1
|
Liu GQ, Liu ZX, Lin ZX, Chen P, Yan YC, Lin QR, Hu YJ, Jiang N, Yu B. Effects of Dopamine on stem cells and its potential roles in the treatment of inflammatory disorders: a narrative review. Stem Cell Res Ther 2023; 14:230. [PMID: 37649087 PMCID: PMC10469852 DOI: 10.1186/s13287-023-03454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Inflammation is the host's protective response against harmful external stimulation that helps tissue repair and remodeling. However, excessive inflammation seriously threatens the patient's life. Due to anti-inflammatory effects, corticosteroids, immunosuppressants, and monoclonal antibodies are used to treat various inflammatory diseases, but drug resistance, non-responsiveness, and severe side effect limit their development and application. Therefore, developing other alternative therapies has become essential in anti-inflammatory therapy. In recent years, the in-depth study of stem cells has made them a promising alternative drug for the treatment of inflammatory diseases, and the function of stem cells is regulated by a variety of signals, of which dopamine signaling is one of the main influencing factors. In this review, we review the effects of dopamine on various adult stem cells (neural stem cells, mesenchymal stromal cells, hematopoietic stem cells, and cancer stem cells) and their signaling pathways, as well as the application of some critical dopamine receptor agonists/antagonists. Besides, we also review the role of various adult stem cells in inflammatory diseases and discuss the potential anti-inflammation function of dopamine receptors, which provides a new therapeutic target for regenerative medicine in inflammatory diseases.
Collapse
Affiliation(s)
- Guan-Qiao Liu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Zi-Xian Liu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Ze-Xin Lin
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Peng Chen
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Yu-Chi Yan
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Qing-Rong Lin
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Yan-Jun Hu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Nan Jiang
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
| | - Bin Yu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
3
|
Li Y, Wang W, Wang F, Wu Q, Li W, Zhong X, Tian K, Zeng T, Gao L, Liu Y, Li S, Jiang X, Du G, Zhou Y. Paired related homeobox 1 transactivates dopamine D2 receptor to maintain propagation and tumorigenicity of glioma-initiating cells. J Mol Cell Biol 2018; 9:302-314. [PMID: 28486630 DOI: 10.1093/jmcb/mjx017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly invasive brain tumor with limited therapeutic means and poor prognosis. Recent studies indicate that glioma-initiating cells/glioma stem cells (GICs/GSCs) may be responsible for tumor initiation, infiltration, and recurrence. GICs could aberrantly employ molecular machinery balancing self-renewal and differentiation of embryonic neural precursors. Here, we find that paired related homeobox 1 (PRRX1), a homeodomain transcription factor that was previously reported to control skeletal development, is expressed in cortical neural progenitors and is required for their self-renewal and proper differentiation. Further, PRRX1 is overrepresented in glioma samples and labels GICs. Glioma cells and GICs depleted with PRRX1 could not propagate in vitro or form tumors in the xenograft mouse model. The GIC self-renewal function regulated by PRRX1 is mediated by dopamine D2 receptor (DRD2). PRRX1 directly binds to the DRD2 promoter and transactivates its expression in GICs. Blockage of the DRD2 signaling hampers GIC self-renewal, whereas its overexpression restores the propagating and tumorigenic potential of PRRX1-depleted GICs. Finally, PRRX1 potentiates GICs via DRD2-mediated extracellular signal-related kinase (ERK) and AKT activation. Thus, our study suggests that therapeutic targeting the PRRX1-DRD2-ERK/AKT axis in GICs is a promising strategy for treating GBMs.
Collapse
Affiliation(s)
- Yamu Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Wen Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Fangyu Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Qiushuang Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Wei Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Xiaoling Zhong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Kuan Tian
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Tao Zeng
- Department of Neurosurgery, The Tenth Affiliated Hospital, Tongji University, Shanghai 200072, China.,Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Liang Gao
- Department of Neurosurgery, The Tenth Affiliated Hospital, Tongji University, Shanghai 200072, China
| | - Ying Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China.,Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Shu Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China.,Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Yan Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Matsuda S, Ichimura M, Ogino M, Nakano N, Minami A, Murai T, Kitagishi Y. Effective PI3K modulators for improved therapy against malignant tumors and for neuroprotection of brain damage after tumor therapy (Review). Int J Oncol 2016; 49:1785-1790. [PMID: 27826621 DOI: 10.3892/ijo.2016.3710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/15/2016] [Indexed: 11/06/2022] Open
Abstract
Due to the key role in various cellular processes including cell proliferation and cell survival on many cell types, dysregulation of the PI3K/AKT pathway represents a crucial step of the pathogenesis in many diseases. Furthermore, the tumor suppressor PTEN negatively regulates the PI3K/AKT pathway through its lipid phosphatase activity, which is recognized as one of the most frequently deleted and/or mutated genes in human cancer. Given the pervasive involvement of this pathway, the development of the molecules that modulate this PI3K/AKT signaling has been initiated in studies which focus on the extensive effective drug discovery. Consequently, the PI3K/AKT pathway appears to be an attractive pharmacological target both for cancer therapy and for neurological protection necessary after the therapy. A better understanding of the molecular relations could reveal new targets for treatment development. We review recent studies on the features of PI3K/AKT and PTEN, and their pleiotropic functions relevant to the signaling pathways involved in cancer progress and in neuronal damage by the therapy.
Collapse
Affiliation(s)
- Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Mayuko Ichimura
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Mako Ogino
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Noriko Nakano
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Akari Minami
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Toshiyuki Murai
- Department of Microbiology and Immunology and Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
5
|
Zhang Y, Chen Y, Wu J, Manaenko A, Yang P, Tang J, Fu W, Zhang JH. Activation of Dopamine D2 Receptor Suppresses Neuroinflammation Through αB-Crystalline by Inhibition of NF-κB Nuclear Translocation in Experimental ICH Mice Model. Stroke 2015; 46:2637-46. [PMID: 26251254 DOI: 10.1161/strokeaha.115.009792] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/06/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Inflammatory injury plays a critical role in intracerebral hemorrhage (ICH)-induced secondary brain injury. Recently, dopamine D2 receptor (DRD2) is identified as an important component controlling innate immunity and inflammatory response in central nervous system, and αB-crystallin (CRYAB) is a potent negative regulator on inflammatory pathways. Here, we sought to investigate the role of DRD2 on neuroinflammation after experimental ICH and the potential mechanism mediated by CRYAB. METHODS Two hundred and twenty-four (224) male CD-1 mice were subjected to intrastriatal infusion of bacterial collagenase or autologous blood. Two DRD2 agonists quinpirole and ropinirole were administrated by daily intraperitoneal injection starting at 1 hour after ICH. DRD2 and CRYAB in vivo knockdown was performed 48 hours before ICH insult. Behavioral deficits and brain water content, Western blots, immunofluorescence staining, coimmunoprecipitation (Co-IP) assay, and proteome cytokine array were evaluated. RESULTS Endogenous DRD2 and CRYAB expressions were increased after ICH. DRD2 knockdown aggravated the neurobehavioral deficits and the pronounced cytokine expressions. DRD2 activation by quinpirole and ropinirole ameliorated neurological outcome, brain edema, interleukin-1β, and monocyte chemoattractant protein-1 expression, as well as microglia/macrophages activation, in the perihematomal region. These effects were abolished by pretreatment with CRYAB siRNAs. Quinpirole enhanced cytoplasmic binding activity between CRYAB and NF-κB and decreased nuclear NF-κB expression. Similar therapeutic benefits were observed using autologous blood injection model and intranasal delivery of quinpirole. CONCLUSIONS DRD2 may have anti-inflammatory effects after ICH. DRD2 agonists inhibited neuroinflammation and attenuated brain injury after ICH, which is probably mediated by CRYAB and enhanced cytoplasmic binding activity with NF-κB.
Collapse
Affiliation(s)
- Yang Zhang
- From the Department of Laboratory Medicine (Y.Z., W.F.) and Department of Neurosurgery (Y.C.), Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Physiology and Pharmacology, Loma Linda University, CA (Y.Z., Y.C., J.W., A.M., P.Y., J.T., J.H.Z.); and Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China (J.W.)
| | - Yujie Chen
- From the Department of Laboratory Medicine (Y.Z., W.F.) and Department of Neurosurgery (Y.C.), Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Physiology and Pharmacology, Loma Linda University, CA (Y.Z., Y.C., J.W., A.M., P.Y., J.T., J.H.Z.); and Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China (J.W.)
| | - Jiang Wu
- From the Department of Laboratory Medicine (Y.Z., W.F.) and Department of Neurosurgery (Y.C.), Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Physiology and Pharmacology, Loma Linda University, CA (Y.Z., Y.C., J.W., A.M., P.Y., J.T., J.H.Z.); and Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China (J.W.)
| | - Anatol Manaenko
- From the Department of Laboratory Medicine (Y.Z., W.F.) and Department of Neurosurgery (Y.C.), Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Physiology and Pharmacology, Loma Linda University, CA (Y.Z., Y.C., J.W., A.M., P.Y., J.T., J.H.Z.); and Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China (J.W.)
| | - Peng Yang
- From the Department of Laboratory Medicine (Y.Z., W.F.) and Department of Neurosurgery (Y.C.), Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Physiology and Pharmacology, Loma Linda University, CA (Y.Z., Y.C., J.W., A.M., P.Y., J.T., J.H.Z.); and Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China (J.W.)
| | - Jiping Tang
- From the Department of Laboratory Medicine (Y.Z., W.F.) and Department of Neurosurgery (Y.C.), Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Physiology and Pharmacology, Loma Linda University, CA (Y.Z., Y.C., J.W., A.M., P.Y., J.T., J.H.Z.); and Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China (J.W.)
| | - Weiling Fu
- From the Department of Laboratory Medicine (Y.Z., W.F.) and Department of Neurosurgery (Y.C.), Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Physiology and Pharmacology, Loma Linda University, CA (Y.Z., Y.C., J.W., A.M., P.Y., J.T., J.H.Z.); and Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China (J.W.).
| | - John H Zhang
- From the Department of Laboratory Medicine (Y.Z., W.F.) and Department of Neurosurgery (Y.C.), Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Physiology and Pharmacology, Loma Linda University, CA (Y.Z., Y.C., J.W., A.M., P.Y., J.T., J.H.Z.); and Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China (J.W.).
| |
Collapse
|
6
|
Basu S, Dasgupta PS. Response to the paper entitled "dopamine mobilizes mesenchymal progenitor cells through D2-class receptors and their PI3K/AKT pathway" by Mirones, et al., 2014. Stem Cells 2014; 32:3285-6. [PMID: 25183552 DOI: 10.1002/stem.1830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/24/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Sujit Basu
- Department of Pathology, Ohio State University, Columbus, Ohio, USA; Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|