1
|
Elalfy M, Elsawah K, Maqsood S, Jordan N, Hassan M, Zaki A, Gatzioufas Z, Hamada S, Lake D. Allogenic Cultured Limbal Epithelial Transplantation and Cultivated Oral Mucosal Epithelial Transplantation in Limbal Stem Cells Deficiency: A Comparative Study. Ophthalmol Ther 2025; 14:413-432. [PMID: 39755899 PMCID: PMC11754549 DOI: 10.1007/s40123-024-01083-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025] Open
Abstract
INTRODUCTION This study compared the clinical outcomes of allogenic cultured limbal epithelial transplantation (ACLET) and cultivated oral mucosal epithelial transplantation (COMET) in the management of limbal stem cell deficiency (LSCD). METHODS Forty-one COMET procedures in 40 eyes and 69 ACLET procedures in 54 eyes were performed in the Corneoplastic Unit of Queen Victoria Hospital, East Grinstead. Data were examined for demographics, indications, ocular surface stability, absence of epithelial defect, ocular surface inflammation, visual outcomes, and intra- and postoperative complications. RESULTS Kaplan-Meier analysis showed that patients in the ACLET group with longer follow-up had a significantly higher graft survival rate (81.7%, n = 56) than the COMET group (60.7%, n = 25) and the difference was statistically significant (p = 0.01). In the COMET group, there was no statistically significant improvement in the visual acuity (VA) while in the ACLET group there was statistically significant improvement in the final VA. Elevated intraocular pressure (IOP) developed in 9 eyes (22.0%) in the COMET group and in 18 eyes (26.1%) in the ACLET group; infection developed in 4 eyes (9.8%) in the COMET group and in 10 eyes (14.5%) in the ACLET group; and perforation or melting happened in 4 eyes (9.8%) in the COMET group and in 1 eye (1.4%) in the ACLET group. Postoperative immunosuppression complications were noted in 9 eyes (13.0%) in the ACLET group. No graft rejection was observed in either group. CONCLUSION Both ACLET and COMET are effective therapeutic procedures for managing advanced and bilateral cases of LSCD. Although COMET has lower graft survival rate than ACLET, it does not mandate systemic immunosuppression therapy to protect against potential graft rejection.
Collapse
Affiliation(s)
- Mohamed Elalfy
- Corneoplastic Unit and Eye Bank, Queen Victoria Hospital NHS Foundation Trust, East Grinstead, UK.
- Cornea Unit, Research Institute of Ophthalmology, Giza, Egypt.
- Department of Ophthalmology, Maidstone and Tunbridge Wells NHS Trust, Maidstone, UK.
| | - Kareem Elsawah
- Cornea Unit, Research Institute of Ophthalmology, Giza, Egypt
| | - Sundas Maqsood
- Department of Ophthalmology, Maidstone and Tunbridge Wells NHS Trust, Maidstone, UK
| | - Nigel Jordan
- Corneoplastic Unit and Eye Bank, Queen Victoria Hospital NHS Foundation Trust, East Grinstead, UK
| | - Mansour Hassan
- Department of Ophthalmology, Beni Suef University, Beni Suef, Egypt
| | - Ahmed Zaki
- Cornea Unit, Research Institute of Ophthalmology, Giza, Egypt
| | - Zisis Gatzioufas
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Samer Hamada
- Corneoplastic Unit and Eye Bank, Queen Victoria Hospital NHS Foundation Trust, East Grinstead, UK
| | - Damian Lake
- Corneoplastic Unit and Eye Bank, Queen Victoria Hospital NHS Foundation Trust, East Grinstead, UK
| |
Collapse
|
2
|
Boto de Los Bueis A, Vidal Arranz C, Del Hierro-Zarzuelo A, Díaz Valle D, Méndez Fernández R, Gabarrón Hermosilla MI, Benítez Del Castillo JM, García-Arranz M. Long-Term Effects of Adipose-Derived Stem Cells for the Treatment of Bilateral Limbal Stem Cell Deficiency. Curr Eye Res 2024; 49:345-353. [PMID: 38152876 DOI: 10.1080/02713683.2023.2297342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE To determine the safety and feasibility of human autologous adipose tissue-derived adult mesenchymal stem cells (ASCs) for ocular surface regeneration in patients with bilateral limbal stem-cell deficiency (LSCD). METHODS A phase IIa clinical trial was designed (https://Clinicaltrials.gov, NCT01808378) with 8 patients, 3 of whom had aniridia, 2 meibomian glands diseases, 2 multiple surgeries and 1 chronic chemical injury. The therapeutic protocol was as follows: 6-mm of central corneal epithelium was removed, 400,000 ASCs were injected into each limboconjunctival quadrant, 400,000 ASCs were suspended over the cornea for 20 min, and finally the cornea was covered with an amniotic membrane patch. RESULTS No adverse events were detected after a mean of 86,5 months of follow-up. One year after surgery, 6 of the 8 transplants were scored as successful, five patients had improved uncorrected visual acuity (mean of 12 letters), two patients presented epithelial defects (also present at baseline) and the mean percentage of corneal neovascularization was of 28.75% (36.98%, at baseline). Re-examination 24 months after treatment disclosed preserved efficacy in 4 patients. At the last visit (after a mean of 86,5 months of follow up) epithelial defects were absent in all patients although improvement in all of the variables was only maintained in patient 3 (meibomian glands agenesia). CONCLUSION ASCs are a feasible and conservative therapy for treating bilateral LSCD. The therapeutic effect differs between etiologies and diminishes over time.
Collapse
Affiliation(s)
| | | | | | - David Díaz Valle
- Department of Ophthalmology, Hospital Clínico Universitario San Carlos, Madrid, Spain
| | | | | | | | - Mariano García-Arranz
- New Therapy Laboratory, Research Institute Foundation-Fundación Jiménez Díaz, Madrid, Spain
- Department of Surgery, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Selvarajah K, Tan JJ, Shaharuddin B. Corneal Epithelial Development and the Role of Induced Pluripotent Stem Cells for Regeneration. Curr Stem Cell Res Ther 2024; 19:292-306. [PMID: 36915985 DOI: 10.2174/1574888x18666230313094121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/02/2022] [Accepted: 01/02/2023] [Indexed: 03/16/2023]
Abstract
Severe corneal disorders due to infective aetiologies, trauma, chemical injuries, and chronic cicatricial inflammations, are among vision-threatening pathologies leading to permanent corneal scarring. The whole cornea or lamellar corneal transplantation is often used as a last resort to restore vision. However, limited autologous tissue sources and potential adverse post-allotransplantation sequalae urge the need for more robust and strategic alternatives. Contemporary management using cultivated corneal epithelial transplantation has paved the way for utilizing stem cells as a regenerative potential. Humaninduced pluripotent stem cells (hiPSCs) can generate ectodermal progenitors and potentially be used for ocular surface regeneration. This review summarizes the process of corneal morphogenesis and the signaling pathways underlying the development of corneal epithelium, which is key to translating the maturation and differentiation process of hiPSCs in vitro. The current state of knowledge and methodology for driving efficient corneal epithelial cell differentiation from pluripotent stem cells are highlighted.
Collapse
Affiliation(s)
- Komathi Selvarajah
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
- Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University, Kedah, Malaysia
| | - Jun Jie Tan
- Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University, Kedah, Malaysia
| | - Bakiah Shaharuddin
- Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University, Kedah, Malaysia
| |
Collapse
|
4
|
Tóth G, Lukács A, Schirra F, Sándor GL, Killik P, Maneschg OA, Nagy ZZ, Szentmáry N. Ophthalmic Aspects of Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis: A Narrative Review. Ophthalmol Ther 2023:10.1007/s40123-023-00725-w. [PMID: 37140876 PMCID: PMC10157599 DOI: 10.1007/s40123-023-00725-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
The aim of our review article was to summarize the current literature on Stevens-Johnson syndrome (SJS) and its severe form, toxic epidermal necrolysis (TEN). SJS/TEN is a serious, rare multi-system, immune-mediated, mucocutaneous disease with a significant mortality rate that can lead to severe ocular surface sequelae and even to bilateral blindness. Restoration of the ocular surface in acute and chronic SJS/TEN is challenging. There are only limited local or systemic treatment options for SJS/TEN. Early diagnosis, timely amniotic membrane transplantation and aggressive topical management in acute SJS/TEN are necessary to prevent long-term, chronic ocular complications. Although the primary aim of acute care is to save the life of the patient, ophthalmologists should regularly examine patients already in the acute phase, which should also be followed by systematic ophthalmic examination in the chronic phase. Herein, we summarize actual knowledge on the epidemiology, aetiology, pathology, clinical appearance and treatment of SJS/TEN.
Collapse
Affiliation(s)
- Gábor Tóth
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg/Saar, Germany.
- Department of Ophthalmology, Semmelweis University, Mária Utca 39, 1085, Budapest, Hungary.
| | - Andrea Lukács
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária Utca 41, 1085, Budapest, Hungary
| | - Frank Schirra
- Argos Augenzentrum, Faktoreistraße 4, 66111, Saarbrücken, Germany
| | - Gábor L Sándor
- Department of Ophthalmology, Semmelweis University, Mária Utca 39, 1085, Budapest, Hungary
| | - Petra Killik
- Department of Ophthalmology, Semmelweis University, Mária Utca 39, 1085, Budapest, Hungary
| | - Otto A Maneschg
- Department of Ophthalmology, Semmelweis University, Mária Utca 39, 1085, Budapest, Hungary
| | - Zoltán Z Nagy
- Department of Ophthalmology, Semmelweis University, Mária Utca 39, 1085, Budapest, Hungary
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg/Saar, Germany
- Department of Ophthalmology, Semmelweis University, Mária Utca 39, 1085, Budapest, Hungary
| |
Collapse
|
5
|
Zhu YF, Qiu WY, Xu YS, Yao YF. Clinical efficacy of a new surgical technique of oral mucosal epithelial transplantation for severe ocular surface disorders. BMC Ophthalmol 2023; 23:145. [PMID: 37029360 PMCID: PMC10080810 DOI: 10.1186/s12886-023-02879-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Severe ocular surface disorders are one of the major blinding diseases, and a paucity of original tissue obscures successful reconstruction. We developed a new surgical technique of direct oral mucosal epithelial transplantation (OMET) to reconstruct severely damaged ocular surfaces in 2011. This study elaborates on the clinical efficacy of OMET. METHODS A retrospective review of patients with severe ocular surface disorders who underwent OMET from 2011 to 2021 at the Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine was conducted. Patients who were followed up for at least 3 months postoperatively and had sufficient pre or postoperative records were included. Surgical efficacy was evaluated by comparing the best-corrected visual acuity (BCVA), corneal transparency, neovascularization grade, and symblepharon grade. Additionally, postoperative ocular surface impression cytology was used to study the morphology of the newborn epithelial cells. RESULTS Forty-eight patients (49 eyes; mean age: 42.55 ± 12.40 years, range:12-66 years) were enrolled in the study. The etiology included chemical burns (30 eyes), thermal burns (16 eyes), explosive injuries (1 eye), Stevens-Johnson syndrome (1 eye), and multiple pterygiums (1 eye). The mean follow-up period was 25.97 ± 22.99 months. Postoperatively, 29 eyes (59.18%) showed improved corneal transparency, 26 eyes (53.06%) had improved BCVA, 47 eyes (95.92%) had a stable epithelium until the final follow-up, 44 eyes (89.80%) had a reduced neovascularization grade. Of the 20 eyes with preoperative symblepharon, 15 (75%) were completely resolved, and five (25%) were partially resolved. Impression cytological studies showed no postoperative conjunctival invasion onto the corneal surface. CONCLUSIONS OMET is a safe and effective surgical technique for reconstruction in severe ocular surface disorder by maintaining a stable epithelium and reducing the neovascularization and symblepharon grade.
Collapse
Affiliation(s)
- Yuan-Fang Zhu
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory for Corneal Diseases Research of Zhejiang Province, NO. 3 East QingChun Rd, Hangzhou, Zhejiang, China
| | - Wen-Ya Qiu
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory for Corneal Diseases Research of Zhejiang Province, NO. 3 East QingChun Rd, Hangzhou, Zhejiang, China
| | - Ye-Sheng Xu
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory for Corneal Diseases Research of Zhejiang Province, NO. 3 East QingChun Rd, Hangzhou, Zhejiang, China
| | - Yu-Feng Yao
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory for Corneal Diseases Research of Zhejiang Province, NO. 3 East QingChun Rd, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Diagnostic Algorithm for Surgical Management of Limbal Stem Cell Deficiency. Diagnostics (Basel) 2023; 13:diagnostics13020199. [PMID: 36673009 PMCID: PMC9858342 DOI: 10.3390/diagnostics13020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Limbal stem cell deficiency (LCSD) presents several challenges. Currently, there is no clearly defined systematic approach to LSCD diagnosis that may guide surgical tactics. METHODS The medical records of 34 patients with LSCD were analyzed. Diagnostic modalities included standard (visometry, tonometry, visual field testing, slit-lamp biomicroscopy with corneal fluorescein staining, Schirmer test 1, ultrasonography) and advanced ophthalmic examination methods such as anterior segment optical coherence tomography, in vivo confocal microscopy, impression cytology, and enzyme-linked immunoassay. RESULTS Standard ophthalmological examination was sufficient to establish the diagnosis of LSCD in 20 (58.8%) cases, whereas advanced evaluation was needed in 14 (41.2%) cases. Depending on the results, patients with unilateral LSCD were scheduled to undergo glueless simple limbal epithelial transplantation (G-SLET) or simultaneous G-SLET and lamellar keratoplasty. Patients with bilateral LSCD with normal or increased corneal thickness were enrolled in the paralimbal oral mucosa epithelium transplantation (pLOMET) clinical trial. CONCLUSIONS Based on the diagnostic and surgical data analyzed, the key points in LSCD diagnosis were identified, helping to guide the surgeon in selecting the appropriate surgical procedure. Finally, we proposed a novel step-by-step diagnostic algorithm and original surgical guidelines for the treatment of patients with LSCD.
Collapse
|
7
|
Zhurenkov KE, Alexander-Sinkler EI, Gavrilyik IO, Yartseva NM, Aleksandrova SA, Mashel TV, Khorolskaya JI, Blinova MI, Kulikov AN, Churashov SV, Chernysh VF, Mikhailova NA. Labial Mucosa Stem Cells: Isolation, Characterization, and Their Potential for Corneal Epithelial Reconstruction. Invest Ophthalmol Vis Sci 2022; 63:16. [PMID: 35848889 PMCID: PMC9308017 DOI: 10.1167/iovs.63.8.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose The purpose of this study was to characterize labial mucosa stem cells (LMSCs) and to investigate their potential for corneal epithelial reconstruction in a rabbit model of total limbal stem cell deficiency (LSCD). Methods Rabbit LMSCs (rLMSCs) and human (hLMSCs) LMSCs were derived from labial mucosa and characterized in terms of their proliferation activity by the evaluation of proliferation index (PI) and colony forming efficiency (CFE), cell senescence, and differentiation abilities. The expression of various limbus-specific, stem cell-specific, and epithelial markers was assessed via immunocytochemistry. Flow cytometry was used to evaluate mesenchymal and hematopoietic cell surface markers expression. Chromosomal stability of the derived cells was examined using the conventional GTG-banding technique. To assess the impact of LMSCs on corneal epithelial reconstruction, rLMSCs were seeded onto a decellularized human amniotic membrane (dHAM), thereafter their regeneration potential was examined in the rabbit model of total LSCD. Results Both rLMSCs and hLMSCs showed high proliferation and differentiation abilities, entered senescence at later passages, and expressed different stem cell-specific (ABCB5, ALDH3A1, ABCG2, and p63α), mesenchymal (vimentin), and epithelial (CK3/12, CK15) markers. Cell surface antigen expression was similar to other described mesenchymal stem cells. No clonal structural chromosome abnormalities (CSCAs) and the low percentage of non-clonal structural chromosome abnormalities (NSCAs) were observed. Transplantation of rLMSCs promoted corneal epithelial reconstruction and enhanced corneal transparency. Conclusions LMSCs have significant proliferation and differentiation abilities, display no detrimental chromosome aberrations, and demonstrate considerable potential for corneal repair.
Collapse
Affiliation(s)
- Kirill E Zhurenkov
- Institute of Cytology Russian Academy of Science, St. Petersburg, Russia.,Department of Cytology and Histology, St. Petersburg State University, St. Petersburg, Russia
| | | | | | - Natalia M Yartseva
- Institute of Cytology Russian Academy of Science, St. Petersburg, Russia
| | | | - Tatiana V Mashel
- Institute of Cytology Russian Academy of Science, St. Petersburg, Russia
| | | | - Miralda I Blinova
- Institute of Cytology Russian Academy of Science, St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
8
|
Zhu H, Wang W, Tan Y, Su G, Xu L, Jiang ML, Li S, Meir YJJ, Wang Y, Li G, Zhou H. Limbal Niche Cells and Three-Dimensional Matrigel-Induced Dedifferentiation of Mature Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 2022; 63:1. [PMID: 35499835 PMCID: PMC9078055 DOI: 10.1167/iovs.63.5.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/11/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To investigate the phenotypic changes of mature corneal epithelial cells (MCECs) that cocultured with limbal niche cells (LNCs) in three-dimensional Matrigel (3D Matrigel) in vitro. METHODS MCECs were isolated from central corneas, and limbal epithelial progenitor cells (LEPCs) were isolated from limbal segments with Dispase II. LNCs were isolated and cultured from limbal niche using the collagenase A digestion method and identified with PCK/VIM/CD90/CD105/SCF/PDGFRβ. MCECs were cultured on 3D Matrigel (50%, v/v) with or without LNCs for 10 days. Expression of CK12 and p63α and clone formation test were used to compare the progenitor phenotypic changes for MCECs before and after induction using LEPCs as control. RESULTS Homogeneous LNCs were isolated and identified as spindle shape and adherent to a plastic surface coated with 5% Matrigel. Double immunostaining of the fourth-passage LNCs was uniformly PCK-/VIM+/CD90+/CD105+/SCF+/PDGFRβ+. Reverse transcription and quantitative real-time polymerase chain reaction (RT-qPCR) revealed the decrease of PCK expression from the second passage and elevation of Vim, CD90, CD105, SCF, and PDGFRβ transcripts from the third passage, and the transcription level of Vim, CD90, CD105, SCF, and PDGFRβ was elevated statistically in the fourth passage compared to the first passage (P < 0.01). Both immunofluorescence (IF) staining for cross section and cytospin cells demonstrated that MCECs expressed higher CK12 while lower p63α than LEPCs (P < 0.01). Sphere growth formation was noticed as early as 24 hours in the MCEC + LNC group, 48 hours in the LEPC group, and 72 hours in the MCEC group. The diameters of the spheres were the biggest in the MCEC + LNC group (182.24 ± 57.91 µm), smaller in the LEPC group (125.71 ± 41.20 µm), and smallest in the MCEC group (109.39 ± 34.85 µm) by the end of the 10-day culture (P < 0.01). Double immunostaining with CK12/p63α showed that cells in the sphere formed from MCECs expressed CK12 but not p63α; in contrast, some cells in the MCEC + LNC group expressed CK12, but most of them expressed p63α. RT-qPCR revealed a significant reduction of CK12 transcript but elevation of p63α, Oct4, Nanog, Sox2, and SSEA4 (P < 0.05). Holoclone composed of cubic epithelial cells could be generated in the MCEC + LNC group but not in the other two groups. CONCLUSIONS The data shows that human MCEC cell phenotype could be induced to the dedifferentiation stage when cocultured with LNCs in 3D Matrigel that simulated the microenvironment of limbal stem cells in vitro.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yongyao Tan
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Guanyu Su
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lingjuan Xu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Meng lin Jiang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shen Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yaa-Jyuhn James Meir
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Linkou, Taiwan
| | - Yunming Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Huamin Zhou
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| |
Collapse
|
9
|
Can Human Oral Mucosa Stem Cells Differentiate to Corneal Epithelia? Int J Mol Sci 2021; 22:ijms22115976. [PMID: 34205905 PMCID: PMC8198937 DOI: 10.3390/ijms22115976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Human oral mucosa stem cells (hOMSCs) arise from the neural crest, they can self-renew, proliferate, and differentiate to several cell lines and could represent a good source for application in tissue engineering. Because of their anatomical location, hOMSCs are easy to isolate, have multilineage differentiation capacity and express embryonic stem cells markers such as—Sox2, Oct3/4 and Nanog. We have used SHEM (supplemented hormonal epithelial medium) media and cultured hOMSCs over human amniotic membrane and determined the cell’s capacity to differentiate to an epithelial-like phenotype and to express corneal specific epithelial markers—CK3, CK12, CK19, Pan-cadherin and E-cadherin. Our results showed that hOMSCs possess the capacity to attach to the amniotic membrane and express CK3, CK19, Pan-Cadherin and E-Cadherin without induction with SHEM media and expressed CK12 or changed the expression pattern of E-Cadherin to a punctual-like feature when treated with SHEM media. The results observed in this study show that hOMSCs possess the potential to differentiate toward epithelial cells. In conclusion, our results revealed that hOMSCs readily express markers for corneal determination and could provide the ophthalmology field with a therapeutic alternative for tissue engineering to achieve corneal replacement when compared with other techniques. Nevertheless, further studies are needed to develop a predictable therapeutic alternative for cornea replacement.
Collapse
|
10
|
Gao M, Chen Y, Zhai F, Liu Z, Liu Q, Wang Z. The effect of cultured autologous oral mucosal epithelial cells on ocular surface reconstruction. Arch Med Sci 2021; 20:813-821. [PMID: 39050175 PMCID: PMC11264149 DOI: 10.5114/aoms/115576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/20/2019] [Indexed: 07/27/2024] Open
Abstract
Introduction Oral epithelial cells were recently shown to be able to differentiate into corneal epithelium, and the efficacy of cultured autologous oral mucosal epithelial cells (CAOMEC) has been suggested by the presence of epithelium replacement. Therefore, the aim of this study was to evaluate the treatment outcome in limbal stem cell deficiency (LSCD) by adding CAOMEC to regular amniotic membrane (AM) treatment. Material and methods Eyes with LSCD were randomized to two groups to undergo either autologous oral mucosal epithelial cell sheet (CAOMECS) combined with AM transplantation (A group) or AM transplantation alone (B group). Clinical outcome measures were corneal epithelium healing, best corrected visual acuity, symblepharon, corneal transparency, corneal neovascularization and ocular surface inflammation. Results The normal corneal epithelialization rate in group A (73.33%) was higher than that in group B (35.48%), and the average healing time was shorter (3.45 ±2.12 weeks vs. 4.64 ±1.63 weeks). The symblepharon in the above two groups was improved in the first 3 months after surgery, but after 6 months, part of the B group had recurrence. In improving corneal transparency, group A has obvious advantages. Corneal neovascularization (CNV) was improved to some extent in the first 3 months after surgery, but group A (1.47 ±0.64) was better than group B (1.94 ±0.85) after 6 months. Both groups can improve the inflammatory state to some extent. Conclusions The transplantation of CAOMECS offers a viable and safe alternative in the reconstruction of a stable ocular surface. The effect is better than that of traditional AM transplantation, mainly in promoting corneal epithelialization, improving ocular surface structure, and reducing fiber and vascular infiltration.
Collapse
Affiliation(s)
- Minghong Gao
- The General Hospital of Northern Theater Command, Shenyang, China
| | - Yingxin Chen
- The General Hospital of Northern Theater Command, Shenyang, China
| | - Fengying Zhai
- The General Hospital of Northern Theater Command, Shenyang, China
| | - Zhiling Liu
- The General Hospital of Northern Theater Command, Shenyang, China
| | - Qiming Liu
- The General Hospital of Northern Theater Command, Shenyang, China
| | - Ziyue Wang
- The General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
11
|
Stem Cells an Overview. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Chowdhury S, Ghosh S. Sources, Isolation and culture of stem cells? Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Xiao YT, Xie HT, Liu X, Duan CY, Qu JY, Zhang MC, Zhao XY. Subconjunctival Injection of Transdifferentiated Oral Mucosal Epithelial Cells for Limbal Stem Cell Deficiency in Rats. J Histochem Cytochem 2020; 69:177-190. [PMID: 33345682 DOI: 10.1369/0022155420980071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rat limbal niche cells (LNCs) have been proven to induce transdifferentiation of oral mucosal epithelial cells (OMECs) into corneal epithelial-like cells termed transdifferentiated oral mucosal epithelial cells (T-OMECs). This investigation aimed to evaluate the effect of subconjunctival T-OMEC injections on alkali-induced limbal stem cell deficiency (LSCD) in rats. LNCs were cocultured with OMECs in the Transwell system to obtain T-OMECs, with NIH-3T3 cells serving as a control. Subconjunctival injection of single T-OMEC or OMEC suspension was performed immediately after corneal alkali injury. T-OMECs were prelabeled with the fluorescent dye CM-DiI in vitro and tracked in vivo. Corneal epithelial defect, opacity, and neovascularization were quantitatively analyzed. The degree of corneal epithelial defect (from day 1 onward), opacity (from day 5 onward), and neovascularization (from day 2 onward) was significantly less in the T-OMEC group than in the OMEC group. Cytokeratin 12 (CK12), pigment epithelium-derived factor, and soluble fms-like tyrosine kinase-1 were expressed at a higher rate following T-OMEC injection. Some CM-DiI-labeled cells were found to be coexpressed with CK12, Pax6, and ΔNp63α in the corneal epithelium after subconjunctival injection. Subconjunctival injection of T-OMECs prevents conjunctival invasion and maintains a normal corneal phenotype, which might be a novel strategy in the treatment of LSCD.
Collapse
Affiliation(s)
- Yu-Ting Xiao
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Tao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao-Ye Duan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing-Yu Qu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming-Chang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Yue Zhao
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Yazdani M, Shahdadfar A, Reppe S, Sapkota D, Vallenari EM, Lako M, Connon CJ, Figueiredo FC, Utheim TP. Response of human oral mucosal epithelial cells to different storage temperatures: A structural and transcriptional study. PLoS One 2020; 15:e0243914. [PMID: 33326470 PMCID: PMC7744058 DOI: 10.1371/journal.pone.0243914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/30/2020] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Seeking to improve the access to regenerative medicine, this study investigated the structural and transcriptional effects of storage temperature on human oral mucosal epithelial cells (OMECs). METHODS Cells were stored at four different temperatures (4°C, 12°C, 24°C and 37°C) for two weeks. Then, the morphology, cell viability and differential gene expression were examined using light and scanning electron microscopy, trypan blue exclusion test and TaqMan gene expression array cards, respectively. RESULTS Cells stored at 4°C had the most similar morphology to non-stored controls with the highest viability rate (58%), whereas the 37°C group was most dissimilar with no living cells. The genes involved in stress-induced growth arrest (GADD45B) and cell proliferation inhibition (TGFB2) were upregulated at 12°C and 24°C. Upregulation was also observed in multifunctional genes responsible for morphology, growth, adhesion and motility such as EFEMP1 (12°C) and EPHA4 (4°C-24°C). Among genes used as differentiation markers, PPARA and TP53 (along with its associated gene CDKN1A) were downregulated in all temperature conditions, whereas KRT1 and KRT10 were either unchanged (4°C) or downregulated (24°C and 12°C; and 24°C, respectively), except for upregulation at 12°C for KRT1. CONCLUSIONS Cells stored at 12°C and 24°C were stressed, although the expression levels of some adhesion-, growth- and apoptosis-related genes were favourable. Collectively, this study suggests that 4°C is the optimal storage temperature for maintenance of structure, viability and function of OMECs after two weeks.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Aboulghassem Shahdadfar
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Sjur Reppe
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Lovisenberg Diaconal Hospital, Unger-Vetlesen Institute, Oslo, Norway
| | - Dipak Sapkota
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Evan M. Vallenari
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Bioscience West Building, Newcastle upon Tyne, United Kingdom
| | - Che J. Connon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Bioscience West Building, Newcastle upon Tyne, United Kingdom
| | - Francisco C. Figueiredo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Bioscience West Building, Newcastle upon Tyne, United Kingdom
- Department of Ophthalmology, Royal Victoria Infirmary & Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway
- Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
15
|
Nosrati H, Alizadeh Z, Nosrati A, Ashrafi-Dehkordi K, Banitalebi-Dehkordi M, Sanami S, Khodaei M. Stem cell-based therapeutic strategies for corneal epithelium regeneration. Tissue Cell 2020; 68:101470. [PMID: 33248403 DOI: 10.1016/j.tice.2020.101470] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Any significant loss of vision or blindness caused by corneal damages is referred to as corneal blindness. Corneal blindness is the fourth most common cause of blindness worldwide, representing more than 5% of the total blind population. Currently, corneal transplantation is used to treat many corneal diseases. In some cases, implantation of artificial cornea (keratoprosthesis) is suggested after a patient has had a donor corneal transplant failure. The shortage of donors and the side effects of keratoprosthesis are limiting these approaches. Recently, researchers have been actively pursuing new approaches for corneal regeneration because of these limitations. Nowadays, tissue engineering of different corneal layers (epithelium, stroma, endothelium, or full thickness tissue) is a promising approach that has attracted a great deal of interest from researchers and focuses on regenerative strategies using different cell sources and biomaterials. Various sources of corneal and non-corneal stem cells have shown significant advantages for corneal epithelium regeneration applications. Pluripotent stem cells (embryonic stem cells and iPS cells), epithelial stem cells (derived from oral mucus, amniotic membrane, epidermis and hair follicle), mesenchymal stem cells (bone marrow, adipose-derived, amniotic membrane, placenta, umbilical cord), and neural crest origin stem cells (dental pulp stem cells) are the most promising sources in this regard. These cells could also be used in combination with natural or synthetic scaffolds to improve the efficacy of the therapeutic approach. As the ocular surface is exposed to external damage, the number of studies on regeneration of the corneal epithelium is rising. In this paper, we reviewed the stem cell-based strategies for corneal epithelium regeneration.
Collapse
Affiliation(s)
- Hamed Nosrati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Zohreh Alizadeh
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Nosrati
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Korosh Ashrafi-Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehdi Banitalebi-Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Sanami
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Khodaei
- Department of Materials Science and Engineering, Golpayegan University of Technology, Golpayegan, Iran
| |
Collapse
|
16
|
Jackson CJ, Myklebust Ernø IT, Ringstad H, Tønseth KA, Dartt DA, Utheim TP. Simple limbal epithelial transplantation: Current status and future perspectives. Stem Cells Transl Med 2019; 9:316-327. [PMID: 31802651 PMCID: PMC7031634 DOI: 10.1002/sctm.19-0203] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022] Open
Abstract
Damage to limbal stem cells as a result of injury or disease can lead to limbal stem cell deficiency (LSCD). This disease is characterized by decreased vision that is often painful and may progress to blindness. Clinical features include inflammation, neovascularization, and persistent cornea epithelial defects. Successful strategies for treatment involve transplantation of grafts harvested from the limbus of the alternate healthy eye, called conjunctival‐limbal autograft (CLAU) and transplantation of limbal cell sheets cultured from limbal biopsies, termed cultured limbal epithelial transplantation (CLET). In 2012, Sangwan and colleagues presented simple limbal epithelial transplantation (SLET), a novel transplantation technique that combines the benefits of CLAU and CLET and avoids the challenges associated with both. In SLET a small biopsy from the limbus of the healthy eye is divided and distributed over human amniotic membrane, which is placed on the affected cornea. Outgrowth occurs from each small explant and a complete corneal epithelium is typically formed within 2 weeks. Advantages of SLET include reduced risk of iatrogenic LSCD occurring in the healthy cornea at harvest; direct transfer circumventing the need for cell culture; and the opportunity to perform biopsy harvest and transplantation in one operation. Success so far using SLET is comparable with CLAU and CLET. Of note, 336 of 404 (83%) operations using SLET resulted in restoration of the corneal epithelium, whereas visual acuity improved in 258 of the 373 (69%) reported cases. This review summarizes the results of 31 studies published on SLET since 2012. Progress, advantages, challenges, and suggestions for future studies are presented.
Collapse
Affiliation(s)
- Catherine J Jackson
- Department of Plastic and Reconstructive Surgery and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.,Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | | | - Håkon Ringstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Kim A Tønseth
- Department of Plastic and Reconstructive Surgery and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Darlene A Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Tor P Utheim
- Department of Plastic and Reconstructive Surgery and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.,Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Vestre Viken Hospital Trust, Drammen, Norway.,Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Ophthalmology, Sørlandet Hospital, Arendal, Norway
| |
Collapse
|
17
|
Choe HR, Yoon CH, Kim MK. Ocular Surface Reconstruction Using Circumferentially-trephined Autologous Oral Mucosal Graft Transplantation in Limbal Stem Cell Deficiency. KOREAN JOURNAL OF OPHTHALMOLOGY 2019; 33:16-25. [PMID: 30746908 PMCID: PMC6372385 DOI: 10.3341/kjo.2018.0111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/25/2018] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To investigate the effects of transplantation of a circumferentially-trephined autologous oral mucosal graft using a vacuum trephine on ocular surface reconstruction in patients with limbal stem cell deficiency. METHODS Patients with a limbal stem cell deficiency who underwent transplantation of autologous oral mucosal graft performed by a particular surgeon in Seoul National University Hospital were included. The medical records of these five patients were retrospectively reviewed. The lower labial mucosal graft inside the inferior lip was trephined to a depth of 250 μm using a donor vacuum trephine with a 9-mm diameter. Outside markings were made using a 14-mm intraoperative keratometer. The oral mucosal graft was dissected under a microscope using a Beaver mini-blade as either a ring or a crescent-shaped strip with a 5-mm width. The mucosal graft was transplanted onto the limbus in the limbal-deficient eye. Best-corrected visual acuity and corneal status were measured during the follow-up period. RESULTS Four patients were diagnosed with Stevens-Johnson syndrome and one was diagnosed with atopy-associated immune keratitis. The mean follow-up period was 10.4 ± 2.9 months. After 4 months, visual acuity improved in all patients, and the mean improvement in logarithm of the minimum angle of resolution visual acuity was 0.526 ± 0.470 (range, 0.15 to 1.10). Corneal surface erosion and neovascularization decreased in four patients, and stromal opacity decreased in two patients. The engraftments maintained ocular surface stabilization in four of the five patients at the last follow-up. CONCLUSIONS Transplantation of circumferential autologous oral mucosal grafts may be effective for the treatment of limbal stem cell deficiency.
Collapse
Affiliation(s)
- Hye Rim Choe
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.
| |
Collapse
|
18
|
Comparison of the efficacy of different cell sources for transplantation in total limbal stem cell deficiency. Graefes Arch Clin Exp Ophthalmol 2019; 257:1253-1263. [PMID: 31004182 DOI: 10.1007/s00417-019-04316-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/12/2019] [Accepted: 04/01/2019] [Indexed: 02/04/2023] Open
Abstract
PURPOSE The purpose of this study was to compare the efficacy of allogeneic cultured limbal epithelial transplantation (ACLET) and cultivated oral mucosal epithelial transplantation (COMET) in treating total limbal stem cell deficiency (LSCD). METHODS In this retrospective cohort study, 73 patients (76 eyes) with total LSCD, including 41 patients (42 eyes) treated with ACLET and 32 patients (34 eyes) receiving COMET, were evaluated. The age, gender and injury cause of all patients were recorded. RESULTS The mean follow-up was 23.3 ± 9.9 months in the ACLET group and 16.1 ± 5.8 months in the COMET group. A higher incidence of persistent epithelial defect was observed after COMET (P = 0.023). The overall ocular surface grading scores were all lower in the ACLET group than in the COMET group at 3, 6, and 12 months after surgery and the last follow-up. Kaplan-Meier survival curve analysis demonstrated a significantly higher success rate of ACLET (71.4%), compared with that of COMET (52.9%; P = 0.043). The risk of graft failure was higher in patients with entropion and trichiasis, incomplete eyelid closure and treated with COMET. The graft failure risk rate after COMET was 3.5 times higher than that of ACLET. CONCLUSIONS For total LSCD patients, ACLET should be prioritized, since limbal epithelial cells have better ability to maintain corneal epithelial integrity and ocular surface stability and benefit the ocular surface when compared with oral mucosal epithelial cells. Preoperative and postoperative eyelid abnormalities should be corrected as early as possible.
Collapse
|
19
|
Abstract
Human-induced pluripotent stem cells (hiPSCs) provide a personalized approach to study conditions and diseases including those of the eye that lack appropriate animal models to facilitate the development of novel therapeutics. Corneal disease is one of the most common causes of blindness. Hence, significant efforts are made to develop novel therapeutic approaches including stem cell-derived strategies to replace the diseased or damaged corneal tissues, thus restoring the vision. The use of adult limbal stem cells in the management of corneal conditions has been clinically successful. However, its limited availability and phenotypic plasticity necessitate the need for alternative stem cell sources to manage corneal conditions. Mesenchymal and embryonic stem cell-based approaches are being explored; nevertheless, their limited differentiation potential and ethical concerns have posed a significant hurdle in its clinical use. hiPSCs have emerged to fill these technical and ethical gaps to render clinical utility. In this review, we discuss and summarize protocols that have been devised so far to direct differentiation of human pluripotent stem cells (hPSCs) to different corneal cell phenotypes. With the summarization, our review intends to facilitate an understanding which would allow developing efficient and robust protocols to obtain specific corneal cell phenotype from hPSCs for corneal disease modeling and for the clinics to treat corneal diseases and injury.
Collapse
Affiliation(s)
| | - Rohit Shetty
- Cornea and Refractive Surgery, Narayana Nethralaya, Bengaluru, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| |
Collapse
|
20
|
Zhao XY, Xie HT, Duan CY, Li J, Zhang MC. Rat limbal niche cells can induce transdifferentiation of oral mucosal epithelial cells into corneal epithelial-like cells in vitro. Stem Cell Res Ther 2018; 9:256. [PMID: 30257715 PMCID: PMC6158850 DOI: 10.1186/s13287-018-0996-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Cultivated oral mucosal epithelial cells (OMECs) are widely used in the treatment of limbal stem cell deficiency (LSCD) for their ocular reconstruction capability. As the most important component of the limbal microenvironment, limbal niche cells (LNCs) play a key role in the direction of stem cell differentiation. In this study, we investigated whether LNCs can induce the transdifferentiation of rat OMECs to corneal epithelial-like cells. METHODS We isolated OMECs and LNCs from rats by dispase and collagenase, respectively, to establish a three-dimensional or Transwell coculturing system. NIH-3T3 cells and renewed LNCs were also used as feeder layers in the Transwell system to compare their ability to support the OMECs. The airlift method was used for the culture of OMECs to obtain a stratified epithelial sheet. Cocultured OMECs were characterized by reverse-transcription polymerase chain reaction, Western blotting, hematoxylin and eosin staining, and immunohistochemistry. RESULTS The cocultured OMECs showed corneal epithelial-like morphology and expressed the corneal epithelial markers CK12 and Pax6 in most cocultured systems. Furthermore, we found that the expression level of CK12, Pax6, and proliferation marker Ki67 was upregulated when compared with that of other groups by renewing the LNCs in the Transwell system (p < 0.05, n = 3), suggesting that this might be a potential method for improving the efficiency of transdifferentiation. The obtained stratified epithelial sheet expressed CK3 and CK12. CONCLUSION Through coculturing OMECs and LNCs in vitro, we successfully cultivated corneal epithelial-like OMECs. This investigation is of great significance for the treatment of LSCD and ocular surface reconstruction.
Collapse
Affiliation(s)
- Xin-Yue Zhao
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua-Tao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao-Ye Duan
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming-Chang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
21
|
Ghaemi SR, Delalat B, Harding FJ, Irani YD, Williams KA, Voelcker NH. Identification and In Vitro Expansion of Buccal Epithelial Cells. Cell Transplant 2018; 27:957-966. [PMID: 29860901 PMCID: PMC6050911 DOI: 10.1177/0963689718773330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ex vivo-expanded buccal mucosal epithelial (BME) cell transplantation has
been used to reconstruct the ocular surface. Methods for enrichment and maintenance of BME
progenitor cells in ex vivo cultures may improve the outcome of BME cell
transplantation. However, the parameter of cell seeding density in this context has
largely been neglected. This study investigates how varying cell seeding density
influences BME cell proliferation and differentiation on tissue culture polystyrene
(TCPS). The highest cell proliferation activity was seen when cells were seeded at
5×104 cells/cm2. Both below and above this density, the cell
proliferation rate decreased sharply. Differential immunofluorescence analysis of surface
markers associated with the BME progenitor cell population (p63, CK19, and ABCG2), the
differentiated cell marker CK10 and connexin 50 (Cx50) revealed that the initial cell
seeding density also significantly affected the progenitor cell marker expression profile.
Hence, this study demonstrates that seeding density has a profound effect on the
proliferation and differentiation of BME stem cells in vitro, and this is
relevant to downstream cell therapy applications.
Collapse
Affiliation(s)
- Soraya Rasi Ghaemi
- 1 Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Bahman Delalat
- 1 Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia.,2 Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia.,3 Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Frances J Harding
- 1 Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Yazad D Irani
- 4 Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Keryn A Williams
- 4 Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Nicolas H Voelcker
- 1 Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia.,2 Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia.,3 Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
22
|
Pluripotent Stem Cells and Other Innovative Strategies for the Treatment of Ocular Surface Diseases. Stem Cell Rev Rep 2017; 12:171-8. [PMID: 26779895 DOI: 10.1007/s12015-016-9643-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cornea provides two thirds of the refractive power of the eye and protection against insults such as infection and injury. The outermost tissue of the cornea is renewed by stem cells located in the limbus. Depletion or destruction of these stem cells may lead to blinding limbal stem cell deficiency (LSCD) that concerns millions of patients around the world. Innovative strategies based on adult stem cell therapies have been developed in the recent years but they are still facing numerous unresolved issues, and the long term results can be deceiving. Today there is a clear need to improve these therapies, and/or to develop new approaches for the treatment of LSCD. Here, we review the current cell-based therapies used for the treatment of ocular diseases, and discuss the potential of pluripotent stem cells (embryonic and induced pluripotent stem cells) in corneal repair. As the secretion of paracrine factors is known to have a crucial role in maintaining stem cell homeostasis and in wound repair, we also consider the therapeutic potential of a promising novel pathway, the exosomes. Exosomes are nano-sized vesicles that have the ability to transfer RNAs and proteins to recipient cells, and several studies demonstrated their role in cell protection and wound healing. Exosomes could circumvent the hurdles of stem-cell based approaches, and they could become a strong candidate as an alternative therapy for ocular surface diseases.
Collapse
|
23
|
Prospective Clinical Trial of Corneal Reconstruction With Biomaterial-Free Cultured Oral Mucosal Epithelial Cell Sheets. Cornea 2017; 37:76-83. [DOI: 10.1097/ico.0000000000001409] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Saghizadeh M, Kramerov AA, Svendsen CN, Ljubimov AV. Concise Review: Stem Cells for Corneal Wound Healing. Stem Cells 2017; 35:2105-2114. [PMID: 28748596 PMCID: PMC5637932 DOI: 10.1002/stem.2667] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/16/2017] [Accepted: 07/02/2017] [Indexed: 02/06/2023]
Abstract
Corneal wound healing is a complex process that occurs in response to various injuries and commonly used refractive surgery. It is a significant clinical problem, which may lead to serious complications due to either incomplete (epithelial) or excessive (stromal) healing. Epithelial stem cells clearly play a role in this process, whereas the contribution of stromal and endothelial progenitors is less well studied. The available evidence on stem cell participation in corneal wound healing is reviewed, together with the data on the use of corneal and non-corneal stem cells to facilitate this process in diseased or postsurgical conditions. Important aspects of corneal stem cell generation from alternative cell sources, including pluripotent stem cells, for possible transplantation upon corneal injuries or in disease conditions are also presented. Stem Cells 2017;35:2105-2114.
Collapse
Affiliation(s)
- Mehrnoosh Saghizadeh
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Andrei A. Kramerov
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
| | - Clive N. Svendsen
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Alexander V. Ljubimov
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| |
Collapse
|
25
|
Zhang H, Lin S, Zhang M, Li Q, Li W, Wang W, Zhao M, Xie Y, Li Z, Huang M, Wang Z, Zhang X, Huang B. Comparison of Two Rabbit Models with Deficiency of Corneal Epithelium and Limbal Stem Cells Established by Different Methods. Tissue Eng Part C Methods 2017; 23:710-717. [PMID: 28816624 DOI: 10.1089/ten.tec.2017.0146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Limbal stem cell defect model is an important animal model that provides a basis for the study of ocular surface diseases. The rabbit cornea is of moderate size and is widely used in such studies as an experimental animal model. At present, the main modeling methods are alkali burns, and corneal limbus girdling and corneal epithelium doctoring. Each method has its own characteristics. In this study, we observed rabbit models with severe ocular surface defect established by the two methods and changes after amniotic membrane transplantation. In the first, second, third, and fourth week after operation, the clinical manifestations, corneal transparency, and new vessels were observed according to the standard rating scale of ocular surface, compared between the two methods, and then statistically analyzed. In the fourth week after operation, the rabbits were sacrificed and their corneas and corneal limbus were extracted from sclera, embedded by optimum cutting temperature compound, frozen, and sliced for hematoxylin and eosin staining and pathological examination. There were two groups in this study. Group 1 (alkali burns) had more severe complications, such as, conjunctiva, nubecula, new vessel hyperplasia, and so on, compared to group 2 (corneal limbus girdling and corneal epithelium doctoring). In addition, there were striking differences in corneal transparency and new vessels between the two groups (p < 0.05). Corneal transparency in group 1 was lower than in group 2. New vessels in group 1 were less in the first 2 weeks, but obviously increased compared to group 2 in the subsequent weeks. Alkaline burn could be used to study new vessel hyperplasia, while corneal limbus girdling and corneal epithelium doctoring are more suitable for studying stem cell transdifferentiation, interactive roles of stem cells and microenvironment, and so on.
Collapse
Affiliation(s)
- Hening Zhang
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Shaochun Lin
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Min Zhang
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Qijiong Li
- 2 Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center , Guangzhou, China
| | - Weihua Li
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Wencong Wang
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Minglei Zhao
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Yaojue Xie
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Zhiquan Li
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | | | - Zhichong Wang
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Xiulan Zhang
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Bing Huang
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| |
Collapse
|
26
|
Xu QL, Furuhashi A, Zhang QZ, Jiang CM, Chang TH, Le AD. Induction of Salivary Gland-Like Cells from Dental Follicle Epithelial Cells. J Dent Res 2017; 96:1035-1043. [PMID: 28541773 DOI: 10.1177/0022034517711146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The dental follicle (DF), most often associated with unerupted teeth, is a condensation of ectomesenchymal cells that surrounds the tooth germ in early stages of tooth development. In the present study, we aim to isolate epithelial stem-like cells from the human DF and explore their potential differentiation into salivary gland (SG) cells. We demonstrated the expression of stem cell-related genes in the epithelial components of human DF tissues, and these epithelial progenitor cells could be isolated and ex vivo expanded in a reproducible manner. The human DF-derived epithelial cells possessed clonogenic and sphere-forming capabilities, as well as expressed a panel of epithelial stem cell-related genes, thus conferring stem cell properties (hDF-EpiSCs). When cultured under in vitro 3-dimensional induction conditions, hDF-EpiSCs were capable to differentiate into SG acinar and duct cells. Furthermore, transplantation of hDF-EpiSC-loaded native de-cellularized rat parotid gland scaffolds into the renal capsule of nude mice led to the differentiation of transplanted hDF-EpiSCs into salivary gland-like cells. These findings suggest that hDF-EpiSCs might be a promising source of epithelial stem cells for the development of stem cell-based therapy or bioengineering SG tissues to repair/regenerate SG dysfunction.
Collapse
Affiliation(s)
- Q L Xu
- 1 Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - A Furuhashi
- 1 Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA.,2 Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Q Z Zhang
- 1 Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - C M Jiang
- 1 Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - T-H Chang
- 1 Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - A D Le
- 1 Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA.,3 Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Islam R, Eidet JR, Badian RA, Lippestad M, Messelt E, Griffith M, Dartt DA, Utheim TP. Tissue Harvesting Site and Culture Medium Affect Attachment, Growth, and Phenotype of Ex Vivo Expanded Oral Mucosal Epithelial Cells. Sci Rep 2017; 7:674. [PMID: 28386069 PMCID: PMC5428414 DOI: 10.1038/s41598-017-00417-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/23/2017] [Indexed: 11/18/2022] Open
Abstract
Transplantation of cultured oral mucosal epithelial cells (OMECs) is a promising treatment strategy for limbal stem cell deficiency. In order to improve the culture method, we investigated the effects of four culture media and tissue harvesting sites on explant attachment, growth, and phenotype of OMECs cultured from Sprague-Dawley rats. Neither choice of media or harvesting site impacted the ability of the explants to attach to the culture well. Dulbecco’s modified Eagle’s medium/Ham’s F12 (DMEM) and Roswell Park Memorial Institute 1640 medium (RPMI) supported the largest cellular outgrowth. Fold outgrowth was superior from LL explants compared to explants from the buccal mucosa (BM), HP, and transition zone of the lower lip (TZ) after six-day culture. Putative stem cell markers were detected in cultures grown in DMEM and RPMI. In DMEM, cells from TZ showed higher colony-forming efficiency than LL, BM, and HP. In contrast to RPMI, DMEM both expressed the putative stem cell marker Bmi-1 and yielded cell colonies. Our data suggest that OMECs from LL and TZ cultured in DMEM give rise to undifferentiated cells with high growth capacity, and hence are the most promising for treatment of limbal stem cell deficiency.
Collapse
Affiliation(s)
- Rakibul Islam
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA. .,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway. .,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.
| | - Jon Roger Eidet
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Reza A Badian
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.,Faculty of Visual Sciences, University College of Southeast Norway, Kongsberg, Norway.,Department of Ophthalmology, Innlandet Hospital Trust, Elverum, Norway
| | - Marit Lippestad
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Edward Messelt
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - May Griffith
- Integrative Regenerative Medicine (IGEN) Centre, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Darlene A Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Tor Paaske Utheim
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Innlandet Hospital Trust, Elverum, Norway
| |
Collapse
|
28
|
Zsebik B, Ujlaky-Nagy L, Losonczy G, Vereb G, Takács L. Cultivation of Human Oral Mucosal Explants on Contact Lenses. Curr Eye Res 2017; 42:1094-1099. [DOI: 10.1080/02713683.2017.1279635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Barbara Zsebik
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Ujlaky-Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gergely Losonczy
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Lili Takács
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
29
|
Limbal Stem Cells from Aged Donors Are a Suitable Source for Clinical Application. Stem Cells Int 2016; 2016:3032128. [PMID: 28042298 PMCID: PMC5155095 DOI: 10.1155/2016/3032128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/02/2016] [Accepted: 10/09/2016] [Indexed: 12/13/2022] Open
Abstract
Limbal stem cells (LSC) are the progenitor cells that maintain the transparency of the cornea. Limbal stem cell deficiency (LSCD) leads to corneal opacity, inflammation, scarring, and blindness. A clinical approach to treat this condition consists in LSC transplantation (LSCT) after ex vivo expansion of LSC. In unilateral LSCD, an autologous transplant is possible, but cases of bilateral LSCD require allogenic LSCT. Cadaveric donors represent the most important source of LSC allografts for treatment of bilateral LSCD when living relative donors are not available. To evaluate the suitability of aged cadaveric donors for LSCT, we compared three pools of LSC from donors of different ages (<60 years, 60–75 years, and >75 years). We evaluated graft quality in terms of percent of p63-positive (p63+) cells by immunofluorescence, colony forming efficiency, and mRNA and protein expression of p63, PAX6, Wnt7a, E-cadherin, and cytokeratin (CK) 12, CK3, and CK19. The results showed that LSC cultures from aged donors can express ≥3% of p63+ cells—considered as the minimum value for predicting favorable clinical outcomes after LSCT—suggesting that these cells could be a suitable source of LSC for transplantation. Our results also indicate the need to evaluate LSC graft quality criteria for each donor.
Collapse
|
30
|
Utheim TP, Islam R, Fostad IG, Eidet JR, Sehic A, Olstad OK, Dartt DA, Messelt EB, Griffith M, Pasovic L. Storage Temperature Alters the Expression of Differentiation-Related Genes in Cultured Oral Keratinocytes. PLoS One 2016; 11:e0152526. [PMID: 27023475 PMCID: PMC4811429 DOI: 10.1371/journal.pone.0152526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/15/2016] [Indexed: 12/17/2022] Open
Abstract
Purpose Storage of cultured human oral keratinocytes (HOK) allows for transportation of cultured transplants to eye clinics worldwide. In a previous study, one-week storage of cultured HOK was found to be superior with regard to viability and morphology at 12°C compared to 4°C and 37°C. To understand more of how storage temperature affects cell phenotype, gene expression of HOK before and after storage at 4°C, 12°C, and 37°C was assessed. Materials and Methods Cultured HOK were stored in HEPES- and sodium bicarbonate-buffered Minimum Essential Medium at 4°C, 12°C, and 37°C for one week. Total RNA was isolated and the gene expression profile was determined using DNA microarrays and analyzed with Partek Genomics Suite software and Ingenuity Pathway Analysis. Differentially expressed genes (fold change > 1.5 and P < 0.05) were identified by one-way ANOVA. Key genes were validated using qPCR. Results Gene expression of cultures stored at 4°C and 12°C clustered close to the unstored control cultures. Cultures stored at 37°C displayed substantial change in gene expression compared to the other groups. In comparison with 12°C, 2,981 genes were differentially expressed at 37°C. In contrast, only 67 genes were differentially expressed between the unstored control and the cells stored at 12°C. The 12°C and 37°C culture groups differed most significantly with regard to the expression of differentiation markers. The Hedgehog signaling pathway was significantly downregulated at 37°C compared to 12°C. Conclusion HOK cultures stored at 37°C showed considerably larger changes in gene expression compared to unstored cells than cultured HOK stored at 4°C and 12°C. The changes observed at 37°C consisted of differentiation of the cells towards a squamous epithelium-specific phenotype. Storing cultured ocular surface transplants at 37°C is therefore not recommended. This is particularly interesting as 37°C is the standard incubation temperature used for cell culture.
Collapse
Affiliation(s)
- Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Vestre Viken HF Trust, Drammen, Norway
- Faculty of Health Sciences, National Centre for Optics, Vision and Eye Care, Buskerud and Vestfold University College, Kongsberg, Norway
| | - Rakibul Islam
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Ida G. Fostad
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Jon R. Eidet
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Amer Sehic
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Ole K. Olstad
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Darlene A. Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Edward B. Messelt
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - May Griffith
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Lara Pasovic
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
31
|
Culture of Oral Mucosal Epithelial Cells for the Purpose of Treating Limbal Stem Cell Deficiency. J Funct Biomater 2016; 7:jfb7010005. [PMID: 26938569 PMCID: PMC4810064 DOI: 10.3390/jfb7010005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/01/2016] [Accepted: 02/22/2016] [Indexed: 12/13/2022] Open
Abstract
The cornea is critical for normal vision as it allows allowing light transmission to the retina. The corneal epithelium is renewed by limbal epithelial cells (LEC), which are located in the periphery of the cornea, the limbus. Damage or disease involving LEC may lead to various clinical presentations of limbal stem cell deficiency (LSCD). Both severe pain and blindness may result. Transplantation of cultured autologous oral mucosal epithelial cell sheet (CAOMECS) represents the first use of a cultured non-limbal autologous cell type to treat this disease. Among non-limbal cell types, CAOMECS and conjunctival epithelial cells are the only laboratory cultured cell sources that have been explored in humans. Thus far, the expression of p63 is the only predictor of clinical outcome following transplantation to correct LSCD. The optimal culture method and substrate for CAOMECS is not established. The present review focuses on cell culture methods, with particular emphasis on substrates. Most culture protocols for CAOMECS used amniotic membrane as a substrate and included the xenogeneic components fetal bovine serum and murine 3T3 fibroblasts. However, it has been demonstrated that tissue-engineered epithelial cell sheet grafts can be successfully fabricated using temperature-responsive culture surfaces and autologous serum. In the studies using different substrates for culture of CAOMECS, the quantitative expression of p63 was generally poorly reported; thus, more research is warranted with quantification of phenotypic data. Further research is required to develop a culture system for CAOMECS that mimics the natural environment of oral/limbal/corneal epithelial cells without the need for undefined foreign materials such as serum and feeder cells.
Collapse
|
32
|
Jain R, Sharma N, Basu S, Iyer G, Ueta M, Sotozono C, Kannabiran C, Rathi VM, Gupta N, Kinoshita S, Gomes JAP, Chodosh J, Sangwan VS. Stevens-Johnson syndrome: The role of an ophthalmologist. Surv Ophthalmol 2016; 61:369-99. [PMID: 26829569 DOI: 10.1016/j.survophthal.2016.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 01/03/2023]
Abstract
Stevens-Johnson syndrome (SJS) is an acute blistering disease of the skin and mucous membranes. Acute SJS leads to the acute inflammation of the ocular surface and chronic conjunctivitis. If not properly treated, it causes chronic cicatricial conjunctivitis and cicatricial lid margin abnormalities. Persistent inflammation and ulceration of the ocular surface with cicatricial complications of the lids leads to chronic ocular sequelae, ocular surface damage, and corneal scarring. The destruction of the glands that secrete the tear film leads to a severe form of dry eye that makes the management of chronic SJS difficult. The option that is routinely used for corneal visual rehabilitation, keratoplasty, is best avoided in such cases. We describe the management strategies that are most effective during the acute and chronic stages of SJS. Although treatments for acute SJS involve immunosuppressive and immunomodulatory therapies, amniotic membrane transplantation is also useful. The options for visual rehabilitation in patients with chronic SJS are undergoing radical change. We describe the existing literature regarding the management of SJS and highlight recent advances in the management of this disorder.
Collapse
Affiliation(s)
- Rajat Jain
- Cornea, Ocular Surface and Anterior Segment Services, Department of Ophthalmology, drishtiCONE Eye Care, New Delhi, India
| | - Namrata Sharma
- Cornea and Refractive Surgery Services, Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sayan Basu
- Cornea and Anterior Segment Services, Department of Ophthalmology, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Geetha Iyer
- C J Shah Cornea Services, Department of Ophthalmology, Dr. G Sitalakshmi Memorial Clinic for Ocular Surface Disorders, Sankara Nethralaya, Chennai, India
| | - Mayumi Ueta
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Ophthalmology, Doshisha University, Kyotanabe, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chitra Kannabiran
- Department of Ophthalmology, Kallam Anji Reddy Molecular Genetics Laboratory, L V Prasad Eye Institute (LVPEI), Hyderabad, Telangana, India
| | - Varsha M Rathi
- Cornea Services, Department of Ophthalmology, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Nidhi Gupta
- Department of Ophthalmology, Dr. Shroff Charity Eye Hospital, Delhi, India
| | - Shigeru Kinoshita
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - José A P Gomes
- Cornea and External Disease Service, Department of Ophthalmology, Federal University of Sao Paulo/Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, Brazil; Advanced Ocular Surface Center (CASO), Department of Ophthalmology, Federal University of Sao Paulo/Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, Brazil
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Virender S Sangwan
- Department of Ophthalmology, Srujana Center for Innovation, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
33
|
Kang MH. Ocular Manifestations of Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. ACTA ACUST UNITED AC 2016. [DOI: 10.7599/hmr.2016.36.3.174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Min Ho Kang
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Korea
- Department of Ophthalmology, Hanyang University Guri Hospital, Guri, Korea
| |
Collapse
|
34
|
Jackson C, Eidet JR, Reppe S, Aass HCD, Tønseth KA, Roald B, Lyberg T, Utheim TP. Effect of Storage Temperature on the Phenotype of Cultured Epidermal Cells Stored in Xenobiotic-Free Medium. Curr Eye Res 2015; 41:757-68. [PMID: 26398483 DOI: 10.3109/02713683.2015.1062113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Cultured epidermal cell sheets (CECS) are used in the treatment of large area burns to the body and have potential to treat limbal stem cell deficiency (LSCD) as shown in animal studies. Despite widespread use, storage options for CECS are limited. Short-term storage allows flexibility in scheduling surgery, quality control and improved transportation to clinics worldwide. Recent evidence points to the phenotype of cultured epithelial cells as a critical predictor of post-operative success following transplantation of CECS in burns and in transplantation of cultured epithelial cells in patients with LSCD. This study, therefore assessed the effect of a range of temperatures, spanning 4-37 °C, on the phenotype of CECS stored over a 2-week period in a xenobiotic-free system. MATERIALS AND METHODS Progenitor cell (p63, ΔNp63α and ABCG2) and differentiation (C/EBPδ and CK10) associated marker expression was assessed using immunocytochemistry. Immunohistochemistry staining of normal skin for the markers p63, ABCG2 and C/EBPδ was also carried out. Assessment of progenitor cell side population (SP) was performed using JC1 dye by flow cytometry. RESULTS P63 expression remained relatively constant throughout the temperature range but was significantly lower compared to control between 20 and 28 °C (p < 0.05). High C/EBPδ together with low p63 suggested more differentiation beginning at 20 °C and above. Lower CK10 and C/EBPδ expression most similar to control was seen at 12 °C. The percentage of ABCG2 positive cells was most similar to control between 8 and 24 °C. Between 4 and 24 °C, the SP fluctuated, but was not significantly different compared to control. Results were supported by staining patterns indicating differentiation status associated with markers in normal skin sections. CONCLUSIONS Lower storage temperatures, and in particular 12 °C, merit further investigation as optimal storage temperature for maintenance of undifferentiated phenotype in CECS.
Collapse
Affiliation(s)
- Catherine Jackson
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway .,b Institute of Clinical Medicine, Faculty of Medicine, University of Oslo , Norway
| | - Jon R Eidet
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | - Sjur Reppe
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | | | - Kim A Tønseth
- b Institute of Clinical Medicine, Faculty of Medicine, University of Oslo , Norway .,c Department of Plastic Surgery , Oslo University Hospital , Oslo , Norway .,d Department of Pathology , Oslo University Hospital , Oslo , Norway and
| | - Borghild Roald
- b Institute of Clinical Medicine, Faculty of Medicine, University of Oslo , Norway .,d Department of Pathology , Oslo University Hospital , Oslo , Norway and
| | - Torstein Lyberg
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | - Tor P Utheim
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway .,e Department of Oral Biology, Faculty of Dentistry , University of Oslo , Oslo , Norway
| |
Collapse
|
35
|
Sehic A, Utheim ØA, Ommundsen K, Utheim TP. Pre-Clinical Cell-Based Therapy for Limbal Stem Cell Deficiency. J Funct Biomater 2015; 6:863-88. [PMID: 26343740 PMCID: PMC4598682 DOI: 10.3390/jfb6030863] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/10/2015] [Accepted: 08/21/2015] [Indexed: 12/13/2022] Open
Abstract
The cornea is essential for normal vision by maintaining transparency for light transmission. Limbal stem cells, which reside in the corneal periphery, contribute to the homeostasis of the corneal epithelium. Any damage or disease affecting the function of these cells may result in limbal stem cell deficiency (LSCD). The condition may result in both severe pain and blindness. Transplantation of ex vivo cultured cells onto the cornea is most often an effective therapeutic strategy for LSCD. The use of ex vivo cultured limbal epithelial cells (LEC), oral mucosal epithelial cells, and conjunctival epithelial cells to treat LSCD has been explored in humans. The present review focuses on the current state of knowledge of the many other cell-based therapies of LSCD that have so far exclusively been explored in animal models as there is currently no consensus on the best cell type for treating LSCD. Major findings of all these studies with special emphasis on substrates for culture and transplantation are systematically presented and discussed. Among the many potential cell types that still have not been used clinically, we conclude that two easily accessible autologous sources, epidermal stem cells and hair follicle-derived stem cells, are particularly strong candidates for future clinical trials.
Collapse
Affiliation(s)
- Amer Sehic
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Sognsvannsveien 10, Oslo 0372, Norway.
| | - Øygunn Aass Utheim
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, Oslo 0407, Norway.
| | - Kristoffer Ommundsen
- Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, Oslo 0407, Norway.
| | - Tor Paaske Utheim
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Sognsvannsveien 10, Oslo 0372, Norway.
- Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, Oslo 0407, Norway.
| |
Collapse
|