donor nerves often lead to unwanted failure. Thus, there is an urgent need for a new intervention in clinical practice to achieve full functional recovery. Nerve guidance conduits (NGCs), providing physicochemical cues to guide neural regeneration, have great potential for the clinical regeneration of peripheral nerves. Typically, NGCs are tubular structures with various configurations to create a microenvironment that induces the oriented and accelerated growth of axons and promotes neuron cell migration and tissue maturation within the injured tissue. Once the native neural environment is better understood, ideal NGCs should maximally recapitulate those key physiological attributes for better neural regeneration. Indeed, NGC design has evolved from solely physical guidance to biochemical stimulation. NGC fabrication requires fundamental considerations of distinct nerve structures, the associated extracellular compositions (extracellular matrices, growth factors, and cytokines), cellular components, and advanced fabrication technologies that can mimic the structure and morphology of native extracellular matrices. Thus, this review mainly summarizes the recent advances in the state-of-the-art NGCs in terms of biomaterial innovations, structural design, and advanced fabrication technologies and provides an in-depth discussion of cellular responses (adhesion, spreading, and alignment) to such biomimetic cues for neural regeneration and repair.
Collapse
Affiliation(s)
| | | | - Hongjun Wang
- Department of Biomedical Engineering, Semcer Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (F.M.); (R.I.)
| |
Collapse
|
29
|
Wu W, Dong Y, Liu H, Jiang X, Yang L, Luo J, Hu Y, Gou M. 3D printed elastic hydrogel conduits with 7,8-dihydroxyflavone release for peripheral nerve repair. Mater Today Bio 2023; 20:100652. [PMID: 37214548 PMCID: PMC10199216 DOI: 10.1016/j.mtbio.2023.100652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Nerve guide conduit is a promising treatment for long gap peripheral nerve injuries, yet its efficacy is limited. Drug-releasable scaffolds may provide reliable platforms to build a regenerative microenvironment for nerve recovery. In this study, an elastic hydrogel conduit encapsulating with prodrug nanoassemblies is fabricated by a continuous 3D printing technique for promoting nerve regeneration. The bioactive hydrogel is comprised of gelatin methacryloyl (GelMA) and silk fibroin glycidyl methacrylate (SF-MA), exhibiting positive effects on adhesion, proliferation, and migration of Schwann cells. Meanwhile, 7,8-dihydroxyflavone (7,8-DHF) prodrug nanoassemblies with high drug-loading capacities are developed through self-assembly of the lipophilic prodrug and loaded into the GelMA/SF-MA hydrogel. The drug loading conduit could sustainedly release 7,8-DHF to facilitate neurite elongation. A 12 mm nerve defect model is established for therapeutic efficiency evaluation by implanting the conduit through surgical suturing with rat sciatic nerve. The electrophysiological, morphological, and histological assessments indicate that this conduit can promote axon regeneration, remyelination, and function recovery by providing a favorable microenvironment. These findings implicate that the GelMA/SF-MA conduit with 7,8-DHF release has potentials in the treatment of long-gap peripheral nerve injury.
Collapse
Affiliation(s)
- Wenbi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinchu Dong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haofan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuebing Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ling Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| | - Maling Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
30
|
Han WB, Ko GJ, Lee KG, Kim D, Lee JH, Yang SM, Kim DJ, Shin JW, Jang TM, Han S, Zhou H, Kang H, Lim JH, Rajaram K, Cheng H, Park YD, Kim SH, Hwang SW. Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nat Commun 2023; 14:2263. [PMID: 37081012 PMCID: PMC10119106 DOI: 10.1038/s41467-023-38040-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/13/2023] [Indexed: 04/22/2023] Open
Abstract
As rubber-like elastomers have led to scientific breakthroughs in soft, stretchable characteristics-based wearable, implantable electronic devices or relevant research fields, developments of degradable elastomers with comparable mechanical properties could bring similar technological innovations in transient, bioresorbable electronics or expansion into unexplored areas. Here, we introduce ultra-stretchable, biodegradable elastomers capable of stretching up to ~1600% with outstanding properties in toughness, tear-tolerance, and storage stability, all of which are validated by comprehensive mechanical and biochemical studies. The facile formation of thin films enables the integration of almost any type of electronic device with tunable, suitable adhesive strengths. Conductive elastomers tolerant/sensitive to mechanical deformations highlight possibilities for versatile monitoring/sensing components, particularly the strain-tolerant composites retain high levels of conductivities even under tensile strains of ~550%. Demonstrations of soft electronic grippers and transient, suture-free cardiac jackets could be the cornerstone for sophisticated, multifunctional biodegradable electronics in the fields of soft robots and biomedical implants.
Collapse
Affiliation(s)
- Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kang-Gon Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Donghak Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Hanwha Systems Co., Ltd., 188 Pangyoyeok-ro, Bundang-gu, Seongnam-Si, Gyeonggi-do, 13524, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Honglei Zhou
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kaveti Rajaram
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yong-Doo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|