1
|
Tiwari M, Dingankar M, Das J, R SS, Solanki A, Subramanyam D. CLCa mediates a novel cross-talk between Wnt secretion and actin organization. Life Sci Alliance 2025; 8:e202402962. [PMID: 40316417 PMCID: PMC12050421 DOI: 10.26508/lsa.202402962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 05/04/2025] Open
Abstract
Mammalian clathrin light chains (CLCa, CLCb) are critical players in clathrin-mediated endocytosis. However, their physiological role in contributing to specific cellular processes and early development remains elusive. To elucidate their individual functions, we generated CLC knockout mESCs. Loss of CLCa resulted in down-regulation of Wnt pathway genes along with altered secretion of Wnt3a because of impaired trafficking of its secretion mediator, WLS. Reduced Wnt signaling led to lower levels of Hip1R causing a reorganization of the actin cytoskeleton. CLCa knockout cells displayed actin patches enriched for Arp3 and cortactin, with activation of the Wnt pathway resulting in disassembly of these patches. Furthermore, we uncovered a bidirectional cross-talk between Wnt signaling and actin organization, with actin disruption resulting in lower Wnt signaling. Our data reveal a previously undiscovered role of CLCa in mediating molecular communication between actin organization and Wnt signaling.
Collapse
Affiliation(s)
- Mahak Tiwari
- National Centre for Cell Science, SP Pune University Campus, Pune, India
- SP Pune University, Pune, India
| | - Mihir Dingankar
- Indian Institute of Science Education and Research (IISER) Pune, Pune, India
| | - Jyoti Das
- National Centre for Cell Science, SP Pune University Campus, Pune, India
- SP Pune University, Pune, India
| | - Sreelekshmi S R
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Apurv Solanki
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Deepa Subramanyam
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| |
Collapse
|
2
|
L Ruden X, Singh A, Marben T, Tang W, O Awonuga A, Ruden DM, E Puscheck E, Feng H, Korzeniewski SJ, A Rappolee D. A Single Cell Transcriptomic Fingerprint of Stressed Premature, Imbalanced Differentiation of Embryonic Stem Cells. Birth Defects Res 2024; 116:e2409. [PMID: 39482570 DOI: 10.1002/bdr2.2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 08/13/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Miscarriages cause a greater loss-of-life than cardiovascular diseases, but knowledge about environmentally induced miscarriages is limited. Cultured naïve pluripotent embryonic stem cells (ESC) differentiate into extra-embryonic endoderm/extraembryonic endoderm (XEN) or formative pluripotent ESC, during the period emulating maximal miscarriage of peri-implantation development. In previous reports using small marker sets, hyperosmotic sorbitol, or retinoic acid (RA) decreased naïve pluripotency and increased XEN by FACS quantitation. METHODS Bulk and single cell (sc)RNAseq analyses of two cultured ESC lines was done, corroborated by qPCR. Transcriptomic responses were analyzed of cultured ESC stressed by Sorbitol, with Leukemia inhibitory factor (LIF + ; stemness growth factor), RA without LIF to control for XEN induction, and compared with normal differentiation (LIF - , ND). RESULTS Sorbitol and RA increase subpopulations of 2-cell embryo-like (2CEL) and XEN sub-lineages; primitive, parietal, and visceral endoderm (VE) cells and suppress formative pluripotency, imbalancing alternate lineage choices of initial naïve pluripotent cultured ESC compared with ND. Although bulk RNAseq and gene ontology (GO) group analyses suggest that stress induces anterior VE-head organizer and placental markers, scRNAseq reveals relatively few cells. But VE and placental markers/cells were in adjacent stressed cell clusters in the UMAP, like recent, normal UMAP of conceptuses. UMAPs show that dose-dependent stress overrides stemness to force premature lineage imbalance. CONCLUSIONS Hyperosmotic stress, and other toxicological stresses, like drugs with active ingredient RA, may cause premature, lineage imbalance, resulting in miscarriages or birth defects.
Collapse
Affiliation(s)
- Ximena L Ruden
- CS Mott Center/Ob/Gyn Department, Wayne State University (WSU), Detroit, Michigan, USA
- Reproductive Stress Inc, Grosse Pointe Farms, Michigan, USA
| | - Aditi Singh
- CS Mott Center/Ob/Gyn Department, Wayne State University (WSU), Detroit, Michigan, USA
- WSU Center for Molecular Medicine and Genetics, Detroit, Michigan, USA
| | - Teya Marben
- University of Detroit, Detroit, Michigan, USA
| | - Wen Tang
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Awoniyi O Awonuga
- CS Mott Center/Ob/Gyn Department, Wayne State University (WSU), Detroit, Michigan, USA
| | - Douglas M Ruden
- CS Mott Center/Ob/Gyn Department, Wayne State University (WSU), Detroit, Michigan, USA
- Institute for Environmental Health Sciences, Wayne State University, Detroit, USA
| | - Elizabeth E Puscheck
- CS Mott Center/Ob/Gyn Department, Wayne State University (WSU), Detroit, Michigan, USA
- Reproductive Stress Inc, Grosse Pointe Farms, Michigan, USA
- Invia Fertility, Chicago, Illinois, USA
| | - Hao Feng
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Steven J Korzeniewski
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Daniel A Rappolee
- CS Mott Center/Ob/Gyn Department, Wayne State University (WSU), Detroit, Michigan, USA
- Reproductive Stress Inc, Grosse Pointe Farms, Michigan, USA
- WSU Center for Molecular Medicine and Genetics, Detroit, Michigan, USA
- Department of Physiology, Wayne State University (WSU), Detroit, Michigan, USA
| |
Collapse
|
3
|
Ito T, Kubiura-Ichimaru M, Miura F, Tajima S, Surani MA, Ito T, Yamaguchi S, Tada M. DNMT1 can induce primary germ layer differentiation through de novo DNA methylation. Genes Cells 2024; 29:549-566. [PMID: 38811355 PMCID: PMC11447926 DOI: 10.1111/gtc.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
DNA methyltransferases and Ten-Eleven Translocation (TET) proteins regulate the DNA methylation and demethylation cycles during mouse embryonic development. Although DNMT1 mainly plays a role in the maintenance of DNA methylation after DNA replication, it is also reported to possess de novo methyltransferase capacity. However, its physiological significance remains unclear. Here, we demonstrate that full-length DNMT1 (FL) and a mutant lacking the N-terminus necessary for its maintenance activity (602) confer the differentiation potential of mouse Dnmt1, Dnmt3a, and Dnmt3b (Dnmts-TKO) embryonic stem cells (ESCs). Both FL and 602 inhibit the spontaneous differentiation of Dnmts-TKO ESCs in the undifferentiated state. Dnmts-TKO ESCs showed loss of DNA methylation and de-repression of primitive endoderm-related genes, but these defects were partially restored in Dnmts-TKO + FL and Dnmts-TKO + 602 ESCs. Upon differentiation, Dnmts-TKO + FL ESCs show increased 5mC and 5hmC levels across chromosomes, including pericentromeric regions. In contrast, Dnmts-TKO + 602 ESCs didn't accumulate 5mC, and sister chromatids showed 5hmC asynchronously. Furthermore, in comparison with DNMT1_602, DNMT1_FL effectively promoted commitment to the epiblast-like cells and beyond, driving cell-autonomous mesendodermal and germline differentiation through embryoid body-based methods. With precise target selectivity achieved by its N-terminal region, DNMT1 may play a role in gene regulation leading to germline development.
Collapse
Affiliation(s)
- Takamasa Ito
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Musashi Kubiura-Ichimaru
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shoji Tajima
- Laboratory of Epigenetics Institute for Protein Research, Osaka University, Suita, Japan
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, UK
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shinpei Yamaguchi
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Masako Tada
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| |
Collapse
|
4
|
Ye Y, Xie W, Ma Z, Wang X, Wen Y, Li X, Qi H, Wu H, An J, Jiang Y, Lu X, Chen G, Hu S, Blaber EA, Chen X, Chang L, Zhang W. Conserved mechanisms of self-renewal and pluripotency in mouse and human ESCs regulated by simulated microgravity using a 3D clinostat. Cell Death Discov 2024; 10:68. [PMID: 38336777 PMCID: PMC10858198 DOI: 10.1038/s41420-024-01846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Embryonic stem cells (ESCs) exhibit unique attributes of boundless self-renewal and pluripotency, making them invaluable for fundamental investigations and clinical endeavors. Previous examinations of microgravity effects on ESC self-renewal and differentiation have predominantly maintained a descriptive nature, constrained by limited experimental opportunities and techniques. In this investigation, we present compelling evidence derived from murine and human ESCs, demonstrating that simulated microgravity (SMG)-induced stress significantly impacts self-renewal and pluripotency through a previously unidentified conserved mechanism. Specifically, SMG induces the upregulation of heat shock protein genes, subsequently enhancing the expression of core pluripotency factors and activating the Wnt and/or LIF/STAT3 signaling pathways, thereby fostering ESC self-renewal. Notably, heightened Wnt pathway activity, facilitated by Tbx3 upregulation, prompts mesoendodermal differentiation in both murine and human ESCs under SMG conditions. Recognizing potential disparities between terrestrial SMG simulations and authentic microgravity, forthcoming space flight experiments are imperative to validate the impact of reduced gravity on ESC self-renewal and differentiation mechanisms.
Collapse
Affiliation(s)
- Ying Ye
- Medical College of Soochow University, Suzhou, China
| | - Wenyan Xie
- Medical College of Soochow University, Suzhou, China
| | - Zhaoru Ma
- Medical College of Soochow University, Suzhou, China
| | - Xuepeng Wang
- Medical College of Soochow University, Suzhou, China
| | - Yi Wen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xuemei Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Hongqian Qi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, Tianjin, 300350, China
| | - Hao Wu
- Medical College of Soochow University, Suzhou, China
| | - Jinnan An
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Suzhou, China
| | - Yan Jiang
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, Tianjin, 300350, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215000, China.
| | - Elizabeth A Blaber
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Xi Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Lei Chang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Province International Joint Laboratory For Regeneration Medicine, Medical College of Soochow University, Suzhou, China.
| | | |
Collapse
|
5
|
Abel A, Sozen B. Shifting early embryology paradigms: Applications of stem cell-based embryo models in bioengineering. Curr Opin Genet Dev 2023; 81:102069. [PMID: 37392541 PMCID: PMC10530566 DOI: 10.1016/j.gde.2023.102069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 07/03/2023]
Abstract
Technologies to reproduce specific aspects of early mammalian embryogenesis in vitro using stem cells have skyrocketed over the last several years. With these advances, we have gained new perspectives on how embryonic and extraembryonic cells self-organize to form the embryo. These reductionist approaches hold promise for the future implementation of precise environmental and genetic controls to understand variables affecting embryo development. Our review discusses recent progress in cellular models of early mammalian embryo development and bioengineering advancements that can be leveraged to study the embryo-maternal interface. We summarize current gaps in the field, emphasizing the importance of understanding how intercellular interactions at this interface contribute to reproductive and developmental health.
Collapse
Affiliation(s)
- Ashley Abel
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06520, USA. https://twitter.com/@caitrionacunn
| | - Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
6
|
Meharwade T, Joumier L, Parisotto M, Huynh V, Lummertz da Rocha E, Malleshaiah M. Cross-activation of FGF, NODAL, and WNT pathways constrains BMP-signaling-mediated induction of the totipotent state in mouse embryonic stem cells. Cell Rep 2023; 42:112438. [PMID: 37126449 DOI: 10.1016/j.celrep.2023.112438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/11/2022] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
Embryonic stem cells (ESCs) are an attractive model to study the relationship between signaling and cell fates. Cultured mouse ESCs can exist in multiple states resembling distinct stages of early embryogenesis, such as totipotent, pluripotent, primed, and primitive endoderm. The signaling mechanisms regulating the totipotent state and coexistence of these states are poorly understood. Here we identify bone morphogenetic protein (BMP) signaling as an inducer of the totipotent state. However, we discover that BMP's role is constrained by the cross-activation of FGF, NODAL, and WNT pathways. We exploit this finding to enhance the proportion of totipotent cells by rationally inhibiting the cross-activated pathways. Single-cell mRNA sequencing reveals that induction of the totipotent state is accompanied by suppression of primed and primitive endoderm states. Furthermore, reprogrammed totipotent cells we generate in culture resemble totipotent cells of preimplantation embryo. Our findings reveal a BMP signaling mechanism regulating both the totipotent state and heterogeneity of ESCs.
Collapse
Affiliation(s)
- Thulaj Meharwade
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Loïck Joumier
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Maxime Parisotto
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Vivian Huynh
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Molecular Biology Program, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Mohan Malleshaiah
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada; Molecular Biology Program, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada; The Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; McGill Regenerative Medicine Network, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
7
|
Vrij EJ, Scholte op Reimer YS, Fuentes LR, Guerreiro IM, Holzmann V, Aldeguer JF, Sestini G, Koo BK, Kind J, van Blitterswijk CA, Rivron NC. A pendulum of induction between the epiblast and extra-embryonic endoderm supports post-implantation progression. Development 2022; 149:dev192310. [PMID: 35993866 PMCID: PMC9534490 DOI: 10.1242/dev.192310] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/23/2022] [Indexed: 08/17/2023]
Abstract
Embryogenesis is supported by dynamic loops of cellular interactions. Here, we create a partial mouse embryo model to elucidate the principles of epiblast (Epi) and extra-embryonic endoderm co-development (XEn). We trigger naive mouse embryonic stem cells to form a blastocyst-stage niche of Epi-like cells and XEn-like cells (3D, hydrogel free and serum free). Once established, these two lineages autonomously progress in minimal medium to form an inner pro-amniotic-like cavity surrounded by polarized Epi-like cells covered with visceral endoderm (VE)-like cells. The progression occurs through reciprocal inductions by which the Epi supports the primitive endoderm (PrE) to produce a basal lamina that subsequently regulates Epi polarization and/or cavitation, which, in return, channels the transcriptomic progression to VE. This VE then contributes to Epi bifurcation into anterior- and posterior-like states. Similarly, boosting the formation of PrE-like cells within blastoids supports developmental progression. We argue that self-organization can arise from lineage bifurcation followed by a pendulum of induction that propagates over time.
Collapse
Affiliation(s)
- Erik J. Vrij
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Yvonne S. Scholte op Reimer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Laury Roa Fuentes
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
| | - Isabel Misteli Guerreiro
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, UtrechtUppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Viktoria Holzmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Javier Frias Aldeguer
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, UtrechtUppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Giovanni Sestini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Jop Kind
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, UtrechtUppsalalaan 8, 3584 CT Utrecht, Netherlands
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, Netherlands
| | - Clemens A. van Blitterswijk
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
| | - Nicolas C. Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
8
|
DNMT1 regulates the timing of DNA methylation by DNMT3 in an enzymatic activity-dependent manner in mouse embryonic stem cells. PLoS One 2022; 17:e0262277. [PMID: 34986190 PMCID: PMC8730390 DOI: 10.1371/journal.pone.0262277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
DNA methylation (DNAme; 5-methylcytosine, 5mC) plays an essential role in mammalian development, and the 5mC profile is regulated by a balance of opposing enzymatic activities: DNA methyltransferases (DNMTs) and Ten-eleven translocation dioxygenases (TETs). In mouse embryonic stem cells (ESCs), de novo DNAme by DNMT3 family enzymes, demethylation by the TET-mediated conversion of 5mC to 5-hydroxymethylation (5hmC), and maintenance of the remaining DNAme by DNMT1 are actively repeated throughout cell cycles, dynamically forming a constant 5mC profile. Nevertheless, the detailed mechanism and physiological significance of this active cyclic DNA modification in mouse ESCs remain unclear. Here by visualizing the localization of DNA modifications on metaphase chromosomes and comparing whole-genome methylation profiles before and after the mid-S phase in ESCs lacking Dnmt1 (1KO ESCs), we demonstrated that in 1KO ESCs, DNMT3-mediated remethylation was interrupted during and after DNA replication. This results in a marked asymmetry in the distribution of 5hmC between sister chromatids at mitosis, with one chromatid being almost no 5hmC. When introduced in 1KO ESCs, the catalytically inactive form of DNMT1 (DNMT1CI) induced an increase in DNAme in pericentric heterochromatin and the DNAme-independent repression of IAPEz, a retrotransposon family, in 1KO ESCs. However, DNMT1CI could not restore the ability of DNMT3 to methylate unmodified dsDNA de novo in S phase in 1KO ESCs. Furthermore, during in vitro differentiation into epiblasts, 1KO ESCs expressing DNMT1CI showed an even stronger tendency to differentiate into the primitive endoderm than 1KO ESCs and were readily reprogrammed into the primitive streak via an epiblast-like cell state, reconfirming the importance of DNMT1 enzymatic activity at the onset of epiblast differentiation. These results indicate a novel function of DNMT1, in which DNMT1 actively regulates the timing and genomic targets of de novo methylation by DNMT3 in an enzymatic activity-dependent and independent manner, respectively.
Collapse
|
9
|
Liu Y, Xu Q, Kang X, Wang K, Wang J, Feng D, Bai Y, Fang M. Dynamic changes of genomic methylation profiles at different growth stages in Chinese Tan sheep. J Anim Sci Biotechnol 2021; 12:118. [PMID: 34727982 PMCID: PMC8561971 DOI: 10.1186/s40104-021-00632-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/31/2021] [Indexed: 01/02/2023] Open
Abstract
Background Tan sheep, an important local sheep breed in China, is famous for their fur quality. One-month-old Tan sheep have white, curly hair with beautiful flower spikes, commonly known as “nine bends”, which has high economic value. However, the “nine bends” characteristic gradually disappears with age; consequently, the economic value of the Tan sheep decreases. Age-related changes in DNA methylation have been reported and may be responsible for age-induced changes in gene expression. Until now, no genome-wide surveys have been conducted to identify potential DNA methylation sites involved in different sheep growth stages. In this study we investigated the dynamic changes of genome-wide DNA methylation profiles in Tan sheep using DNA from skin and deep whole-genome bisulfite sequencing, and compared the DNA methylation levels at three different growth stages: 1, 24, and 48 months old (mon1, mon24, and mon48, respectively). Results In this study, 11 skin samples from three growth stages (four for mon1, four for mon24, and three for mon48) were used for DNA methylation analysis and gene expression profiling. There were 52, 288 and 236 differentially methylated genes (DMGs) identified between mon1 and mon24, mon1 and mon48, and mon24 and mon48, respectively. Of the differentially methylated regions, 1.11%, 7.61%, and 7.65% were in the promoter in mon1 vs. mon24, mon24 vs. mon48, and mon1 vs. mon48, respectively. DMGs were enriched in the MAPK and WNT signaling pathways, which are related to age growth and hair follicle morphogenesis processes. There were 51 DMGs associated with age growth and curly fleece formation. Four DMGs between mon1 and mon48 (KRT71, CD44, ROR2 and ZDHHC13) were further validated by bisulfite sequencing. Conclusions This study revealed dynamic changes in the genomic methylation profiles of mon1, mon24, and mon48 sheep, and the percentages of methylated cytosines were 3.38%, 2.85% and 4.17%, respectively. Of the DMGs, KRT71 and CD44 were highly methylated in mon1, and ROR2 and ZDHHC13 were highly methylated in mon48. These findings provide foundational information that may be used to develop strategies for potentially retaining the lamb fur and thus improving the economic value of Tan sheep. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00632-9.
Collapse
Affiliation(s)
- Yufang Liu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, People's Republic of China.,College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056021, People's Republic of China
| | - Qiao Xu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, People's Republic of China.,Biotechnology Institute, Nanchang Normal University, Nanchang, 330029, People's Republic of China
| | - Xiaolong Kang
- College of Agriculture, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - Kejun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Jve Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, People's Republic of China
| | - Dengzhen Feng
- Biotechnology Institute, Nanchang Normal University, Nanchang, 330029, People's Republic of China
| | - Ying Bai
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056021, People's Republic of China
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, People's Republic of China. .,Beijing Key Laboratory for Animal Genetic Improvement, Beijing, 100193, People's Republic of China.
| |
Collapse
|
10
|
Hosseini V, Kalantary-Charvadeh A, Hajikarami M, Fayyazpour P, Rahbarghazi R, Totonchi M, Darabi M. A small molecule modulating monounsaturated fatty acids and Wnt signaling confers maintenance to induced pluripotent stem cells against endodermal differentiation. Stem Cell Res Ther 2021; 12:550. [PMID: 34674740 PMCID: PMC8532309 DOI: 10.1186/s13287-021-02617-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background Stearoyl-coenzyme A desaturase 1 (SCD1) is required for de novo synthesis of fatty acids. Through the fatty acid acylation process, this enzyme orchestrates post-translational modifications to proteins involved in cell development and differentiation. In this study, we used biochemical methods, immunostaining, and covalent labeling to evaluate whether a small molecule modulating unsaturated fatty acids can influence the early endodermal differentiation of human-induced pluripotent stem cells (iPSCs). Methods The hiPSCs were cultured in an endoderm-inducing medium containing activin A and defined fetal bovine serum in the presence of an SCD1 inhibitor at different time points. The cell cycles and the yields of the three germ layers (endoderm, mesoderm, and ectoderm) were assessed using flow cytometry. The expression of endoderm and pluripotency markers and the expressions of Wnt signaling pathway proteins were assessed using western blotting and RT-PCR. Total protein acylation was evaluated using a click chemistry reaction. Results When SCD1 was inhibited on the first day, the population of cells with endodermal features decreased at the end of differentiation. Moreover, early SCD1 inhibition preserved the properties of hiPSCs, preventing their shift toward mesodermal or ectodermal lineage. Also, first-day-only treatment of cells with the SCD1 inhibitor decreased β-catenin gene expression and the intensity of fluorescent emission in the click chemistry assay. The cells were effectively rescued from these effects by cotreatment with oleate. Late treatment with the inhibitor in the two subsequent days of endoderm induction did not have any significant effects on endoderm-specific markers or fluorescent intensity. Reproducible results were also obtained with human embryonic stem cells. Conclusion The small molecule SCD1 inhibitor attenuates the Wnt/β-catenin signaling pathway, conferring the maintenance of hiPSCs by opposing the initiation of endoderm differentiation. The immediate requirement for SCD1 activity in the endoderm commitment of pluripotent stem cells may be of importance in disorders of endoderm-derived organs and dysregulated metabolism. The schematic representation of the study design and main results. Activin A induces endoderm features through Smad2/3/4 and increases the expression of SCD1. SCD1 can produce MUFAs and subsequently modify the Wnt molecules. MUFA acylated/activated Wnts are secreted to interact with corresponding receptors on the target cells. β-catenin accumulates in the cytoplasm and is translocated into the nucleus after the interaction of Wnt with the receptor. Then, β-catenin increases the expression of the endoderm markers Sox17 and CXCR4.![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02617-x.
Collapse
Affiliation(s)
- Vahid Hosseini
- Student Research Committee, Tabriz University of Medical Sciences, 5166615573, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, 516615731, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashkan Kalantary-Charvadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Hajikarami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parisa Fayyazpour
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, 516615731, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, 516615731, Tabriz, Iran. .,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Internal Medicine IV, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
11
|
Abstract
The generation of germ cells from embryonic stem cells in vitro has current historical significance. Western blot, qPCR, immunofluorescence and flow cytometry assays were used to investigate the differences in expression levels of totipotency and specific markers for Wnt regulation and the related signalling pathways during primordial germ cell-like cell (PGCLC) induction and differentiation. During PGCLC induction, activation of WNT3a increased the expression of NANOG, SOX2 and OCT4, but Mvh, DAZL, Blimp1, TFAP2C, Gata4, SOX17, EOMES, Brachyury and PRDM1 expression levels were significantly reduced. Inhibition of the WNT signal demonstrated the opposite effect. Similarly, inhibitors of BMP and the Nodal/Activin signal were used to determine the effect of signal pathways on differentiation. CER1 affected the Wnt signal and differentiation, but the inhibitor SB only regulated differentiation. BMP-WNT-NODAL were mainly responsible for regulating differentiation. Our results provide a reliable theoretical basis and feasibility for further clinical medical research.
Collapse
|
12
|
LncRNA Mrhl orchestrates differentiation programs in mouse embryonic stem cells through chromatin mediated regulation. Stem Cell Res 2021; 53:102250. [PMID: 33662735 DOI: 10.1016/j.scr.2021.102250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 01/15/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been well-established to act as regulators and mediators of development and cell fate specification programs. LncRNA Mrhl (meiotic recombination hotspot locus) has been shown to act in a negative feedback loop with WNT signaling to regulate male germ cell meiotic commitment. In our current study, we have addressed the role of Mrhl in development and differentiation using mouse embryonic stem cells (mESCs) as our model system of study. Mrhl is a nuclear-localized, chromatin-bound lncRNA with moderately stable expression in mESCs. Transcriptome analyses and loss-of-function phenotype studies revealed dysregulation of developmental processes, lineage-specific transcription factors and key networks along with aberrance in specification of early lineages during differentiation of mESCs. Genome-wide chromatin occupancy studies suggest regulation of chromatin architecture at key target loci through triplex formation. Our studies thus reveal a role for lncRNA Mrhl in regulating differentiation programs in mESCs in the context of appropriate cues through chromatin-mediated responses.
Collapse
|
13
|
Pecori F, Akimoto Y, Hanamatsu H, Furukawa JI, Shinohara Y, Ikehara Y, Nishihara S. Mucin-type O-glycosylation controls pluripotency in mouse embryonic stem cells via Wnt receptor endocytosis. J Cell Sci 2020; 133:jcs245845. [PMID: 32973111 DOI: 10.1242/jcs.245845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) can differentiate into a range of cell types during development, and this pluripotency is regulated by various extrinsic and intrinsic factors. Mucin-type O-glycosylation has been suggested to be a potential factor in the control of ESC pluripotency, and is characterized by the addition of N-acetylgalactosamine (GalNAc) to serine or threonine residues of membrane-anchored proteins and secreted proteins. To date, the relationship between mucin-type O-glycosylation and signaling in ESCs remains undefined. Here, we identify the elongation pathway via C1GalT1 that synthesizes T antigen (Galβ1-3GalNAc) as the most prominent among mucin-type O-glycosylation modifications in ESCs. Moreover, we show that mucin-type O-glycosylation on the Wnt signaling receptor frizzled-5 (Fzd5) regulates its endocytosis via galectin-3 binding to T antigen, and that reduction of T antigen results in the exit of the ESCs from pluripotency via canonical Wnt signaling activation. Our findings reveal a novel regulatory mechanism that modulates Wnt signaling and, consequently, ESC pluripotency.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Federico Pecori
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Hisatoshi Hanamatsu
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Jun-Ichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Yasuro Shinohara
- Department of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Yuzuru Ikehara
- Department of Molecular and Tumor Pathology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
- Glycan & Life System Integration Center (GaLSIC), Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
14
|
Peng T, Zhai Y, Atlasi Y, Ter Huurne M, Marks H, Stunnenberg HG, Megchelenbrink W. STARR-seq identifies active, chromatin-masked, and dormant enhancers in pluripotent mouse embryonic stem cells. Genome Biol 2020; 21:243. [PMID: 32912294 PMCID: PMC7488044 DOI: 10.1186/s13059-020-02156-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Enhancers are distal regulators of gene expression that shape cell identity and control cell fate transitions. In mouse embryonic stem cells (mESCs), the pluripotency network is maintained by the function of a complex network of enhancers, that are drastically altered upon differentiation. Genome-wide chromatin accessibility and histone modification assays are commonly used as a proxy for identifying putative enhancers and for describing their activity levels and dynamics. RESULTS Here, we applied STARR-seq, a genome-wide plasmid-based assay, as a read-out for the enhancer landscape in "ground-state" (2i+LIF; 2iL) and "metastable" (serum+LIF; SL) mESCs. This analysis reveals that active STARR-seq loci show modest overlap with enhancer locations derived from peak calling of ChIP-seq libraries for common enhancer marks. We unveil ZIC3-bound loci with significant STARR-seq activity in SL-ESCs. Knock-out of Zic3 removes STARR-seq activity only in SL-ESCs and increases their propensity to differentiate towards the endodermal fate. STARR-seq also reveals enhancers that are not accessible, masked by a repressive chromatin signature. We describe a class of dormant, p53 bound enhancers that gain H3K27ac under specific conditions, such as after treatment with Nocodazol, or transiently during reprogramming from fibroblasts to pluripotency. CONCLUSIONS In conclusion, loci identified as active by STARR-seq often overlap with those identified by chromatin accessibility and active epigenetic marking, yet a significant fraction is epigenetically repressed or display condition-specific enhancer activity.
Collapse
Affiliation(s)
- Tianran Peng
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Yanan Zhai
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Yaser Atlasi
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Menno Ter Huurne
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Hendrik Marks
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Wout Megchelenbrink
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
15
|
TWIST1 Homodimers and Heterodimers Orchestrate Lineage-Specific Differentiation. Mol Cell Biol 2020; 40:MCB.00663-19. [PMID: 32179550 DOI: 10.1128/mcb.00663-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/27/2020] [Indexed: 01/09/2023] Open
Abstract
The extensive array of basic helix-loop-helix (bHLH) transcription factors and their combinations as dimers underpin the diversity of molecular function required for cell type specification during embryogenesis. The bHLH factor TWIST1 plays pleiotropic roles during development. However, which combinations of TWIST1 dimers are involved and what impact each dimer imposes on the gene regulation network controlled by TWIST1 remain elusive. In this work, proteomic profiling of human TWIST1-expressing cell lines and transcriptome analysis of mouse cranial mesenchyme have revealed that TWIST1 homodimers and heterodimers with TCF3, TCF4, and TCF12 E-proteins are the predominant dimer combinations. Disease-causing mutations in TWIST1 can impact dimer formation or shift the balance of different types of TWIST1 dimers in the cell, which may underpin the defective differentiation of the craniofacial mesenchyme. Functional analyses of the loss and gain of TWIST1-E-protein dimer activity have revealed previously unappreciated roles in guiding lineage differentiation of embryonic stem cells: TWIST1-E-protein heterodimers activate the differentiation of mesoderm and neural crest cells, which is accompanied by the epithelial-to-mesenchymal transition. At the same time, TWIST1 homodimers maintain the stem cells in a progenitor state and block entry to the endoderm lineage.
Collapse
|
16
|
Jang J, Han D, Golkaram M, Audouard M, Liu G, Bridges D, Hellander S, Chialastri A, Dey SS, Petzold LR, Kosik KS. Control over single-cell distribution of G1 lengths by WNT governs pluripotency. PLoS Biol 2019; 17:e3000453. [PMID: 31557150 PMCID: PMC6782112 DOI: 10.1371/journal.pbio.3000453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/08/2019] [Accepted: 09/04/2019] [Indexed: 01/10/2023] Open
Abstract
The link between single-cell variation and population-level fate choices lacks a mechanistic explanation despite extensive observations of gene expression and epigenetic variation among individual cells. Here, we found that single human embryonic stem cells (hESCs) have different and biased differentiation potentials toward either neuroectoderm or mesendoderm depending on their G1 lengths before the onset of differentiation. Single-cell variation in G1 length operates in a dynamic equilibrium that establishes a G1 length probability distribution for a population of hESCs and predicts differentiation outcome toward neuroectoderm or mesendoderm lineages. Although sister stem cells generally share G1 lengths, a variable proportion of cells have asymmetric G1 lengths, which maintains the population dispersion. Environmental Wingless-INT (WNT) levels can control the G1 length distribution, apparently as a means of priming the fate of hESC populations once they undergo differentiation. As a downstream mechanism, global 5-hydroxymethylcytosine levels are regulated by G1 length and thereby link G1 length to differentiation outcomes of hESCs. Overall, our findings suggest that intrapopulation heterogeneity in G1 length underlies the pluripotent differentiation potential of stem cell populations. The link between single-cell variation and population-level fate choices lacks a mechanistic explanation. This study finds that the duration of the G1 cell cycle phase in stem cells varies within the population, giving rise to a probability distribution of G1 length that is responsive to Wnt signalling and that predicts cells’ differentiation potential upon exit from pluripotency.
Collapse
Affiliation(s)
- Jiwon Jang
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dasol Han
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Mahdi Golkaram
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Morgane Audouard
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Guojing Liu
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Daniel Bridges
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Stefan Hellander
- Department of Computer Science, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Alex Chialastri
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Siddharth S. Dey
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Linda R. Petzold
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Computer Science, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Kenneth S. Kosik
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Zimmerlin L, Park TS, Zambidis ET. Capturing Human Naïve Pluripotency in the Embryo and in the Dish. Stem Cells Dev 2017; 26:1141-1161. [PMID: 28537488 DOI: 10.1089/scd.2017.0055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although human embryonic stem cells (hESCs) were first derived almost 20 years ago, it was only recently acknowledged that they share closer molecular and functional identity to postimplantation lineage-primed murine epiblast stem cells than to naïve preimplantation inner cell mass-derived mouse ESCs (mESCs). A myriad of transcriptional, epigenetic, biochemical, and metabolic attributes have now been described that distinguish naïve and primed pluripotent states in both rodents and humans. Conventional hESCs and human induced pluripotent stem cells (hiPSCs) appear to lack many of the defining hallmarks of naïve mESCs. These include important features of the naïve ground state murine epiblast, such as an open epigenetic architecture, reduced lineage-primed gene expression, and chimera and germline competence following injection into a recipient blastocyst-stage embryo. Several transgenic and chemical methods were recently reported that appear to revert conventional human PSCs to mESC-like ground states. However, it remains unclear if subtle deviations in global transcription, cell signaling dependencies, and extent of epigenetic/metabolic shifts in these various human naïve-reverted pluripotent states represent true functional differences or alternatively the existence of distinct human pluripotent states along a spectrum. In this study, we review the current understanding and developmental features of various human pluripotency-associated phenotypes and discuss potential biological mechanisms that may support stable maintenance of an authentic epiblast-like ground state of human pluripotency.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| | - Tea Soon Park
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| | - Elias T Zambidis
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| |
Collapse
|
18
|
Morgani S, Nichols J, Hadjantonakis AK. The many faces of Pluripotency: in vitro adaptations of a continuum of in vivo states. BMC DEVELOPMENTAL BIOLOGY 2017; 17:7. [PMID: 28610558 PMCID: PMC5470286 DOI: 10.1186/s12861-017-0150-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/01/2017] [Indexed: 12/20/2022]
Abstract
Pluripotency defines the propensity of a cell to differentiate into, and generate, all somatic, as well as germ cells. The epiblast of the early mammalian embryo is the founder population of all germ layer derivatives and thus represents the bona fide in vivo pluripotent cell population. The so-called pluripotent state spans several days of development and is lost during gastrulation as epiblast cells make fate decisions towards a mesoderm, endoderm or ectoderm identity. It is now widely recognized that the features of the pluripotent population evolve as development proceeds from the pre- to post-implantation period, marked by distinct transcriptional and epigenetic signatures. During this period of time epiblast cells mature through a continuum of pluripotent states with unique properties. Aspects of this pluripotent continuum can be captured in vitro in the form of stable pluripotent stem cell types. In this review we discuss the continuum of pluripotency existing within the mammalian embryo, using the mouse as a model, and the cognate stem cell types that can be derived and propagated in vitro. Furthermore, we speculate on embryonic stage-specific characteristics that could be utilized to identify novel, developmentally relevant, pluripotent states.
Collapse
Affiliation(s)
- Sophie Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
19
|
Willmer T, Cooper A, Peres J, Omar R, Prince S. The T-Box transcription factor 3 in development and cancer. Biosci Trends 2017; 11:254-266. [DOI: 10.5582/bst.2017.01043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tarryn Willmer
- Department of Human Biology, Faculty of Health Sciences, Anzio Road, University of Cape Town
| | - Aretha Cooper
- Department of Human Biology, Faculty of Health Sciences, Anzio Road, University of Cape Town
| | - Jade Peres
- Department of Human Biology, Faculty of Health Sciences, Anzio Road, University of Cape Town
| | - Rehana Omar
- Department of Human Biology, Faculty of Health Sciences, Anzio Road, University of Cape Town
| | - Sharon Prince
- Department of Human Biology, Faculty of Health Sciences, Anzio Road, University of Cape Town
| |
Collapse
|
20
|
Lu W, Fang L, Ouyang B, Zhang X, Zhan S, Feng X, Bai Y, Han X, Kim H, He Q, Wan M, Shi FT, Feng XH, Liu D, Huang J, Songyang Z. Actl6a protects embryonic stem cells from differentiating into primitive endoderm. Stem Cells 2016; 33:1782-93. [PMID: 25802002 DOI: 10.1002/stem.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/30/2015] [Accepted: 02/18/2015] [Indexed: 02/06/2023]
Abstract
Actl6a (actin-like protein 6A, also known as Baf53a or Arp4) is a subunit shared by multiple complexes including esBAF, INO80, and Tip60-p400, whose main components (Brg1, Ino80, and p400, respectively) are crucial for the maintenance of embryonic stem cells (ESCs). However, whether and how Actl6a functions in ESCs has not been investigated. ESCs originate from the epiblast (EPI) that is derived from the inner cell mass (ICM) in blastocysts, which also give rise to primitive endoderm (PrE). The molecular mechanisms for EPI/PrE specification remain unclear. In this study, we provide the first evidence that Actl6a can protect mouse ESCs (mESCs) from differentiating into PrE. While RNAi knockdown of Actl6a, which appeared highly expressed in mESCs and downregulated during differentiation, induced mESCs to differentiate towards the PrE lineage, ectopic expression of Actl6a was able to repress PrE differentiation. Our work also revealed that Actl6a could interact with Nanog and Sox2 and promote Nanog binding to pluripotency genes such as Oct4 and Sox2. Interestingly, cells depleted of p400, but not of Brg1 or Ino80, displayed similar PrE differentiation patterns. Mutant Actl6a with impaired ability to bind Tip60 and p400 failed to block PrE differentiation induced by Actl6a dysfunction. Finally, we showed that Actl6a could target to the promoters of key PrE regulators (e.g., Sall4 and Fgf4), repressing their expression and inhibiting PrE differentiation. Our findings uncover a novel function of Actl6a in mESCs, where it acts as a gatekeeper to prevent mESCs from entering into the PrE lineage through a Yin/Yang regulating pattern.
Collapse
Affiliation(s)
- Weisi Lu
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Lekun Fang
- Guangdong Gastroenterology Institute, Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Ouyang
- Department of Urology, The First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiya Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoquan Zhan
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuyang Feng
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaofu Bai
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Han
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hyeung Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Quanyuan He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ma Wan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Feng-Tao Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Hua Feng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Dan Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Hoepfner J, Kleinsorge M, Papp O, Ackermann M, Alfken S, Rinas U, Solodenko W, Kirschning A, Sgodda M, Cantz T. Biphasic modulation of Wnt signaling supports efficient foregut endoderm formation from human pluripotent stem cells. Cell Biol Int 2016; 40:534-48. [DOI: 10.1002/cbin.10590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/07/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Jeannine Hoepfner
- Translational Hepatology and Stem Cell Biology; REBIRTH Cluster of Excellence, Hannover Medical School; Hannover Germany
- Department of Gastroenterology, Hepatology, and Endocrinology; Hannover Medical School; Hannover Germany
| | - Mandy Kleinsorge
- Translational Hepatology and Stem Cell Biology; REBIRTH Cluster of Excellence, Hannover Medical School; Hannover Germany
- Department of Gastroenterology, Hepatology, and Endocrinology; Hannover Medical School; Hannover Germany
| | - Oliver Papp
- Translational Hepatology and Stem Cell Biology; REBIRTH Cluster of Excellence, Hannover Medical School; Hannover Germany
- Department of Gastroenterology, Hepatology, and Endocrinology; Hannover Medical School; Hannover Germany
| | - Mania Ackermann
- iPSC Based Gene Therapy; REBIRTH Cluster of Excellence, Hannover Medical School; Hannover Germany
| | - Susanne Alfken
- Translational Hepatology and Stem Cell Biology; REBIRTH Cluster of Excellence, Hannover Medical School; Hannover Germany
- Department of Gastroenterology, Hepatology, and Endocrinology; Hannover Medical School; Hannover Germany
| | - Ursula Rinas
- Institute of Technical Chemistry; Leibniz University Hannover; Hannover Germany
| | - Wladimir Solodenko
- Institute of Organic Chemistry; Leibniz University Hannover; Hannover Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry; Leibniz University Hannover; Hannover Germany
| | - Malte Sgodda
- Translational Hepatology and Stem Cell Biology; REBIRTH Cluster of Excellence, Hannover Medical School; Hannover Germany
- Department of Gastroenterology, Hepatology, and Endocrinology; Hannover Medical School; Hannover Germany
| | - Tobias Cantz
- Translational Hepatology and Stem Cell Biology; REBIRTH Cluster of Excellence, Hannover Medical School; Hannover Germany
- Department of Gastroenterology, Hepatology, and Endocrinology; Hannover Medical School; Hannover Germany
- Cell and Developmental Biology; Max Planck Institute for Molecular Biomedicine; Münster Germany
| |
Collapse
|
22
|
Singh AM, Perry DW, Steffey VVA, Miller K, Allison DW. Decoding the Epigenetic Heterogeneity of Human Pluripotent Stem Cells with Seamless Gene Editing. Methods Mol Biol 2016; 1516:153-169. [PMID: 27075976 DOI: 10.1007/7651_2016_324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Pluripotent stem cells exhibit cell cycle-regulated heterogeneity for trimethylation of histone-3 on lysine-4 (H3K4me3) on developmental gene promoters containing bivalent epigenetic domains. The heterogeneity of H3K4me3 can be attributed to Cyclin-dependent kinase-2 (CDK2) phosphorylation and activation of the histone methyltransferase, MLL2 (KMT2B), during late-G1. The deposition of H3K4me3 on developmental promoters in late-G1 establishes a permissive chromatin architecture that enables signaling cues to promote differentiation from the G1 phase. These data suggest that the inhibition of MLL2 phosphorylation and activation will prevent the initiation of differentiation. Here, we describe a method to seamlessly modify a putative CDK2 phosphorylation site on MLL2 to restrict its phosphorylation and activation. Specifically, by utilizing dimeric CRISPR RNA-guided nucleases, RFNs (commercially known as the NextGEN™ CRISPR), in combination with an excision-only piggyBac™ transposase, we demonstrate how to generate a point mutation of threonine-542, a predicted site to prevent MLL2 activation. This gene editing method enables the use of both positive and negative selection, and allows for subsequent removal of the donor cassette without leaving behind any unwanted DNA sequences or modifications. This seamless "donor-excision" approach provides clear advantages over using single stranded oligo-deoxynucleotides (ssODN) as donors to create point mutations, as the use of ssODN necessitate additional mutations in the donor PAM sequence, along with extensive cloning efforts. The method described here therefore provides the highest targeting efficiency with the lowest "off-target" mutation rates possible, while removing the labor-intensive efforts associated with screening thousands of clones. In sum, this chapter describes how seamless gene editing may be utilized to examine stem cell heterogeneity of epigenetic marks, but is also widely applicable for performing precise genetic manipulations in numerous other cell types.
Collapse
Affiliation(s)
- Amar M Singh
- Transposagen Biopharmaceuticals, Inc., 535 W. Second Street, Lexington, KY, 40508, USA.
| | - Dustin W Perry
- Transposagen Biopharmaceuticals, Inc., 535 W. Second Street, Lexington, KY, 40508, USA
| | | | - Kenneth Miller
- Transposagen Biopharmaceuticals, Inc., 535 W. Second Street, Lexington, KY, 40508, USA
| | - Daniel W Allison
- Transposagen Biopharmaceuticals, Inc., 535 W. Second Street, Lexington, KY, 40508, USA.
| |
Collapse
|
23
|
Pluripotency Factors on Their Lineage Move. Stem Cells Int 2015; 2016:6838253. [PMID: 26770212 PMCID: PMC4684880 DOI: 10.1155/2016/6838253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells are characterised by continuous self-renewal while maintaining the potential to differentiate into cells of all three germ layers. Regulatory networks of maintaining pluripotency have been described in great detail and, similarly, there is great knowledge on key players that regulate their differentiation. Interestingly, pluripotency has various shades with distinct developmental potential, an observation that coined the term of a ground state of pluripotency. A precise interplay of signalling axes regulates ground state conditions and acts in concert with a combination of key transcription factors. The balance between these transcription factors greatly influences the integrity of the pluripotency network and latest research suggests that minute changes in their expression can strengthen but also collapse the network. Moreover, recent studies reveal different facets of these core factors in balancing a controlled and directed exit from pluripotency. Thereby, subsets of pluripotency-maintaining factors have been shown to adopt new roles during lineage specification and have been globally defined towards neuroectodermal and mesendodermal sets of embryonic stem cell genes. However, detailed underlying insights into how these transcription factors orchestrate cell fate decisions remain largely elusive. Our group and others unravelled complex interactions in the regulation of this controlled exit. Herein, we summarise recent findings and discuss the potential mechanisms involved.
Collapse
|
24
|
Activation of Wnt/ß-catenin signaling in ESC promotes rostral forebrain differentiation in vitro. In Vitro Cell Dev Biol Anim 2015; 52:374-382. [PMID: 26563247 PMCID: PMC4833820 DOI: 10.1007/s11626-015-9975-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/27/2015] [Indexed: 01/10/2023]
Abstract
Wnt/ß-catenin signaling is crucial for maintenance of pluripotent state of embryonic stem cell (ESC). However, it is unclear how Wnt/ß-catenin signaling affects the differentiation ability of ESC, especially with regard to rostral forebrain cells. Here, using Rax, rostral forebrain marker, and Wnt/ß-catenin reporter lines, we report ratio of Rax+ and Wnt responding tissue (Wnt+) patterns, which were affected by seeding number of ESC in three-dimensional culture system. Surprisingly, we found ß-catenin level and localization are heterogeneous in ESC colony by immunostaining and time-laps imaging of ß-catenin-mEGFP signals. Moreover, activation of Wnt signaling in ESC promoted expression level and nuclear localization of ß-catenin, and mRNA levels of Wnt antagonists, axin2 and dkk1, leading to upregulating Wnt/ß-catenin reporter in ESC state and Rax expression at differentiation culture day 7. Together, our results suggest that activation of Wnt signaling in ESC promotes the differentiation efficacy of rostral forebrain cells. Wnt-priming culture method may provide a useful tool for applications in the areas of basic science and molecular therapeutics for regenerative medicine.
Collapse
|
25
|
Knöspel F, Freyer N, Stecklum M, Gerlach JC, Zeilinger K. Periodic harvesting of embryonic stem cells from a hollow-fiber membrane based four-compartment bioreactor. Biotechnol Prog 2015; 32:141-51. [DOI: 10.1002/btpr.2182] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/02/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Fanny Knöspel
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Nora Freyer
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Maria Stecklum
- Experimental Pharmacology and Oncology Berlin-Buch GmbH; Berlin Germany
| | - Jörg C. Gerlach
- McGowan Inst. for Regenerative Medicine, University of Pittsburgh; Pittsburgh PA
| | - Katrin Zeilinger
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
26
|
Tbx3 Controls Dppa3 Levels and Exit from Pluripotency toward Mesoderm. Stem Cell Reports 2015; 5:97-110. [PMID: 26095607 PMCID: PMC4618439 DOI: 10.1016/j.stemcr.2015.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 01/12/2023] Open
Abstract
Tbx3, a member of the T-box family, plays important roles in development, stem cells, nuclear reprogramming, and cancer. Loss of Tbx3 induces differentiation in mouse embryonic stem cells (mESCs). However, we show that mESCs exist in an alternate stable pluripotent state in the absence of Tbx3. In-depth transcriptome analysis of this mESC state reveals Dppa3 as a direct downstream target of Tbx3. Also, Tbx3 facilitates the cell fate transition from pluripotent cells to mesoderm progenitors by directly repressing Wnt pathway members required for differentiation. Wnt signaling regulates differentiation of mESCs into mesoderm progenitors and helps to maintain a naive pluripotent state. We show that Tbx3, a downstream target of Wnt signaling, fine tunes these divergent roles of Wnt signaling in mESCs. In conclusion, we identify a signaling-TF axis that controls the exit of mESCs from a self-renewing pluripotent state toward mesoderm differentiation. An alternate and stable pluripotent state of Tbx3 knockout mESCs exists Tbx3 maintains steady-state levels of Dppa3 in mESCs Tbx3 directly represses mesoderm specification genes like T Tbx3 represses Wnt pathway genes required for mesoderm differentiation
Collapse
|
27
|
The generation of definitive endoderm from human embryonic stem cells is initially independent from activin A but requires canonical Wnt-signaling. Stem Cell Rev Rep 2015; 10:480-93. [PMID: 24913278 DOI: 10.1007/s12015-014-9509-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The activation of the TGF-beta pathway by activin A directs ES cells into the definitive endoderm germ layer. However, there is evidence that activin A/TGF-beta is not solely responsible for differentiation into definitive endoderm. GSK3beta inhibition has recently been shown to generate definitive endoderm-like cells from human ES cells via activation of the canonical Wnt-pathway. The GSK3beta inhibitor CHIR-99021 has been reported to generate mesoderm from human iPS cells. Thus, the specific role of the GSK3beta inhibitor CHIR-99021 was analyzed during the differentiation of human ES cells and compared against a classic endoderm differentiation protocol. At high concentrations of CHIR-99021, the cells were directed towards mesodermal cell fates, while low concentrations permitted mesodermal and endodermal differentiation. Finally, the analyses revealed that GSK3beta inhibition rapidly directed human ES cells into a primitive streak-like cell type independently from the TGF-beta pathway with mesoderm and endoderm differentiation potential. Addition of low activin A concentrations effectively differentiated these primitive streak-like cells into definitive endoderm. Thus, the in vitro differentiation of human ES cells into definitive endoderm is initially independent from the activin A/TGF-beta pathway but requires high canonical Wnt-signaling activity.
Collapse
|
28
|
Cell Cycle-Driven Heterogeneity: On the Road to Demystifying the Transitions between "Poised" and "Restricted" Pluripotent Cell States. Stem Cells Int 2015; 2015:219514. [PMID: 25945098 PMCID: PMC4402182 DOI: 10.1155/2015/219514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 12/29/2022] Open
Abstract
Cellular heterogeneity is now considered an inherent property of most stem cell types, including pluripotent stem cells, somatic stem cells, and cancer stem cells, and this heterogeneity can exist at the epigenetic, transcriptional, and posttranscriptional levels. Several studies have indicated that the stochastic activation of signaling networks may promote heterogeneity and further that this heterogeneity may be reduced by their inhibition. But why different cells in the same culture respond in a nonuniform manner to the identical exogenous signals has remained unclear. Recent studies now demonstrate that the cell cycle position directly influences lineage specification and specifically that pluripotent stem cells initiate their differentiation from the G1 phase. These studies suggest that cells in G1 are uniquely "poised" to undergo cell specification. G1 cells are therefore more prone to respond to differentiation cues, which may explain the heterogeneity of developmental factors, such as Gata6, and pluripotency factors, such as Nanog, in stem cell cultures. Overall, this raises the possibility that G1 serves as a "Differentiation Induction Point." In this review, we will reexamine the literature describing heterogeneity of pluripotent stem cells, while highlighting the role of the cell cycle as a major determinant.
Collapse
|
29
|
Price FD, von Maltzahn J, Bentzinger CF, Dumont NA, Yin H, Chang NC, Wilson DH, Frenette J, Rudnicki MA. Inhibition of JAK-STAT signaling stimulates adult satellite cell function. Nat Med 2014; 20:1174-81. [PMID: 25194569 PMCID: PMC4191983 DOI: 10.1038/nm.3655] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/14/2014] [Indexed: 02/08/2023]
Abstract
Diminished regenerative capacity of skeletal muscle occurs during adulthood. We identified a reduction in the intrinsic capacity of murine adult satellite cells to contribute to regeneration and repopulate the niche. Gene expression analysis identified an increase in expression of JAK/STAT signaling targets between 3 week old and 18 month old mice. Knockdown of Jak2 or Stat3 significantly stimulated symmetric satellite stem cell divisions on cultured myofibers. Knockdown of Jak2 or Stat3 in prospectively isolated satellite cells markedly enhanced their ability to repopulate the satellite cell niche. Pharmacological inhibition of Jak2 and Stat3 similarly stimulated symmetric expansion of satellite cells in vitro and their engraftment in vivo. Intramuscular injection of these drugs resulted in a dramatic enhancement of muscle repair and force generation. Together these results reveal intrinsic properties that functionally distinguish adult satellite cells and suggest a promising therapeutic avenue for the treatment of muscle wasting diseases.
Collapse
Affiliation(s)
- Feodor D Price
- 1] Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada. [2] Department of Cellular and Molecular Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada. [3]
| | - Julia von Maltzahn
- 1] Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada. [2] Department of Cellular and Molecular Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada. [3] [4]
| | - C Florian Bentzinger
- 1] Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada. [2] Department of Cellular and Molecular Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Nicolas A Dumont
- 1] Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada. [2] Department of Cellular and Molecular Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Hang Yin
- 1] Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada. [2] Department of Cellular and Molecular Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Natasha C Chang
- 1] Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada. [2] Department of Cellular and Molecular Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | - David H Wilson
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Jérôme Frenette
- Programme de Physiothérapie, Département de Réadaptation, Université Laval, Québec, Canada
| | - Michael A Rudnicki
- 1] Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada. [2] Department of Cellular and Molecular Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| |
Collapse
|
30
|
Singh AM, Chappell J, Trost R, Lin L, Wang T, Tang J, Matlock BK, Weller KP, Wu H, Zhao S, Jin P, Dalton S. Cell-cycle control of developmentally regulated transcription factors accounts for heterogeneity in human pluripotent cells. Stem Cell Reports 2013; 1:532-44. [PMID: 24371808 PMCID: PMC3871385 DOI: 10.1016/j.stemcr.2013.10.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/17/2013] [Accepted: 10/17/2013] [Indexed: 12/12/2022] Open
Abstract
Heterogeneity within pluripotent stem cell (PSC) populations is indicative of dynamic changes that occur when cells drift between different states. Although the role of metastability in PSCs is unclear, it appears to reflect heterogeneity in cell signaling. Using the Fucci cell-cycle indicator system, we show that elevated expression of developmental regulators in G1 is a major determinant of heterogeneity in human embryonic stem cells. Although signaling pathways remain active throughout the cell cycle, their contribution to heterogeneous gene expression is restricted to G1. Surprisingly, we identify dramatic changes in the levels of global 5-hydroxymethylcytosine, an unanticipated source of epigenetic heterogeneity that is tightly linked to cell-cycle progression and the expression of developmental regulators. When we evaluated gene expression in differentiating cells, we found that cell-cycle regulation of developmental regulators was maintained during lineage specification. Cell-cycle regulation of developmentally regulated transcription factors is therefore an inherent feature of the mechanisms underpinning differentiation. Embryonic stem cells are lineage primed in G1 Transcription of developmentally regulated genes is cell-cycle regulated 5hmC is cell-cycle regulated Stem cells initiate differentiation from G1
Collapse
Affiliation(s)
- Amar M Singh
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - James Chappell
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Robert Trost
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Li Lin
- Department of Human Genetics, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| | - Tao Wang
- Department of Human Genetics, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| | - Jie Tang
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Brittany K Matlock
- Vanderbilt Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kevin P Weller
- Vanderbilt Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| |
Collapse
|
31
|
TBX3 Directs Cell-Fate Decision toward Mesendoderm. Stem Cell Reports 2013; 1:248-65. [PMID: 24319661 PMCID: PMC3849240 DOI: 10.1016/j.stemcr.2013.08.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 12/19/2022] Open
Abstract
Cell-fate decisions and pluripotency are dependent on networks of key transcriptional regulators. Recent reports demonstrated additional functions of pluripotency-associated factors during early lineage commitment. The T-box transcription factor TBX3 has been implicated in regulating embryonic stem cell self-renewal and cardiogenesis. Here, we show that TBX3 is dynamically expressed during specification of the mesendoderm lineages in differentiating embryonic stem cells (ESCs) in vitro and in developing mouse and Xenopus embryos in vivo. Forced TBX3 expression in ESCs promotes mesendoderm specification by directly activating key lineage specification factors and indirectly by enhancing paracrine Nodal/Smad2 signaling. TBX3 loss-of-function analyses in the Xenopus underline its requirement for mesendoderm lineage commitment. Moreover, we uncovered a functional redundancy between TBX3 and Tbx2 during Xenopus gastrulation. Taken together, we define further facets of TBX3 actions and map TBX3 as an upstream regulator of the mesendoderm transcriptional program during gastrulation. T-box transcription factor TBX3 is involved in early embryonic events Key transcription factor promoters of mesendoderm formation are occupied by TBX3 TBX3 promotes mesendodermal fate of mESCs
Collapse
|
32
|
WNT3A promotes hematopoietic or mesenchymal differentiation from hESCs depending on the time of exposure. Stem Cell Reports 2013; 1:53-65. [PMID: 24052942 PMCID: PMC3757745 DOI: 10.1016/j.stemcr.2013.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/21/2013] [Accepted: 04/22/2013] [Indexed: 11/22/2022] Open
Abstract
We investigated the role of canonical WNT signaling in mesoderm and hematopoietic development from human embryonic stem cells (hESCs) using a recombinant human protein-based differentiation medium (APEL). In contrast to prior studies using less defined culture conditions, we found that WNT3A alone was a poor inducer of mesoderm. However, WNT3A synergized with BMP4 to accelerate mesoderm formation, increase embryoid body size, and increase the number of hematopoietic blast colonies. Interestingly, inclusion of WNT3A or a GSK3 inhibitor in methylcellulose colony-forming assays at 4 days of differentiation abrogated blast colony formation but supported the generation of mesospheres that expressed genes associated with mesenchymal lineages. Mesospheres differentiated into cells with characteristics of bone, fat, and smooth muscle. These studies identify distinct effects for WNT3A, supporting the formation of hematopoietic or mesenchymal lineages from human embryonic stem cells, depending upon differentiation stage at the time of exposure.
Collapse
|