1
|
Zung N, Aravindan N, Boshnakovska A, Valenti R, Preminger N, Jonas F, Yaakov G, Willoughby MM, Homberg B, Keller J, Kupervaser M, Dezorella N, Dadosh T, Wolf SG, Itkin M, Malitsky S, Brandis A, Barkai N, Fernández-Busnadiego R, Reddi AR, Rehling P, Rapaport D, Schuldiner M. The molecular mechanism of on-demand sterol biosynthesis at organelle contact sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593285. [PMID: 38766039 PMCID: PMC11100823 DOI: 10.1101/2024.05.09.593285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Contact-sites are specialized zones of proximity between two organelles, essential for organelle communication and coordination. The formation of contacts between the Endoplasmic Reticulum (ER), and other organelles, relies on a unique membrane environment enriched in sterols. However, how these sterol-rich domains are formed and maintained had not been understood. We found that the yeast membrane protein Yet3, the homolog of human BAP31, is localized to multiple ER contact sites. We show that Yet3 interacts with all the enzymes of the post-squalene ergosterol biosynthesis pathway and recruits them to create sterol-rich domains. Increasing sterol levels at ER contacts causes its depletion from the plasma membrane leading to a compensatory reaction and altered cell metabolism. Our data shows that Yet3 provides on-demand sterols at contacts thus shaping organellar structure and function. A molecular understanding of this protein's functions gives new insights into the role of BAP31 in development and pathology.
Collapse
Affiliation(s)
- Naama Zung
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Nitya Aravindan
- Interfaculty Institute of Biochemistry, University of Tuebingen, Germany
| | - Angela Boshnakovska
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077, Germany
| | - Rosario Valenti
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Noga Preminger
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Gilad Yaakov
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Mathilda M Willoughby
- School of Chemistry and Biochemistry, Georgia Institute of Technology, USA
- Biochemistry and Molecular Biology Department, University of Nebraska Medical Center, USA
| | - Bettina Homberg
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077, Germany
| | - Jenny Keller
- University Medical Center Göttingen, Institute for Neuropathology, 37077, Germany
- Collaborative Research Center 1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Germany
| | - Meital Kupervaser
- The De Botton Protein Profiling institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Israel
| | - Nili Dezorella
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Israel
| | - Tali Dadosh
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Israel
| | - Sharon G Wolf
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Israel
| | - Maxim Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, Israel
| | - Sergey Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Rubén Fernández-Busnadiego
- University Medical Center Göttingen, Institute for Neuropathology, 37077, Germany
- Collaborative Research Center 1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077, Germany
- Faculty of Physics, University of Göttingen, 37077, Germany
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, USA
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tuebingen, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| |
Collapse
|
2
|
Liu YP, Guo G, Ren M, Li YR, Guo D, She JJ, He SX. NDC1 promotes hepatocellular carcinoma tumorigenesis by targeting BCAP31 to activate PI3K/AKT signaling. J Biochem Mol Toxicol 2024; 38:e23647. [PMID: 38348718 DOI: 10.1002/jbt.23647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/07/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024]
Abstract
Hepatocellular carcinoma (HCC) is among the world's worst malignancies. Nuclear division cycle 1 (NDC1) is an essential membrane-integral nucleoporin, found in this study to be significantly increased in primary HCC. A multivariate analysis revealed that higher NDC1 expression was linked to worse outcome in HCC patients. Mouse xenograft tumors overexpressing NDC1 grew rapidly, and HCC cells overexpressing NDC1 showed enhanced proliferation, invasion, and migration in vitro. In contrast, knocking down NDC1 had the opposite effects in vitro. Furthermore, co-immunoprecipitation and liquid chromatograph mass spectrometer analyses revealed that NDC1 activated PI3K/AKT signaling by interacting with BCAP31. In summary, NDC1 and BCAP31 cooperate to promote the PI3K/AKT pathway, which is essential for HCC carcinogenesis. This suggests that NDC1 is predictive of prognosis in HCC.
Collapse
Affiliation(s)
- Ya-Ping Liu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Clinical Medical Research Center for Digestive Diseases of Shaanxi Province (Oncology), Xi'an, China
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gang Guo
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mudan Ren
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Clinical Medical Research Center for Digestive Diseases of Shaanxi Province (Oncology), Xi'an, China
| | - Ya-Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Clinical Medical Research Center for Digestive Diseases of Shaanxi Province (Oncology), Xi'an, China
| | - Dan Guo
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Clinical Medical Research Center for Digestive Diseases of Shaanxi Province (Oncology), Xi'an, China
| | - Jun-Jun She
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shui-Xiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Clinical Medical Research Center for Digestive Diseases of Shaanxi Province (Oncology), Xi'an, China
| |
Collapse
|
3
|
Liu J, Zhang Q, Wang J, Wang C, Lan T, Wang T, Wang B. Knockdown of BAP31 Downregulates Galectin-3 to Inhibit the Wnt/β-Catenin Signaling Pathway to Modulate 5-FU Chemosensitivity and Cancer Stemness in Colorectal Cancer. Int J Mol Sci 2023; 24:14402. [PMID: 37762705 PMCID: PMC10532080 DOI: 10.3390/ijms241814402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Increased stemness is causally linked to the development of chemoresistance in cancers. B-cell receptor-associated protein 31 (BAP31) has been identified to play an oncogenic role in many types of cancer. However, the role of BAP31 in 5-fluorouracil (5-FU) chemosensitivity and stemness of colorectal cancer (CRC) is still unknown. The aim of this study was to investigate the biological function and molecular mechanism of BAP31 in regulating 5-FU chemosensitivity and stemness. The correlation between BAP31 expression and 5-FU chemosensitivity was examined using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide and colony formation assays. Cancer stemness was analyzed using tumor sphere formation and Western blot assays. Western blot and immunofluorescence analyses of the knockdown cell lines were performed to explore the possible mechanisms. Finally, we investigated the function of BAP31 by constructing xenograft nude mouse models in vivo. In this study, we demonstrated that BAP31 was increased in CRC cells, and knockdown of BAP31 reduced the half maximal inhibitory concentration (IC50) of 5-FU, while this effect was reversed by overexpression of BAP31. In addition, knockdown of BAP31 substantially reduced the stemness of CRC cells in vitro. Consistently, knockdown of BAP31 significantly suppressed the tumorigenicity and stemness of CRC in vivo. The functional study further suggested that knockdown of BAP31 downregulated galectin-3 to inhibit the accumulation of β-catenin, which in turn repressed the transcription of downstream target genes (c-MYC, SOX2) of the Wnt/β-catenin signaling pathway. Knockdown of BAP31 reduced stemness by inhibiting the Wnt/β-catenin signaling pathway to increase 5-FU chemosensitivity. Importantly, intrabodies against BAP31 suppressed tumor growth and enhanced the antitumor effects of 5-FU in vivo. Therefore, using intrabodies against BAP31 may be a strategy for improving the antitumor effect of 5-FU in CRC.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianyi Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (J.L.); (Q.Z.); (J.W.); (C.W.); (T.L.)
| | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (J.L.); (Q.Z.); (J.W.); (C.W.); (T.L.)
| |
Collapse
|
4
|
Zhou Q, Liu T, Qian W, Ji J, Cai Q, Jin Y, Jiang J, Zhang J. HNF4A-BAP31-VDAC1 axis synchronously regulates cell proliferation and ferroptosis in gastric cancer. Cell Death Dis 2023; 14:356. [PMID: 37296105 PMCID: PMC10256786 DOI: 10.1038/s41419-023-05868-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/12/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
B cell receptor associated protein 31 (BAP31) is closely associated with tumor progression, while the role and mechanism of BAP31 in gastric cancer (GC) remains unknown. This study explored that BAP31 was upregulated in GC tissues and high expression indicated poor survival of GC patients. BAP31 knockdown inhibited cell growth and induced G1/S arrest. Moreover, BAP31 attenuation increased the lipid peroxidation level of the membrane and facilitated cellular ferroptosis. Mechanistically, BAP31 regulated cell proliferation and ferroptosis by directly binding to VDAC1 and affected VDAC1 oligomerization and polyubiquitination. HNF4A was bound to BAP31 at the promoter and increased its transcription. Furthermore, knockdown of BAP31 inclined to make GC cells vulnerable to 5-FU and ferroptosis inducer, erastin, in vivo and in vitro. Our work suggests that BAP31 may serve as prognostic factor for gastric cancer and act as potential therapeutic strategy for gastric cancer.
Collapse
Affiliation(s)
- Qingqing Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tengfei Liu
- Department of Oncology, Ren ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wenjing Qian
- Operating Room, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Ji
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yangbing Jin
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
5
|
Jiang X, Li G, Zhu B, Zang J, Lan T, Jiang R, Wang B. p20BAP31 induces cell apoptosis via both AIF caspase-independent and the ROS/JNK mitochondrial pathway in colorectal cancer. Cell Mol Biol Lett 2023; 28:25. [PMID: 36977989 PMCID: PMC10052827 DOI: 10.1186/s11658-023-00434-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
During cell apoptosis, the C-terminus of BAP31 is cleaved by caspase-8 and generates p20BAP31, which has been shown to induce an apoptotic pathway between the endoplasmic reticulum (ER) and mitochondria. However, the underlying mechanisms of p20BAP31 in cell apoptosis remains unclear.
Methods
We compared the effects of p20BAP31 on cell apoptosis in six cell lines and selected the most sensitive cells. Functional experiments were conducted, including Cell Counting Kit 8 (CCK-8), reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) assay. Then, cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. Next, NOX inhibitors (ML171 and apocynin), ROS scavenger (NAC), JNK inhibitor (SP600125), and caspase inhibitor (Z-VAD-FMK) were used to further investigate the underlying mechanisms of p20BAP31 on cell apoptosis. Finally, apoptosis-inducing factor (AIF) translocation from the mitochondria to the nuclei was verified by immunoblotting and immunofluorescence assay.
Results
We found that overexpression of p20BAP31 indeed induced apoptosis and had a much greater sensitivity in HCT116 cells. Furthermore, the overexpression of p20BAP31 inhibited cell proliferation by causing S phase arrest. Further study revealed that p20BAP31 reduced MMP, with a significant increase in ROS levels, accompanied by the activation of the MAPK signaling pathway. Importantly, the mechanistic investigation indicated that p20BAP31 induces mitochondrial-dependent apoptosis by activating the ROS/JNK signaling pathway and induces caspase-independent apoptosis by promoting the nuclear translocation of AIF.
Conclusions
p20BAP31 induced cell apoptosis via both the ROS/JNK mitochondrial pathway and AIF caspase-independent pathway. Compared with antitumor drugs that are susceptible to drug resistance, p20BAP31 has unique advantages for tumor therapy.
Collapse
|
6
|
Li G, Jiang X, Liang X, Hou Y, Zang J, Zhu B, Jia C, Niu K, Liu X, Xu X, Jiang R, Wang B. BAP31 regulates the expression of ICAM-1/VCAM-1 via MyD88/NF-κB pathway in acute lung injury mice model. Life Sci 2023; 313:121310. [PMID: 36549351 DOI: 10.1016/j.lfs.2022.121310] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
AIMS The cell adhesion molecules (CAMs) that mediate neutrophil-endothelium cell adhesion are deeply involved in the pathogenesis of acute lung injury (ALI). B-cell receptor associated protein 31 (BAP31) has been reported to engage in the expression of some CAMs. This study was undertaken to explore whether BAP31 in endotheliocyte affects the pathological process of ALI by regulating CAMs, and its possible mechanism. MAIN METHODS Our study used the shBAP31 endothelium cell lines and endothelial-specific BAP31 conditional knockdown mice constructed via Cre/loxP system. Hematoxylin and eosin staining was used to observe the histopathological manifestations. The adhesion of neutrophils to vascular wall was examined by intravital microscopy. The nuclear translocation of NF-κB was observed by immunofluorescence staining assay. Flow cytometric, real-time polymerase chain reaction and Western blot assay were performed to determine the expression of CAMs and key proteins in MyD88/NF-κB-related signaling pathway. Luciferase reporter and chromatin immunoprecipitation assay were analyzed for transcriptional activity of ICAM-1 and VCAM-1. KEY FINDINGS Mechanistic investigations indicated that endothelium-specific BAP31 depletion dramatically reduced the capacity of neutrophils adherence to endothelial cells (ECs), which was mainly attributed to the significant downregulation of ICAM-1 (p < 0.05) and VCAM-1 (p < 0.05) expression. Interestingly, BAP31 knockdown apparently deactivated MyD88/TRAF6-mediated TAK1/NF-κB and PI3K/Akt signaling cascades, resulting in the inhibition of NF-κB activation and nuclear translocation. SIGNIFICANCE Our data furnished convincing evidence that BAP31 deficiency performs a mitigative effect on ALI by decreasing neutrophils-ECs adhesion. These findings identified BAP31 as a promising protein for regulating the pathogenesis process of ALI.
Collapse
Affiliation(s)
- Guoxun Li
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaohan Jiang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaoyu Liang
- Southern Methodist University, Dallas, TX 75275, USA
| | - Yue Hou
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Jingnan Zang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Benzhi Zhu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Congcong Jia
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Kunwei Niu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Xia Liu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaoli Xu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Rui Jiang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
7
|
Comparative transcriptome analysis of differentially expressed genes and pathways in Procambarus clarkii (Louisiana crawfish) at different acute temperature stress. Genomics 2022; 114:110415. [PMID: 35718088 DOI: 10.1016/j.ygeno.2022.110415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022]
Abstract
Procambarus clarkii is an important economic species in China, and exhibit heat and cold tolerance in the main culture regions. To understand the mechanisms, we analyzed the hepatopancreas transcriptome of P. clarkii treated at 10 °C, 25 °C, and 30 °C, then 2092 DEGs and 6929 DEGs were found in 30 °C stress group and 10 °C stress group, respectively. KEGG pathway enrichment results showed that immune pathway is the main stress pathway for 10 °C treatment and metabolic pathway is the main response pathway for 30 °C treatment, which implies low temperature stress induces the damage of the immune system and increases the susceptibility of bacteria while the body response to high temperature stress through metabolic adjustment. In addition, flow cytometry proved that both high and low temperature stress caused different degrees of apoptosis of hemocytes, and dynamic transcription heat map analysis also identified the differential expression of HSPs family genes and apoptosis pathway genes under different heat stresses. This indicates that preventing damaged protein misfolding and accelerating cell apoptosis are necessary mechanisms for P. clarkii to cope with high and low temperature stress. Our research has deepened our understanding of the complex molecular mechanisms of P. clarkii in response to acute temperature stress, and provided a potential strategy for aquatic animals to relieve environmental duress.
Collapse
|
8
|
Han L, Shi J, Zhao L, Deng J, Li Y, Zhao H, Wang H, Yan Y, Zou F. BCAP31 is involved in modulating colorectal cancer cell proliferation via the Emerin/β-catenin axis. Exp Cell Res 2022; 418:113265. [PMID: 35716785 DOI: 10.1016/j.yexcr.2022.113265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/12/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022]
Abstract
Understanding the mechanisms of colorectal cancer (CRC) progression is critical for developing innovative treatment strategies. As an endoplasmic reticulum-located protein, B cell receptor-associated protein 31 (BCAP31) has been identified to be highly expressed in multiple cancers. However, its function and molecular mechanism in CRC remain not fully understood. In the present study, BCAP31 expression and its correlation with the clinical stage were analyzed based on TCGA database. We demonstrated that loss of BCAP31 suppressed CRC cell proliferation in vitro and tumor growth in vivo. Mechanistically, we demonstrated that Emerin was an interaction partner and downstream molecule of BCAP31. Knockdown of BCAP31 promoted the nuclear envelope localization of Emerin, leading to a reduction of β-catenin accumulation in the nucleus, which resulted in downregulation of Wnt/β-catenin downstream target genes, including c-Myc, cyclin D1, Survivin, and Mcl-1. Moreover, downregulation of Emerin partially restored the BCAP31 depletion-mediated β-catenin protein level and tumor suppressive effects in CRC cells.Our data highlights the pivotal role of BCAP31 depletion in inhibiting cell proliferation in CRC cells, and mechanistically via Emerin/β-catenin signaling, which may serve as a promising target for CRC treatment.
Collapse
Affiliation(s)
- Liping Han
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Junyang Shi
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lili Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jiaqiang Deng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Hong Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Huani Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yan Yan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Fangdong Zou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
9
|
Choi HS, Lee HM, Kim MK, Ryu CJ. Role of heat shock protein 60 in primed and naïve states of human pluripotent stem cells. PLoS One 2022; 17:e0269547. [PMID: 35679330 PMCID: PMC9182300 DOI: 10.1371/journal.pone.0269547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) exist in at least two distinct states in mammals: naïve pluripotency that represents several molecular characteristics in pre-implantation epiblast and primed pluripotency that corresponds to cells poised for differentiation in post-implantation epiblast. To identify and characterize the surface molecules that are necessary for the maintenance of naïve hPSCs, we generated a panel of murine monoclonal antibodies (MAbs) specific to the naïve state of hPSCs. Flow cytometry showed that N1-A4, one of the MAbs, bound to naïve hPSCs but not to primed hPSCs. Cell surface biotinylation and immunoprecipitation analysis identified that N1-A4 recognized heat shock protein 60 (HSP60) expressed on the surface of naïve hPSCs. Quantitative polymerase chain reaction (qPCR) analysis showed that HSP60 expression was rapidly downregulated during the embryoid body (EB) differentiation of primed hPSCs. HSP60 knockdown led to a decrease in the expression of pluripotency genes in primed hPSCs. HSP60 depletion also led to a decrease in the expression of pluripotency genes and representative naïve-state-specific genes in naïve hPSCs. Taken together, the results suggest that HSP60 is downregulated during differentiation of hPSCs and is required for the maintenance of pluripotency genes in both primed and naïve hPSCs, suggesting that HSP60 is a regulator of hPSC pluripotency and differentiation.
Collapse
Affiliation(s)
- Hong Seo Choi
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| | - Hyun Min Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| | - Min Kyu Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| | - Chun Jeih Ryu
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
- * E-mail:
| |
Collapse
|
10
|
Liu T, Yu J, Ge C, Zhao F, Miao C, Jin W, Su Y, Geng Q, Chen T, Xie H, Cui Y, Yao M, Li J, Hou H, Li H. B-Cell Receptor-Associated Protein 31 Promotes Metastasis via AKT/β-Catenin/Snail Pathway in Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:656151. [PMID: 34179078 PMCID: PMC8231437 DOI: 10.3389/fmolb.2021.656151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal cancer worldwide, characterized with high heterogeneity and inclination to metastasize. Emerging evidence suggests that BAP31 gets involved in cancer progression with different kinds. It still remains unknown whether and how BAP31 plays a role in HCC metastasis. Epithelial-mesenchymal transition (EMT) has been a common feature in tumor micro-environment, whose inducer TGF-β increased BAP31 expression in this research. Elevated expression of BAP31 was positively correlated with tumor size, vascular invasion and poor prognosis in human HCC. Ectopic expression of BAP31 promoted cell migration and invasion while BAP31 knockdown markedly attenuated metastatic potential in HCC cells and mice orthotopic xenografts. BAP31 induced EMT process, and enhanced the expression level of EMT-related factor Snail and decreased contents and membrane distribution of E-cadherin. BAP31 also activated AKT/β-catenin pathway, which mediated its promotional effects on HCC metastasis. AKT inhibitor further counteracted the activated AKT/β-catenin/Snail upon BAP31 over-expression. Moreover, silencing Snail in BAP31-overexpressed cells impaired enhanced migratory and invasive abilities of HCC cells. In HCC tissues, BAP31 expression was positively associated with Snail. In conclusion, BAP31 promotes HCC metastasis by activating AKT/β-catenin/Snail pathway. Thus, our study implicates BAP31 as potential prognostic biomarker, and provides valuable information for HCC prognosis and treatment.
Collapse
Affiliation(s)
- Tengfei Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junming Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunxiao Miao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjiao Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Su
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Geng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Haiyang Xie
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Cui
- Cancer Institute of Guangxi, Nanning, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Helei Hou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Quistgaard EM. BAP31: Physiological functions and roles in disease. Biochimie 2021; 186:105-129. [PMID: 33930507 DOI: 10.1016/j.biochi.2021.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
B-cell receptor-associated protein 31 (BAP31 or BCAP31) is a ubiquitously expressed transmembrane protein found mainly in the endoplasmic reticulum (ER), including in mitochondria-associated membranes (MAMs). It acts as a broad-specificity membrane protein chaperone and quality control factor, which can promote different fates for its clients, including ER retention, ER export, ER-associated degradation (ERAD), or evasion of degradation, and it also acts as a MAM tetherer and regulatory protein. It is involved in several cellular processes - it supports ER and mitochondrial homeostasis, promotes proliferation and migration, plays several roles in metabolism and the immune system, and regulates autophagy and apoptosis. Full-length BAP31 can be anti-apoptotic, but can also mediate activation of caspase-8, and itself be cleaved by caspase-8 into p20-BAP31, which promotes apoptosis by mobilizing ER calcium stores at MAMs. BAP31 loss-of-function mutations is the cause of 'deafness, dystonia, and central hypomyelination' (DDCH) syndrome, characterized by severe neurological symptoms and early death. BAP31 is furthermore implicated in a growing number of cancers and other diseases, and several viruses have been found to target it to promote their survival or life cycle progression. The purpose of this review is to provide an overview and examination of the basic properties, functions, mechanisms, and roles in disease of BAP31.
Collapse
Affiliation(s)
- Esben M Quistgaard
- Department of Molecular Biology and Genetics - DANDRITE, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
12
|
Namusamba M, Li Z, Zhang Q, Wang C, Wang T, Wang B. Biological roles of the B cell receptor-associated protein 31: Functional Implication in Cancer. Mol Biol Rep 2021; 48:773-786. [PMID: 33439410 DOI: 10.1007/s11033-020-06123-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
BAP31 is a ubiquitously expressed integral membrane protein of the endoplasmic reticulum. BAP31 is involved in various biological and molecular processes, including protein transport, viral processing, apoptosis signaling, MHC 1 antigen processing and presentation, mitochondria and ER calcium regulation, and proteasomal protein degradation. We employed a BAP31 interaction search using STRING and inBioMap™ protein-protein interaction networks, and the Metabolic Atlas, which revealed molecular and metabolic interactors involved in various pathways essential for cell growth, cell survival, and disease development. BAP31, as a chaperone and resident protein of the ER, was reported in the development of some central nervous system disorders and metabolic diseases about AD, ALS, and Liver disease. In addition, BAP31 is overexpressed in many cancers. Furthermore, research around BAP31 involvement in cancer has taken up a shape, focusing on its roles in cancer cell survival, disease prognosis, and targeted treatment. Here, we address published data on the Biological roles of BAP31 in both health and disease. We present an analytical description of BAP31 expression and functional implication in some human cancers and the impact of its expression and regulation while it models as a potential target in cancer therapy. Besides, a profound understanding of BAP31 is insightful of the gap between cancer development and neurodegeneration, thus generating novel ideas surrounding the link between the two different cell phenomena.
Collapse
Affiliation(s)
- Mwichie Namusamba
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China
| | - Zhi Li
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China
| | - Qi Zhang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China
| | - Changli Wang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China
| | - Tianyi Wang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China.
| | - Bing Wang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China.
| |
Collapse
|
13
|
Zhang X, Jiang D, Yang S, Sun Y, Liu Y, Shi J, Hu C, Pan J, Liu T, Jin B, Yang K. BAP31 Promotes Tumor Cell Proliferation by Stabilizing SERPINE2 in Hepatocellular Carcinoma. Front Cell Dev Biol 2020; 8:607906. [PMID: 33363167 PMCID: PMC7759511 DOI: 10.3389/fcell.2020.607906] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) patients are mostly diagnosed at an advanced stage, resulting in systemic therapy and poor prognosis. Therefore, the identification of a novel treatment target for HCC is important. B-cell receptor-associated protein 31 (BAP31) has been identified as a cancer/testis antigen; however, BAP31 function and mechanism of action in HCC remain unclear. In this study, BAP31 was demonstrated to be upregulated in HCC and correlated with the clinical stage. BAP31 overexpression promoted HCC cell proliferation and colony formation in vitro and tumor growth in vivo. RNA-sequence (RNA-seq) analysis demonstrated that serpin family E member 2 (SERPINE2) was downregulated in BAP31-knockdown HCC cells. Coimmunoprecipitation and immunofluorescence assays demonstrated that BAP31 directly binds to SERPINE2. The inhibition of SERPINE2 significantly decreased the BAP31-induced cell proliferation and colony formation of HCC cells and phosphorylation of Erk1/2 and p38. Moreover, multiplex immunohistochemistry staining of the HCC tissue microarray showed positive associations between the expression levels of BAP31, SERPINE2, its downstream gene LRP1, and a tumor proliferation marker, Ki-67. The administration of anti-BAP31 antibody significantly inhibited HCC cell xenograft tumor growth in vivo. Thus, these findings suggest that BAP31 promotes tumor cell proliferation by stabilizing SERPINE2 and can serve as a promising candidate therapeutic target for HCC.
Collapse
Affiliation(s)
- Xiyang Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Dongbo Jiang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Shuya Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yuanjie Sun
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Jingqi Shi
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Chenchen Hu
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Jingyu Pan
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Tianyue Liu
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Kun Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
Louie RJ, Collins DL, Friez MJ, Skinner C, Schwartz CE, Stevenson RE. Schimke XLID syndrome results from a deletion in BCAP31. Am J Med Genet A 2020; 182:2168-2174. [PMID: 32681719 DOI: 10.1002/ajmg.a.61755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/31/2020] [Indexed: 12/13/2022]
Abstract
A family with three affected males and a second family with a single affected male with intellectual disability, microcephaly, ophthalmoplegia, deafness, and Involuntary limb movements were reported by Schimke and Associates in 1984. The affected males with Schimke X-linked intellectual disability (XLID) syndrome (OMIM# 312840) had a similar facial appearance with deep-set eyes, downslanting palpebral fissures, hypotelorism, narrow nose and alae nasi, cupped ears and spacing of the teeth. Two mothers had mild hearing loss but no other manifestations of the disorder. The authors considered the disorder to be distinctive and likely X-linked. Whole genome sequencing in the single affected male available and the three carrier females from one of the families with Schimke XLID syndrome identified a 2 bp deletion in the BCAP31 gene. During the past decade, pathogenic alterations of the BCAP31 gene have been associated with deafness, dystonia, and central hypomyelination, an XLID condition given the eponym DDCH syndrome. A comparison of clinical findings in Schimke XLID syndrome and DDCH syndrome shows them to be the same clinical entity. The BCAP31 protein functions in endoplasmic reticulum-associated degradation to promote ubiquitination and destruction of misfolded proteins.
Collapse
Affiliation(s)
| | | | | | - Cindy Skinner
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | | | | |
Collapse
|
15
|
BCAP31, a cancer/testis antigen-like protein, can act as a probe for non-small-cell lung cancer metastasis. Sci Rep 2020; 10:4025. [PMID: 32132574 PMCID: PMC7055246 DOI: 10.1038/s41598-020-60905-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/18/2020] [Indexed: 01/03/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) represents most of lung cancers, is often diagnosed at an advanced metastatic stage. Therefore, exploring the mechanisms underlying metastasis is key to understanding the development of NSCLC. The expression of B cell receptor-associated protein 31 (BCAP31), calreticulin, glucose-regulated protein 78, and glucose-regulated protein 94 were analyzed using immunohistochemical staining of 360 NSCLC patients. It resulted that the high-level expression of the four proteins, but particularly BCAP31, predicted inferior overall survival. What’s more, BCAP31 was closely associated with histological grade and p53 status, which was verified by seven cohorts of NSCLC transcript microarray datasets. Then, three NSCLC cell lines were transfected to observe behavior changes BCAP31 caused, we found the fluctuation of BCAP31 significantly influenced the migration, invasion of NSCLC cells. To identify the pathway utilized by BCAP31, Gene Set Enrichment Analysis was firstly performed, showing Akt/m-TOR/p70S6K pathway was the significant one, which was verified by immunofluorescence, kinase phosphorylation and cellular behavioral observations. Finally, the data of label-free mass spectroscopy implied that BCAP31 plays a role in a fundamental biological process. This study provides the first demonstration of BCAP31 as a novel prognostic factor related to metastasis and suggests a new therapeutic strategy for NSCLC.
Collapse
|
16
|
Gordaliza‐Alaguero I, Cantó C, Zorzano A. Metabolic implications of organelle-mitochondria communication. EMBO Rep 2019; 20:e47928. [PMID: 31418169 PMCID: PMC6726909 DOI: 10.15252/embr.201947928] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 12/31/2022] Open
Abstract
Cellular organelles are not static but show dynamism-a property that is likely relevant for their function. In addition, they interact with other organelles in a highly dynamic manner. In this review, we analyze the proteins involved in the interaction between mitochondria and other cellular organelles, especially the endoplasmic reticulum, lipid droplets, and lysosomes. Recent results indicate that, on one hand, metabolic alterations perturb the interaction between mitochondria and other organelles, and, on the other hand, that deficiency in proteins involved in the tethering between mitochondria and the ER or in specific functions of the interaction leads to metabolic alterations in a variety of tissues. The interaction between organelles is an emerging field that will permit to identify key proteins, to delineate novel modulation pathways, and to elucidate their implications in human disease.
Collapse
Affiliation(s)
- Isabel Gordaliza‐Alaguero
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- CIBER de Diabetes y Enfermedades Metabolicas AsociadasBarcelonaSpain
- Departamento de Bioquimica i Biomedicina MolecularFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Carlos Cantó
- Nestle Institute of Health Sciences (NIHS)LausanneSwitzerland
- School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- CIBER de Diabetes y Enfermedades Metabolicas AsociadasBarcelonaSpain
- Departamento de Bioquimica i Biomedicina MolecularFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| |
Collapse
|
17
|
Fu W, Sun H, Zhao Y, Chen M, Yang X, Liu Y, Jin W. BCAP31 drives TNBC development by modulating ligand-independent EGFR trafficking and spontaneous EGFR phosphorylation. Theranostics 2019; 9:6468-6484. [PMID: 31588230 PMCID: PMC6771250 DOI: 10.7150/thno.35383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/27/2019] [Indexed: 12/14/2022] Open
Abstract
Identification of novel targets for triple-negative breast cancer (TNBC) is an urgent task as targeted therapies have increased the lifespans of Oestrogen Receptor +/ Progesterone Receptor + and HER2+ cancer patients. Methods: genes involved in protein processing in the endoplasmic reticulum, which have been reported to be key players in cancer, were used in loss-of-function screening to evaluate the oncogenic roles of these genes to identify candidate target genes in TNBC. In vitro and in vivo function assays as well as clinical prognostic analysis were used to study the oncogenic role of the gene. Molecular and cell based assays were further employed to investigate the mechanisms. Results: B Cell Receptor Associated Protein 31 (BCAP31), the expression of which is correlated with early recurrence and poor survival among patients, was identified an oncogene in our assay. In vitro studies further suggested that BCAP31 acts as a key oncogene by promoting TNBC development. We also showed that BCAP31 interacts with epidermal growth factor receptor (EGFR) and serves as an inhibitor of ligand-independent EGFR recycling, sustaining EGFR autophosphorylation and activation of downstream signalling. Conclusion: These findings reveal the functional role of BCAP31, an ER-related protein, in EGFR dysregulation and TNBC development.
Collapse
Affiliation(s)
- Wenyan Fu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hefen Sun
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Zhao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mengting Chen
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xueli Yang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wei Jin
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
18
|
Gerovska D, Araúzo-Bravo MJ. Computational analysis of single-cell transcriptomics data elucidates the stabilization of Oct4 expression in the E3.25 mouse preimplantation embryo. Sci Rep 2019; 9:8930. [PMID: 31222057 PMCID: PMC6586892 DOI: 10.1038/s41598-019-45438-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/06/2019] [Indexed: 01/05/2023] Open
Abstract
Our computational analysis focuses on the 32- to 64-cell mouse embryo transition, Embryonic day (E3.25), whose study in literature is concentrated mainly on the search for an early onset of the second cell-fate decision, the specification of the inner cell mass (ICM) to primitive endoderm (PE) and epiblast (EPI). We analysed single-cell (sc) microarray transcriptomics data from E3.25 using Hierarchical Optimal k-Means (HOkM) clustering, and identified two groups of ICM cells: a group of cells from embryos with less than 34 cells (E3.25-LNCs), and another group of cells from embryos with more than 33 cells (E3.25-HNCs), corresponding to two developmental stages. Although we found massive underlying heterogeneity in the ICM cells at E3.25-HNC with over 3,800 genes with transcriptomics bifurcation, many of which are PE and EPI markers, we showed that the E3.25-HNCs are neither PE nor EPI. Importantly, analysing the differently expressed genes between the E3.25-LNCs and E3.25-HNCs, we uncovered a non-autonomous mechanism, based on a minimal number of four inner-cell contacts in the ICM, which activates Oct4 in the preimplantation embryo. Oct4 is highly expressed but unstable at E3.25-LNC, and stabilizes at high level at E3.25-HNC, with Bsg highly expressed, and the chromatin remodelling program initialised to establish an early naïve pluripotent state. Our results indicate that the pluripotent state we found to exist in the ICM at E3.25-HNC is the in vivo counterpart of a new, very early pluripotent state. We compared the transcriptomics profile of this in vivo E3.25-HNC pluripotent state, together with the profiles of E3.25-LNC, E3.5 EPI and E4.5 EPI cells, with the profiles of all embryonic stem cells (ESCs) available in the GEO database from the same platform (over 600 microarrays). The shortest distance between the set of inner cells (E3.25, E3.5 and E4.5) and the ESCs is between the E3.25-HNC cells and 2i + LIF ESCs; thus, the developmental transition from 33 to 34 cells decreases dramatically the distance with the naïve ground state of the 2i + LIF ESCs. We validated the E3.25 events through analysis of scRNA-seq data from early and late 32-cell ICM cells.
Collapse
Affiliation(s)
- Daniela Gerovska
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, Calle Doctor Beguiristain s/n, San Sebastián, 20014, Spain
- Computational Biomedicine Data Analysis Platform, Biodonostia Health Research Institute, Calle Doctor Beguiristain s/n, San Sebastián, 20014, Spain
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, Calle Doctor Beguiristain s/n, San Sebastián, 20014, Spain.
- Computational Biomedicine Data Analysis Platform, Biodonostia Health Research Institute, Calle Doctor Beguiristain s/n, San Sebastián, 20014, Spain.
- IKERBASQUE, Basque Foundation for Science, Calle María Díaz Harokoa 3, 48013, Bilbao, Spain.
- CIBER of Frailty and Healthy Aging (CIBERfes), Madrid, Spain.
| |
Collapse
|
19
|
Kim MK, Shin SJ, Lee HM, Choi HS, Jeong J, Kim H, Paik SS, Kim M, Choi D, Ryu CJ. Mycoplasma infection promotes tumor progression via interaction of the mycoplasmal protein p37 and epithelial cell adhesion molecule in hepatocellular carcinoma. Cancer Lett 2019; 454:44-52. [PMID: 30980864 DOI: 10.1016/j.canlet.2019.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is currently the third leading cause of cancer death worldwide. To study how mycoplasma infection affects HCC progression, we investigated the characteristics of mycoplasma-infected tumor tissues and circulating tumor cells (CTCs) in HCC patients. The mycoplasmal membrane protein p37 showed significant correlations with higher histologic stages and vascular invasion and predicted poor disease-free survival of HCC patients. p37-positive CTCs were detected in 42 out of 47 HCC patients (89%). p37-positive circulating cells were also detected in 4 out of 10 healthy donors (40%), and all were epithelial cell adhesion molecule (EpCAM)-positive. In HCC patients, most of p37-negative CTCs (95%) showed intermediate phenotype with neither EpCAM nor vimentin expression, but p37-positive CTCs were EpCAM-positive (44%), vimentin-positive (32%), and both negative (24%), suggesting that EpCAM-positive CTCs are enriched with mycoplasma infection. Mycoplasma infection promoted migratory capacity of HCC cells with increased expression of EpCAM. Immunoprecipitation analysis revealed that p37 associates with EpCAM. The results suggest that mycoplasma infection promotes tumor progression in HCC patients via interaction of the mycoplasmal p37 and EpCAM.
Collapse
Affiliation(s)
- Min Kyu Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Su-Jin Shin
- Department of Pathology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Hyun Min Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Hong Seo Choi
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Jaemin Jeong
- Department of Surgery, College of Medicine, Hanyang University, Seoul, South Korea; HY Indang Center of Regenerative Medicine and Stem Cell Research, South Korea
| | - Hyunsung Kim
- Department of Pathology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Seung Sam Paik
- Department of Pathology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Mimi Kim
- Department of Radiology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Dongho Choi
- Department of Surgery, College of Medicine, Hanyang University, Seoul, South Korea.
| | - Chun Jeih Ryu
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea.
| |
Collapse
|
20
|
Epitope mapping of anti-PGRMC1 antibodies reveals the non-conventional membrane topology of PGRMC1 on the cell surface. Sci Rep 2019; 9:653. [PMID: 30679694 PMCID: PMC6345922 DOI: 10.1038/s41598-018-37441-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/26/2018] [Indexed: 01/30/2023] Open
Abstract
Progesterone receptor membrane component1 (PGRMC1) is a heme-binding protein involved in cancers and Alzheimer's disease. PGRMC1 consists of a short N-terminal extracellular or luminal domain, a single membrane-spanning domain, and a long cytoplasmic domain. Previously, we generated two monoclonal antibodies (MAbs) 108-B6 and 4A68 that recognize cell surface-expressed PGRMC1 (csPGRMC1) on human pluripotent stem cells and some cancer cells. In this study, flow cytometric analysis found that an anti-PGRMC1 antibody recognizing the N-terminus of PGRMC1 could not bind to csPGRMC1 on cancer cells, and 108-B6 and 4A68 binding to csPGRMC1 was inhibited by trypsin treatment, suggesting that the epitopes of 108-B6 and 4A68 are trypsin-sensitive. To examine the epitope specificity of 108-B6 and 4A68, glutathione-S-transferase (GST)-fused PGRMC1 mutants were screened to identify the epitopes targeted by the antibodies. The result showed that 108-B6 and 4A68 recognized C-terminal residues 183-195 and 171-182, respectively, of PGRMC1, where trypsin-sensitive sites are located. A polyclonal anti-PGRMC1 antibody raised against the C-terminus of PGRMC1 could also recognized csPGRMC1 in a trypsin-sensitive manner, suggesting that the C-terminus of csPGRMC1 is exposed on the cell surface. This finding reveals that csPGRMC1 has a non-conventional plasma membrane topology, which is different from that of intracellular PGRMC1.
Collapse
|
21
|
Dang E, Yang S, Song C, Jiang D, Li Z, Fan W, Sun Y, Tao L, Wang J, Liu T, Zhang C, Jin B, Wang J, Yang K. BAP31, a newly defined cancer/testis antigen, regulates proliferation, migration, and invasion to promote cervical cancer progression. Cell Death Dis 2018; 9:791. [PMID: 30022068 PMCID: PMC6052025 DOI: 10.1038/s41419-018-0824-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 01/06/2023]
Abstract
Malignant tumors typically undergo an atavistic regression characterized by the overexpression of embryonic genes and proto-oncogenes, including a variety of cancer/testis antigens (CTAs) that are testis-derived and are not expressed or expressed in trace amounts in somatic tissues. Based on this theory, we established a new method to identify unknown CTAs, the spermatogenic cells-specific monoclonal antibody-defined cancer/testis antigen (SADA) method. Using the SADA method, we identified BAP31 as a novel CTA and confirmed that BAP31 expression is associated with progression and metastasis of several cancers, particularly in cervical cancer. We found that BAP31 was significantly upregulated in stage I, II, and III cervical cancer patients and highly correlated with poor clinic outcomes. We further demonstrated that BAP31 regulates cervical cancer cell proliferation by arresting the cell cycle at the G0/G1 stage and that depletion of BAP31 inhibits hyper-proliferation. Moreover, depletion of BAP31 inhibits cervical cancer cell invasion and migration by regulating the expression and subcellular localization of Drebrin, M-RIP, SPECC1L, and Nexilin, and then affect the cytoskeleton assemblage. Finally, the depletion of BAP31 prevents cervical cancer progression and metastasis in vivo. These findings provide a new method for identifying novel CTAs as well as mechanistic insights into how BAP31 regulates cervical cancer hyper-proliferation and metastasis.
Collapse
Affiliation(s)
- Erle Dang
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.,Department of Dermatology, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Shuya Yang
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Chaojun Song
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.,School of Life Science, Northwestern Polytechnic University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Dongbo Jiang
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Zichao Li
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Wei Fan
- Department of Obstetrics and Gynecology, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Yuanjie Sun
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Liang Tao
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Jing Wang
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Tingting Liu
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Chunmei Zhang
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Boquan Jin
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Jian Wang
- Department of Obstetrics and Gynecology, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Kun Yang
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|
22
|
Abstract
The cancer stem cell (CSC) hypothesis has captured the attention of many scientists. It is believed that elimination of CSCs could possibly eradicate the whole cancer. CSC surface markers provide molecular targeted therapies for various cancers, using therapeutic antibodies specific for the CSC surface markers. Various CSC surface markers have been identified and published. Interestingly, most of the markers used to identify CSCs are derived from surface markers present on human embryonic stem cells (hESCs) or adult stem cells. In this review, we classify the currently known 40 CSC surface markers into 3 different categories, in terms of their expression in hESCs, adult stem cells, and normal tissue cells. Approximately 73% of current CSC surface markers appear to be present on embryonic or adult stem cells, and they are rarely expressed on normal tissue cells. The remaining CSC surface markers are considerably expressed even in normal tissue cells, and some of them have been extensively validated as CSC surface markers by various research groups. We discuss the significance of the categorized CSC surface markers, and provide insight into why surface markers on hESCs are an attractive source to find novel surface markers on CSCs.
Collapse
Affiliation(s)
- Won-Tae Kim
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Chun Jeih Ryu
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea
| |
Collapse
|
23
|
Kim JY, Kim SY, Choi HS, Kim MK, Lee HM, Jang YJ, Ryu CJ. Progesterone Receptor Membrane Component 1 suppresses the p53 and Wnt/β-catenin pathways to promote human pluripotent stem cell self-renewal. Sci Rep 2018; 8:3048. [PMID: 29445107 PMCID: PMC5813096 DOI: 10.1038/s41598-018-21322-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/02/2018] [Indexed: 12/22/2022] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is a multifunctional heme-binding protein involved in various diseases, including cancers and Alzheimer’s disease. Previously, we generated two monoclonal antibodies (MAbs) 108-B6 and 4A68 against surface molecules on human pluripotent stem cells (hPSCs). Here we show that PGRMC1 is the target antigen of both MAbs, and is predominantly expressed on hPSCs and some cancer cells. PGRMC1 is rapidly downregulated during early differentiation of hPSCs. Although PGRMC1 knockdown leads to a spread-out morphology and impaired self-renewal in hPSCs, PGRMC1 knockdown hPSCs do not show apoptosis and autophagy. Instead, PGRMC1 knockdown leads to differentiation of hPSCs into multiple lineage cells without affecting the expression of pluripotency markers. PGRMC1 knockdown increases cyclin D1 expression and decreases Plk1 expression in hPSCs. PGRMC1 knockdown also induces p53 expression and stability, suggesting that PGRMC1 maintains hPSC self-renewal through suppression of p53-dependent pathway. Analysis of signaling molecules further reveals that PGRMC1 knockdown promotes inhibitory phosphorylation of GSK-3β and increased expression of Wnt3a and β-catenin, which leads to activation of Wnt/β-catenin signaling. The results suggest that PGRMC1 suppresses the p53 and Wnt/β-catenin pathways to promote self-renewal and inhibit early differentiation in hPSCs.
Collapse
Affiliation(s)
- Ji Yea Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| | - So Young Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| | - Hong Seo Choi
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| | - Min Kyu Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| | - Hyun Min Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science, BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea.
| | - Chun Jeih Ryu
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea.
| |
Collapse
|
24
|
Seo SR, Lee HM, Choi HS, Kim WT, Cho EW, Ryu CJ. Enhanced expression of cell-surface B-cell receptor-associated protein 31 contributes to poor survival of non-small cell lung carcinoma cells. PLoS One 2017; 12:e0188075. [PMID: 29145450 PMCID: PMC5695096 DOI: 10.1371/journal.pone.0188075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/31/2017] [Indexed: 01/01/2023] Open
Abstract
B-cell receptor-associated protein 31 (BAP31) is an endoplasmic reticulum (ER) membrane protein which plays a role as a molecular chaperone for the newly synthesized transmembrane proteins. BAP31 is also an important apoptosis regulator for extrinsic apoptosis induction in the ER membrane. Recent studies have shown that BAP31 is also expressed on the surface of embryonic stem cells. However, the function of cell surface BAP31 (csBAP31) still remains unclarified. In an attempt to search for surface markers on tumorspheres, here, we generated monoclonal antibodies (MAbs) against the sphere cells from the non-small cell lung carcinoma cell (NSCLC) line A549. SP1-B7, one of the MAbs, recognized csBAP31 whose expression was further increased on A549 sphere cells, as compared with A549 adherent cells. To investigate the role of csBAP31 in A549 cells, A549 adherent and sphere cells were stained with annexin V, propidium iodide, and SP1-B7. Interestingly, annexin V-high cells showed increased expression of csBAP31 as compared with annexin V-low cells. Caspase-3/7 activity was also increased in csBAP31-high cells as compared with csBAP31-low cells, suggesting that csBAP31-high cells are more sensitive to apoptosis. To further demonstrate the survival of csBAP31-positive A549 cells, csBAP31-positive and -negative A549 cells were sorted and subjected to the clonogenic survival assay. The colony number of csBAP31-positive A549 cells was decreased by approximately 1.7-fold, as compared that of csBAP31-negative A549 cells, suggesting that csBAP31-positve cells are sensitive to cell death indeed. The results suggest that enhanced expression of csBAP31 contributes to poor survival of NSCLC cells.
Collapse
Affiliation(s)
- Se-Ri Seo
- Department of Integrative Bioscience and Biotechnology, Institute of Antiancer Medicine Development, Sejong University, Gwangjin-gu, Seoul, Korea
| | - Hyun Min Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Antiancer Medicine Development, Sejong University, Gwangjin-gu, Seoul, Korea
| | - Hong Seo Choi
- Department of Integrative Bioscience and Biotechnology, Institute of Antiancer Medicine Development, Sejong University, Gwangjin-gu, Seoul, Korea
| | - Won-Tae Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Antiancer Medicine Development, Sejong University, Gwangjin-gu, Seoul, Korea
| | - Eun-Wie Cho
- Epigenomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Chun Jeih Ryu
- Department of Integrative Bioscience and Biotechnology, Institute of Antiancer Medicine Development, Sejong University, Gwangjin-gu, Seoul, Korea
- * E-mail:
| |
Collapse
|
25
|
Xu JL, Li LY, Wang YQ, Li YQ, Shan M, Sun SZ, Yu Y, Wang B. Hepatocyte-specific deletion of BAP31 promotes SREBP1C activation, promotes hepatic lipid accumulation, and worsens IR in mice. J Lipid Res 2017; 59:35-47. [PMID: 29113994 DOI: 10.1194/jlr.m077016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/20/2017] [Indexed: 01/14/2023] Open
Abstract
Conditional knockout mice with targeted disruption of B-cell associated protein (BAP)31 in adult mouse liver were generated and challenged with a high-fat diet (HFD) for 36 or 96 days and markers of obesity, diabetes, and hepatic steatosis were determined. Mutant mice were indistinguishable from WT littermates, but exhibited increased HFD-induced obesity. BAP31-deletion in hepatocytes increased the expression of SREBP1C and the target genes, including acetyl-CoA carboxylase 1 and stearoyl-CoA desaturase-1, and increased hepatic lipid accumulation and HFD-induced liver steatosis. Immunoprecipitation assay showed that BAP31 interacts with SREBP1C and insulin-induced gene 1 (INSIG1), and BAP31-deletion reduces INSIG1 expression, suggesting that BAP31 may regulate SREBP1C activity by modulating INSIG1 protein levels. Additionally, BAP31-deletion induced glucose and insulin intolerance, decreased Akt and glycogen synthase kinase 3β phosphorylation, and enhanced hepatic glucose production in mice. Expression of endoplasmic reticulum (ER) stress markers was significantly induced in BAP31-mutant mice. HFD-induced inflammation was aggravated in mutant mice, along with increased c-Jun N-terminal kinase and nuclear factor-κB activation. These findings demonstrate that BAP31-deletion induces SREBP activation and promotes hepatic lipid accumulation, reduces insulin signaling, impairs glucose/insulin tolerance, and increases ER stress and hepatic inflammation, explaining the protective roles of BAP31 in the development of liver steatosis and insulin resistance in HFD-induced obesity in animal models.
Collapse
Affiliation(s)
- Jia-Lin Xu
- Institutes of Biochemistry and Molecular Biology Northeastern University, Shenyang 110169, People's Republic of China
| | - Li-Ya Li
- Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110169, People's Republic of China
| | - Yan-Qing Wang
- Institutes of Biochemistry and Molecular Biology Northeastern University, Shenyang 110169, People's Republic of China
| | - Ya-Qi Li
- Institutes of Biochemistry and Molecular Biology Northeastern University, Shenyang 110169, People's Republic of China
| | - Mu Shan
- Institutes of Biochemistry and Molecular Biology Northeastern University, Shenyang 110169, People's Republic of China
| | - Shi-Zhuo Sun
- Institutes of Biochemistry and Molecular Biology Northeastern University, Shenyang 110169, People's Republic of China
| | - Yang Yu
- Institutes of Biochemistry and Molecular Biology Northeastern University, Shenyang 110169, People's Republic of China
| | - Bing Wang
- Institutes of Biochemistry and Molecular Biology Northeastern University, Shenyang 110169, People's Republic of China
| |
Collapse
|
26
|
Cell-surface major vault protein promotes cancer progression through harboring mesenchymal and intermediate circulating tumor cells in hepatocellular carcinomas. Sci Rep 2017; 7:13201. [PMID: 29038587 PMCID: PMC5643512 DOI: 10.1038/s41598-017-13501-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/25/2017] [Indexed: 02/08/2023] Open
Abstract
Circulating tumor cells (CTCs) play a major role in the metastasis and recurrence of hepatocellular carcinoma (HCC). Here, we found that major vault protein (MVP) is expressed on the surface of HCC cells and further induced under stressful environments. MVP knockdown reduces cell proliferation and induces apoptosis in HCC cells. Treatment of HCC cells with anti-MVP antibody (α-MVP) recognizing cell-surface MVP (csMVP) inhibits cell proliferation, migration, and invasion. csMVP-positive HCC cells have a higher clonogenic survival than csMVP-negative HCC cells, and treatment of HCC cells with α-MVP inhibits clonogenic survival, suggesting that csMVP contributes to HCC cell survival, migration, and invasion. The function of csMVP is mediated through mTOR, FAK, ERK and Akt signaling pathways. csMVP-positive CTCs are detected in HCC patients (89.7%) but not in healthy donors, and the number of csMVP-positive CTCs is further increased in patients with metastatic cancers. csMVP is exclusively detectable in CTCs with mesenchymal phenotype or intermediate phenotype with neither epithelial nor mesenchymal markers, suggesting that csMVP-associated survival and metastatic potential harbor CTCs with nonepithelial phenotypes. The results suggest that csMVP promotes cancer progression and serves as a surface marker for mesenchymal and intermediate CTCs in patients with HCC and metastatic cancers.
Collapse
|
27
|
Atabekova AK, Pankratenko AV, Makarova SS, Lazareva EA, Owens RA, Solovyev AG, Morozov SY. Phylogenetic and functional analyses of a plant protein related to human B-cell receptor-associated proteins. Biochimie 2017; 132:28-37. [PMID: 27770627 DOI: 10.1016/j.biochi.2016.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 10/17/2016] [Indexed: 12/20/2022]
Abstract
Human B-cell receptor-associated protein BAP31 (HsBAP31) is the endoplasmic reticulum-resident protein involved in protein sorting and transport as well as pro-apoptotic signaling. Plant orthologs of HsBAP31 termed 'plant BAP-like proteins' (PBL proteins) have thus far remained unstudied. Recently, the PBL protein from Nicotiana tabacum (NtPBL) was identified as an interactor of Nt-4/1, a plant protein known to interact with plant virus movement proteins and affect the long-distance transport of potato spindle tuber viroid (PSTVd) via the phloem. Here, we have compared the sequences of PBL proteins and studied the biochemical properties of NtPBL. Analysis of a number of fully sequenced plant genomes revealed that PBL-encoding genes represent a small multigene family with up to six members per genome. Two conserved motifs were identified in the C-terminal region of PBL proteins. The NtPBL C-terminal hydrophilic region (NtPBL-C) was expressed in bacterial cells, purified, and used for analysis of its RNA binding properties in vitro. In gel shift experiments, NtPBL-C was found to bind several tested RNAs, showing the most efficient binding to microRNA precursors (pre-miRNA) and less efficient interaction with PSTVd. Mutational analysis suggested that NtPBL-C has a composite RNA-binding site, with two conserved lysine residues in the most C-terminal protein region being involved in binding of pre-miRNA but not PSTVd RNA. Virus-mediated transient expression of NtPBL-C in plants resulted in stunting and leaf malformation, developmental abnormalities similar to those described previously for blockage of miRNA biogenesis/function. We hypothesize that the NtPBL protein represents a previously undiscovered component of the miRNA pathway.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia
| | - Anna V Pankratenko
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia
| | - Svetlana S Makarova
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia
| | - Ekaterina A Lazareva
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia
| | - Robert A Owens
- Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Andrey G Solovyev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
28
|
Pankratenko AV, Atabekova AK, Lazareva EA, Baksheeva VE, Zhironkina OA, Zernii EY, Owens RA, Solovyev AG, Morozov SY. Plant-specific 4/1 polypeptide interacts with an endoplasmic reticulum protein related to human BAP31. PLANTA 2017; 245:193-205. [PMID: 27714454 DOI: 10.1007/s00425-016-2601-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
MAIN CONCLUSION The plant-specific 4/1 protein interacts, both in yeast two-hybrid system and in vitro, and co-localizes in plant cells with plant BAP-like protein, the orthologue of human protein BAP31. In yeast two-hybrid system, we identified a number of Nicotiana benthamiana protein interactors of Nt-4/1, the protein known to affect systemic transport of potato spindle tuber viroid. For one of these interactors, an orthologue of human B-cell receptor-associated protein 31 (BAP31) termed plant BAP-like protein (PBL), the ability to interact with Nt-4/1 was studied in greater detail. Analyses of purified proteins expressed in bacterial cells carried out in vitro with the surface plasmon resonance (SPR) spectroscopy revealed that the N. tabacum PBL (NtPBL) was able to interact with Nt-4/1 with high-affinity, and that their complex can form at physiologically relevant concentrations of both proteins. Subcellular localization studies of 4/1-GFP and NtPBL-mRFP transiently co-expressed in plant cells revealed the co-localization of the two fusion proteins in endoplasmic reticulum-associated bodies, suggesting their interaction in vivo. The N-terminal region of the Nt-4/1 protein was found to be required for the specific subcellular targeting of the protein, presumably due to a predicted amphipathic helix mediating association of the Nt-4/1 protein with cell membranes. Additionally, this region was found to contain a trans-activator domain responsible for the Nt-4/1 ability to activate transcription of a reporter gene in yeast.
Collapse
Affiliation(s)
- Anna V Pankratenko
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia
| | - Anastasia K Atabekova
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia
| | - Ekaterina A Lazareva
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia
| | - Viktoriia E Baksheeva
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Oxana A Zhironkina
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Evgeni Yu Zernii
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Robert A Owens
- Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Andrey G Solovyev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia.
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
29
|
Mapping of a Mycoplasma-Neutralizing Epitope on the Mycoplasmal p37 Protein. PLoS One 2016; 11:e0169091. [PMID: 28036384 PMCID: PMC5201277 DOI: 10.1371/journal.pone.0169091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/12/2016] [Indexed: 01/27/2023] Open
Abstract
Many studies have shown that the mycoplasmal membrane protein p37 enhances cancer cell migration, invasion, and metastasis. Previously, we generated 6 monoclonal antibodies (MAbs) against the mycoplasmal protein p37 and showed the presence of mycoplasma-infected circulating tumor cells in the blood of hepatocellular carcinoma patients by using CA27, one of the six MAbs. When mycoplasmas were incubated with cancer cells in the presence of CA27, mycoplasma infection was completely inhibited, suggesting that CA27 is a neutralizing antibody inhibiting mycoplasma infection. To examine the neutralizing epitope of CA27, we generated a series of glutathione S-transferase (GST)-fused p37 deletion mutant proteins in which p37 was partly deleted. To express p37-coding sequences in E.coli, mycoplasmal TGA codons were substituted with TGG in the p37 deletion mutant genes. GST-fused p37 deletion mutant proteins were then screened to identify the epitope targeted by CA27. Western blots showed that CA27 bound to the residues 216–246 on the middle part of the p37 protein while it did not bind to the residues 183–219 and 216–240. Fine mapping showed that CA27 was able to bind to the residues 226–246, but its binding activity was relatively weakened as compared to that to the residues 216–246, suggesting that the residues 226–246 is essential for optimal binding activity of CA27. Interestingly, the treatment of the purified GST-tagged epitopes with urea showed that CA27 binding to the epitope was sodium dodecyl sulfate-resistant but urea-sensitive. The same 226–246 residues were also recognized by two other anti-p37 MAbs, suggesting that the epitope is immunodominant. The identification of the novel neutralizing epitope may provide new insight into the interaction between the p37 protein and host receptors.
Collapse
|
30
|
Kim WT, Shin S, Hwang HJ, Kim MK, Jung HS, Park H, Ryu CJ. Molecular Characterization of Two Monoclonal Antibodies against the Same Epitope on B-Cell Receptor Associated Protein 31. PLoS One 2016; 11:e0167527. [PMID: 27907150 PMCID: PMC5131989 DOI: 10.1371/journal.pone.0167527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/15/2016] [Indexed: 11/27/2022] Open
Abstract
Previously, we showed that B-cell receptor associated protein 31 (BAP31), an endoplasmic reticulum (ER) membrane chaperone, is also expressed on the cell surface by two monoclonal antibodies (MAbs) 297-D4 and 144-A8. Both MAbs recognize the same linear epitope on the C-terminal domain of BAP31, although they were independently established. Here, flow cytometric analysis showed that 144-A8 had additional binding properties to some cells, as compared to 297-D4. Quantitative antigen binding assays also showed that 144-A8 had higher antigen binding capacity than 297-D4. Affinity measurement revealed that 144-A8 had 1.54-fold higher binding affinity than 297-D4. Analysis of the heavy- and light-chain variable region sequences of two MAbs revealed that both MAbs belonged to the same heavy chain (Igh-V3660 VH3) and light chain subgroup (IGKV21) with just two amino acid differences in each framework region, indicating that both MAbs arise from the same germline origin. Seven amino acid differences were found between the complementarity determining regions (CDRs) of the two MAbs. Molecular modeling of the epitope-paratope complexes revealed that the epitope appeared to reside in closer proximity to the CDRs of 144-A8 than to those of 297-D4 with the stronger hydrogen bond interactions with the former than the latter. More interestingly, an additional hydrophobic interaction appeared to be established between the leucine residue of epitope and the paratope of 144-A8, due to the substitution of H-Tyr101 for H-Phe101 in 144-A8. Thus, the different binding specificity and affinity of 144-A8 appeared to be due to the different hydrogen bonds and hydrophobic interaction induced by the alterations of amino acids in CDRs of 144-A8. The results provide molecular insights into how the binding specificities and affinities of antibodies evolve with the same epitope in different microenvironments.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibody Affinity
- Antibody Specificity
- B-Lymphocytes/chemistry
- B-Lymphocytes/immunology
- Binding Sites, Antibody
- Cloning, Molecular
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/immunology
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Humans
- Hydrogen Bonding
- Hydrophobic and Hydrophilic Interactions
- Immunoglobulin Variable Region/chemistry
- Immunoglobulin Variable Region/genetics
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Protein Binding
- Protein Conformation
- Receptors, Antigen, B-Cell/chemistry
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Sequence Alignment
Collapse
Affiliation(s)
- Won-Tae Kim
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | - Saemina Shin
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | - Hyo Jeong Hwang
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | - Min Kyu Kim
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
- Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | - Hwangseo Park
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
- * E-mail: (CJR); (HP)
| | - Chun Jeih Ryu
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
- * E-mail: (CJR); (HP)
| |
Collapse
|
31
|
Kim WT, Lee HM, Kim MK, Choi HS, Ryu CJ. In vivo Evaluation of Human Embryonic Stem Cells Isolated by 57-C11 Monoclonal Antibody. Int J Stem Cells 2016; 9:264-270. [PMID: 27871153 PMCID: PMC5155722 DOI: 10.15283/ijsc16052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2016] [Indexed: 12/28/2022] Open
Abstract
Background The normal cells derived from human embryonic stem cells (hESCs) are regarded as substitutes for damaged or dysfunctional adult cells. However, tumorigenicity of hESCs remains a major challenge in clinical application of hESC-derived cell transplantation. Previously, we generated monoclonal antibody (MAb) 57-C11 specific to the surface molecule on undifferentiated hESCs. The aim of this study is to prove whether 57-C11-positive hESCs are pluripotent and tumorigenic in immunodeficient mice. Methods Undifferentiated hESCs were mixed with retinoic acid (RA)-differentiated hESCs at different ratios prior to 57-C11-mediated separation. To isolate 57-C11-positive hESCs from the mixture, biotinylated 57-C11 and streptavidin-coated magnetic beads were added to the mixture. Unbound 57-C11-negative hESCs were first isolated after applying magnet to the cell mixture, and 57-C11-bound hESCs were then released from the magnetic beads. In order to measure the efficiency of separation, 57-C11-positive or -negative hESCs were counted after isolation. To evaluate the efficiency of teratoma formation in vivo, 57-C11-positive or negative cells were further injected into left and right, respectively, testes of nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Results Approximately 77~100% of undifferentiated hESCs were isolated after applying 57-C11-coated magnetic beads to the mixed cell populations. Importantly, teratomas were not observed in NOD/SCID mice after the injection of isolated 57-C11-negative hESCs, whereas teratomas were observed with 57-C11-positive hESCs. Conclusion 57-C11-positive hESCs are pluripotent and tumorigenic. The combination of 57-C11 and magnetic beads will be useful to eliminate remaining undifferentiated hESCs for the safe cell transplantation.
Collapse
Affiliation(s)
- Won-Tae Kim
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | - Hyun Min Lee
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | - Min Kyu Kim
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | - Hong Seo Choi
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | - Chun Jeih Ryu
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
| |
Collapse
|
32
|
Tan N, Liu Q, Liu X, Gong Z, Zeng Y, Pan G, Xu Q, He S. Low expression of B-cell-associated protein 31 in human primary hepatocellular carcinoma correlates with poor prognosis. Histopathology 2015; 68:221-9. [PMID: 25980696 DOI: 10.1111/his.12738] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/12/2015] [Indexed: 12/13/2022]
Abstract
AIMS The aim of the present study was to investigate the prognostic value of B-cell associated protein 31 (BAP31) in human primary hepatocellular carcinoma (HCC). METHODS AND RESULTS BAP31 levels were evaluated by immunohistochemistry on tissue microarrays. The integral optical density, representing the expression level of BAP31 in each tissue sample, was calculated with image-pro plus. Immunohistochemical analysis of BAP31 levels in 74 paired HCC tissues and peritumoral non-cancerous tissues showed that BAP31 expression was significantly higher in HCC tumour tissues (P = 0.025). The prognostic value of BAP31 in HCC was evaluated in 234 cases in a training cohort and in 63 cases in a validation cohort. The expression level of BAP31 was significantly correlated with overall survival (OS) in both the training cohort and the validation cohort. The lower the level of BAP31 expression in HCC tissue, the poorer the prognosis. Univariate and multivariate analyses showed that the expression level of BAP31 in HCC was an independent prognostic factor for OS in both the training cohort and the validation cohort. CONCLUSIONS BAP31 expression is an independent prognostic factor for OS of patients with postoperative HCC, and low expression levels of BAP31 in HCC may indicate poor outcomes of HCC patient after surgical resection.
Collapse
Affiliation(s)
- Ning Tan
- Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, China
| | - Qinyi Liu
- Department of Gastroenterology, The Second People's Hospital of Guangdong Province, Guangzhou, China
| | - Xiaojia Liu
- Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, China
| | - Zhiwei Gong
- Department of General Surgery, Qingzhou People's Hospital, Qingzhou, China
| | - Yonglian Zeng
- Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, China
| | - Guangdong Pan
- Department of Hepatobiliary Surgery, The People's Hospital of Liuzhou, Liuzhou, China
| | - Qing Xu
- Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, China
| | - Songqing He
- Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
33
|
Epitope Mapping of Antibodies Suggests the Novel Membrane Topology of B-Cell Receptor Associated Protein 31 on the Cell Surface of Embryonic Stem Cells: The Novel Membrane Topology of BAP31. PLoS One 2015; 10:e0130670. [PMID: 26102500 PMCID: PMC4478030 DOI: 10.1371/journal.pone.0130670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/24/2015] [Indexed: 11/19/2022] Open
Abstract
When located in the endoplasmic reticulum (ER) membrane, B-cell receptor associated protein 31 (BAP31) is involved in the export of secreted proteins from the ER to the plasma membrane. In a previous study, we generated two monoclonal antibodies (mAbs), 297-D4 and 144-A8, that bound to surface molecules on human embryonic stem cells (hESCs), but not to surface molecules on mouse embryonic stem cells (mESCs). Subsequent studies revealed that the mAbs recognized BAP31 on the surface of hESCs. To investigate the membrane topology of BAP31 on the cell surface, we first examined the epitope specificity of 297-D4 and 144-A8, as well as a polyclonal anti-BAP31 antibody (α-BAP31). We generated a series of GST-fused BAP31 mutant proteins in which BAP31 was serially deleted at the C- terminus. GST-fused BAP31 mutant proteins were then screened to identify the epitopes targeted by the antibodies. Both 297-D4 and 144-A8 recognized C-terminal residues 208-217, while α-BAP31 recognized C-terminal residues 165-246, of BAP31 on hESCs, suggesting that the C-terminal domain of BAP31 is exposed on the cell surface. The polyclonal antibody α-BAP31 bound to mESCs, which confirmed that the C-terminal domain of BAP31 is also exposed on the surface of these cells. Our results show for the first time the novel membrane topology of cell surface-expressed BAP31 as the extracellular exposure of the BAP31 C-terminal domain was not predicted from previous studies.
Collapse
|