1
|
Peng X, Wu F, Hu Y, Chen Y, Wei Y, Xu W. Current advances in animal model of meniscal injury: From meniscal injury to osteoarthritis. J Orthop Translat 2025; 50:388-402. [PMID: 40171109 PMCID: PMC11960540 DOI: 10.1016/j.jot.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/14/2024] [Accepted: 11/15/2024] [Indexed: 04/03/2025] Open
Abstract
Meniscal injury is a prevalent orthopedic practice that causes articular cartilage wear and degeneration due to tissue damage or loss, and may eventually result in the occurrence of knee osteoarthritis (KOA). Hence, investigating the structural regeneration and mechanical function restoration of the meniscus after injury is pivotal research topic for preventing KOA. Animal models are essential for investigating therapeutic strategies for meniscal injuries and their clinical translation, yet no current model can fully recapitulate the complexity of human meniscal injuries. This review aims to categorize the prevalent animal models of meniscal injury by their establishment methods, elucidate their principles and procedures, and discuss the suitability and limitations of each model. We delineate the pros and cons of different models in simulating the pathology and biomechanics of human meniscal injury. We also analyze different animal species regarding their meniscal structure, function, and repair potential, and their implications for model selection. We conclude that selecting an appropriate animal model requires a comprehensive consideration of various factors, such as research aims, anticipated outcomes, and feasibility. Furthermore, to translate novel therapeutic approaches to clinical applications more safely and effectively, future model development should emphasize aspects such as choosing animals of suitable age. The Translational Potential of this Article: This review aims to categorize and discuss current animal models of meniscal injury by establishment methods and provides a comprehensive overview of the routinely employed experimental animals in each model to facilitate the clinical translation of OA-related research.
Collapse
Affiliation(s)
- Xiaoyao Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fashuai Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuxiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yangyang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yulong Wei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weihua Xu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
2
|
Kim Y, Karl E, Ishijima M, Guy S, Jacquet C, Ollivier M. The potential of tendon autograft as meniscus substitution: Current concepts. J ISAKOS 2024; 9:100353. [PMID: 39427818 DOI: 10.1016/j.jisako.2024.100353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Meniscectomy is known to alter the mechanics, stability, and kinematics of the tibiofemoral joint, leading to early knee osteoarthritis (KOA). While several meniscal substitutions exist, such as meniscus allograft transplantation, collagen meniscus implants, and artificial substitutes, they often come with technical challenges, high costs, and risks, including allograft failure, infections, and disease transmission. Tendon autografts emerge as a promising option, offering safety, availability, biocompatibility, and a reduced risk of pathophoresis. This review delves into basic, in vivo, in vitro, and biomechanical studies alongside clinical outcomes and future prospects of tendon autografts as meniscus substitutes. A thorough understanding of this option is vital for integrating these evolving techniques into clinical practice and mitigating early KOA progression.
Collapse
Affiliation(s)
- Youngji Kim
- Department of Orthopaedics, Juntendo University, Faculty of Medicine, Tokyo, Japan; Institut du Mouvement et de l'appareil locomoteur, Hôpital Sainte-Marguerite, Aix-Marseille Université, Marseille, France
| | - Eriksson Karl
- Department of Orthopaedics, Stockholm South Hospital, Institution for Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | - Muneaki Ishijima
- Department of Orthopaedics, Juntendo University, Faculty of Medicine, Tokyo, Japan
| | - Sylvain Guy
- Institut du Mouvement et de l'appareil locomoteur, Hôpital Sainte-Marguerite, Aix-Marseille Université, Marseille, France
| | - Christophe Jacquet
- Institut du Mouvement et de l'appareil locomoteur, Hôpital Sainte-Marguerite, Aix-Marseille Université, Marseille, France
| | - Matthieu Ollivier
- Institut du Mouvement et de l'appareil locomoteur, Hôpital Sainte-Marguerite, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
3
|
Tanideh N, Bordbar A, Bordbar H, Khaghaninejad MS, Daneshi S, Torabi Ardekani S, Iraji A, Zare S, Khodabandeh Z, Sarafraz N, Tanideh R, Zarei M, Irajie C. Evaluation of the Bone Formation Potential of Collagen/ß-TCP/Ginger Extract Scaffold Loaded with Mesenchymal Stem Cells in Rat Animal model: A Stereological Study. J Maxillofac Oral Surg 2024; 23:1331-1342. [PMID: 39376777 PMCID: PMC11455761 DOI: 10.1007/s12663-022-01829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/01/2022] [Indexed: 12/25/2022] Open
Abstract
Tissue engineering offers a new horizon for restoring the function of damaged tissues and organs. Here, bone regeneration potential of three-dimensional (3D) scaffold made of collagen/beta-tricalcium phosphate/ginger hydroalcoholic extract (COL-ß-TCP-GIN) loaded with stem cells was evaluated. The scaffolds with different component ratios were fabricated using a freeze dryer to obtain the optimum composition. The scaffolds' chemical, physical, and biological characteristics were evaluated using scanning electron microscope, fourier transform infrared spectroscopy, tensile testing machine, and cytotoxicity assay. The optimum scaffold's bone repairing potential was assessed with loaded synovial membrane mesenchymal stem cells (SM-MSCs) in mandibular bone defect of a rat animal model after two months. The ß-TCP component up to 30% could increase the tensile strength of the freeze-dried scaffold. In comparison, the GIN up to 5% was selected as a sufficient amount to be incorporated with the scaffolds. The morphology of scaffolds showed a suitable porosity for cells to proliferate and migrate. In vitro cytotoxicity results showed that GIN increased the cell viability up to 7 days. Regarding in vivo bone regeneration study, histopathology and stereology assessments showed the mandibular bone formation in COL/β-TCP/GIN scaffolds with SM-MSCs group significantly increased compared to COL/β-TCP/GIN without cells and sham groups. These results demonstrated the effectiveness of COL/β-TCP/GIN scaffold with SM-MSCs to induce bone formation, and this composite can be applied in dental and reconstructive surgery. Supplementary Information The online version contains supplementary material available at 10.1007/s12663-022-01829-9.
Collapse
Affiliation(s)
- Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsoon Bordbar
- Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Bordbar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saleh Khaghaninejad
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Daneshi
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Torabi Ardekani
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Sarafraz
- Department of Periodontology, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Romina Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Zarei
- Department of Polymer and Biomaterials Science, West Pomeranian University of Technology, Szczecin, Poland
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Tang D, Tang W, Chen H, Liu D, Jiao F. Synergistic Effects of Icariin and Extracellular Vesicles Derived from Rabbit Synovial Membrane-Derived Mesenchymal Stem Cells on Osteochondral Repair via the Wnt/ β-Catenin Pathway. Anal Cell Pathol (Amst) 2024; 2024:1083143. [PMID: 38946863 PMCID: PMC11214593 DOI: 10.1155/2024/1083143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Objectives Osteochondral defects (OCDs) are localized areas of damaged cartilage and underlying subchondral bone that can produce pain and seriously impair joint function. Literature reports indicated that icariin (ICA) has the effect of promoting cartilage repair. However, its mechanism remains unclear. Here, we explored the effects of icariin and extracellular vesicles (EVs) from rabbit synovial-derived mesenchymal stem cells (rSMSCs) on repairing of OCDs. Materials and Methods Rabbit primary genicular chondrocytes (rPGCs), knee skeletal muscle cells (rSMCKs), and rSMSCs, and extracellular vesicles derived from the latter two cells (rSMCK-EVs and rSMSC-EVs) were isolated and identified. The rPGCs were stimulated with ICA, rSMSC-EVs either separately or in combination. The rSMCK-EVs were used as a control. After stimulation, chondrogenic-related markers were analyzed by quantitative RT-PCR and western blotting. Cell proliferation was determined by the CCK-8 assay. The preventative effects of ICA and SMSC-EVs in vivo were determined by H&E and toluidine blue staining. Immunohistochemical analyses were performed to evaluate the levels of COL2A1 and β-catenin in vivo. Results. In vitro, the proliferation of rPGCs was markedly increased by ICA treatment in a dose-dependent manner. When compared with ICA or rSMSC-EVs treatment alone, combined treatment with ICA and SMSC-EVs produced stronger stimulative effects on cell proliferation. Moreover, combined treatment with ICA and rSMSC-EVs promoted the expression of chondrogenic-related gene, including COL2A1, SOX-9, and RUNX2, which may be via the activation of the Wnt/β-catenin pathway. In vivo, combined treatment with rSMSC-EVs and ICA promoted cartilage repair in joint bone defects. Results also showed that ICA or rSMSC-EVs both promoted the COL2A1 and β-catenin protein accumulation in articular cartilage, and that was further enhanced by combined treatment with rSMSC-EVs and ICA. Conclusion Our findings highlight the promising potential of using combined treatment with ICA and rSMSC-EVs for promoting osteochondral repair.
Collapse
Affiliation(s)
- Dongming Tang
- Department of Joint SurgeryGuangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Wang Tang
- Department of Spine SurgeryGuangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Huanqing Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Donghua Liu
- Department of Spine SurgeryGuangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Feng Jiao
- Department of Joint SurgeryGuangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| |
Collapse
|
5
|
Chen Z, Li A, Shi R, Wang L, Cao Z, Mao N, Luo Z, Tan H. Reconstruction of medial meniscus posterior portion deficiency in pigs with an autologous patellar tendon graft: an experimental study. J Orthop Surg Res 2024; 19:225. [PMID: 38576008 PMCID: PMC10996223 DOI: 10.1186/s13018-024-04684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE This study was performed to investigate the effectiveness of two surgical procedures, autologous patellar tendon graft reconstruction and trans-tibial plateau pull-out repair, using a pig model. The primary focus was to assess the repair capability of medial meniscus posterior portion (MMPP) deficiency, the overall structural integrity of the meniscus, and protection of the femoral and tibial cartilage between the two surgical groups. The overall aim was to provide experimental guidelines for clinical research using these findings. METHODS Twelve pigs were selected to establish a model of injury to the MMPP 10 mm from the insertion point of the tibial plateau. They were randomly divided into three groups of four animals each: reconstruction (autologous tendon graft reconstruction of the MMPP), pull-out repair (suture repair of the MMPP via a trans-tibial plateau bone tunnel), and control (use of a normal medial meniscus as the negative control). The animals were euthanized 12 weeks postoperatively for evaluation of the meniscus, assessment of tendon bone healing, and gross observation of knee joint cartilage. The tibial and femoral cartilage injuries were evaluated using the International Society for Cartilage Repair (ICRS) grade and Mankin score. Histological and immunohistochemical staining was conducted on the meniscus-tendon junction area, primary meniscus, and tendons. The Ishida score was used to evaluate the regenerated meniscus in the reconstruction group. Magnetic resonance imaging (MRI) was used to evaluate meniscal healing. RESULTS All 12 pigs recovered well after surgery; all incisions healed without infection, and no obvious complications occurred. Gross observation revealed superior results in the reconstruction and pull-out repair groups compared with the control group. In the tibial cartilage, the reconstruction group had ICRS grade I injury whereas the pull-out repair and control groups had ICRS grade II and III injury, respectively. The Mankin score was significantly different between the reconstruction and control groups; histological staining showed that the structure of the regenerated meniscus in the reconstruction group was similar to that of the original meniscus. Immunohistochemical staining showed that the degree of type I and II collagen staining was similar between the regenerated meniscus and the original meniscus in the reconstruction group. The Ishida score was not significantly different between the regenerated meniscus and the normal primary meniscus in the reconstruction group. MRI showed that the MMPP in the reconstruction and pull-out repair groups had fully healed, whereas that in the control group had not healed. CONCLUSION Autologous patellar tendon graft reconstruction of the MMPP can generate a fibrocartilage-like regenerative meniscus. Both reconstruction and pull-out repair can preserve the structural integrity of the meniscus, promote healing of the MMPP, delay meniscal degeneration, and protect the knee cartilage.
Collapse
Affiliation(s)
- Zhian Chen
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Anxu Li
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China
| | - Rongmao Shi
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China
| | - Ling Wang
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Zijian Cao
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Neng Mao
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Zhihong Luo
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China
| | - Hongbo Tan
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China.
| |
Collapse
|
6
|
Xue Y, Riva N, Zhao L, Shieh JS, Chin YT, Gatt A, Guo JJ. Recent advances of exosomes in soft tissue injuries in sports medicine: A critical review on biological and biomaterial applications. J Control Release 2023; 364:90-108. [PMID: 37866405 DOI: 10.1016/j.jconrel.2023.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Sports medicine is generally associated with soft tissue injuries including muscle injuries, meniscus and ligament injuries, tendon ruptures, tendinopathy, rotator cuff tears, and tendon-bone healing during injuries. Tendon and ligament injuries are the most common sport injuries accounting for 30-40% of all injuries. Therapies for tendon injuries can be divided into surgical and non-surgical methods. Surgical methods mainly depend on the operative procedures, the surgeons and postoperative interventions. In non-surgical methods, cell therapy with stem cells and cell-free therapy with secretome of stem cell origin are current directions. Exosomes are the main paracrine factors of mesenchymal stem cells (MSCs) containing biological components such as proteins, nucleic acids and lipids. Compared with MSCs, MSC-exosomes (MSC-exos) possess the capacity to escape phagocytosis and achieve long-term circulation. In addition, the functions of exosomes from various cell sources in soft tissue injuries in sports medicine have been gradually revealed in recent years. Along with the biological and biomaterial advances in exosomes, exosomes can be designed as drug carriers with biomaterials and exosome research is providing promising contributions in cell biology. Exosomes with biomaterial have the potential of becoming one of the novel therapeutic modalities in regenerative researches. This review summarizes the derives of exosomes in soft tissue regeneration and focuses on the biological and biomaterial mechanism and advances in exosomal therapy in soft tissue injuries.
Collapse
Affiliation(s)
- Yulun Xue
- Department of Orthopaedic Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215006, Jiangsu, PR China; Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Nicoletta Riva
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Lingying Zhao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health of PR China, Suzhou 215006, Jiangsu, PR China; Department of Hematology, National Clinical Research Center for Hematologic Disease, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Ju-Sheng Shieh
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Yu-Tang Chin
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Alexander Gatt
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Department of Haematology, Mater Dei Hospital, Msida, Malta
| | - Jiong Jiong Guo
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China; Department of Hematology, National Clinical Research Center for Hematologic Disease, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China.
| |
Collapse
|
7
|
Li X, Li D, Li J, Wang G, Yan L, Liu H, Jiu J, Li JJ, Wang B. Preclinical Studies and Clinical Trials on Cell-Based Treatments for Meniscus Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:634-670. [PMID: 37212339 DOI: 10.1089/ten.teb.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study aims at performing a thorough review of cell-based treatment strategies for meniscus regeneration in preclinical and clinical studies. The PubMed, Embase, and Web of Science databases were searched for relevant studies (both preclinical and clinical) published from the time of database construction to December 2022. Data related to cell-based therapies for in situ regeneration of the meniscus were extracted independently by two researchers. Assessment of risk of bias was performed according to the Cochrane Handbook for Systematic Reviews of Interventions. Statistical analyses based on the classification of different treatment strategies were performed. A total of 5730 articles were retrieved, of which 72 preclinical studies and 6 clinical studies were included in this review. Mesenchymal stem cells (MSCs), especially bone marrow MSCs (BMSCs), were the most commonly used cell type. Among preclinical studies, rabbit was the most commonly used animal species, partial meniscectomy was the most commonly adopted injury pattern, and 12 weeks was the most frequently chosen final time point for assessing repair outcomes. A range of natural and synthetic materials were used to aid cell delivery as scaffolds, hydrogels, or other morphologies. In clinical trials, there was large variation in the dose of cells, ranging from 16 × 106 to 150 × 106 cells with an average of 41.52 × 106 cells. The selection of treatment strategy for meniscus repair should be based on the nature of the injury. Cell-based therapies incorporating various "combination" strategies such as co-culture, composite materials, and extra stimulation may offer greater promise than single strategies for effective meniscal tissue regeneration, restoring natural meniscal anisotropy, and eventually achieving clinical translation. Impact Statement This review provides an up-to-date and comprehensive overview of preclinical and clinical studies that tested cell-based treatments for meniscus regeneration. It presents novel perspectives on studies published in the past 30 years, giving consideration to the cell sources and dose selection, delivery methods, extra stimulation, animal models and injury patterns, timing of outcome assessment, and histological and biomechanical outcomes, as well as a summary of findings for individual studies. These unique insights will help to shape future research on the repair of meniscus lesions and inform the clinical translation of new cell-based tissue engineering strategies.
Collapse
Affiliation(s)
- Xiaoke Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Dijun Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Guishan Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Lei Yan
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Haifeng Liu
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jingwei Jiu
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Yan W, Maimaitimin M, Wu Y, Fan Y, Ren S, Zhao F, Cao C, Hu X, Cheng J, Ao Y. Meniscal fibrocartilage regeneration inspired by meniscal maturational and regenerative process. SCIENCE ADVANCES 2023; 9:eadg8138. [PMID: 37939174 PMCID: PMC10631723 DOI: 10.1126/sciadv.adg8138] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Meniscus is a complex and crucial fibrocartilaginous tissue within the knee joint. Meniscal regeneration remains to be a scientific and translational challenge. We clarified that mesenchymal stem cells (MSCs) participated in meniscal maturation and regeneration using MSC-tracing transgenic mice model. Here, inspired by meniscal natural maturational and regenerative process, we developed an effective and translational strategy to facilitate meniscal regeneration by three-dimensionally printing biomimetic meniscal scaffold combining autologous synovium transplant, which contained abundant intrinsic MSCs. We verified that this facilitated anisotropic meniscus-like tissue regeneration and protected cartilage from degeneration in large animal model. Mechanistically, the biomechanics and matrix stiffness up-regulated Piezo1 expression, facilitating concerted activation of calcineurin and NFATc1, further activated YAP-pSmad2/3-SOX9 axis, and consequently facilitated fibrochondrogenesis of MSCs during meniscal regeneration. In addition, Piezo1 induced by biomechanics and matrix stiffness up-regulated collagen cross-link enzyme expression, which catalyzed collagen cross-link and thereby enhanced mechanical properties of regenerated tissue.
Collapse
Affiliation(s)
- Wenqiang Yan
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Maihemuti Maimaitimin
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yue Wu
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yifei Fan
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Shuang Ren
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Fengyuan Zhao
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Chenxi Cao
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Jin Cheng
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yingfang Ao
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| |
Collapse
|
9
|
Yang L, Chiu CH, Hsu KY, Chuang CA, Chen ACY, Chan YS, Yang CP. Using Single Peroneal Longus Tendon Graft for Segmental Meniscus Transplantation and Revision Anterior Cruciate Ligament Combined Anterolateral Reconstruction. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1497. [PMID: 37629787 PMCID: PMC10456414 DOI: 10.3390/medicina59081497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
This case report describes a new approach to segmental meniscal reconstruction using a peroneal longus autograft in a patient with recurrent traumatic medial meniscus tear and anterior cruciate ligament reconstruction (ACLR) failure. While allograft meniscal transplantation is the preferred method for treating meniscal deficiency, its high cost and various legal regulations have limited its widespread use. Autologous tendon grafts have been proposed as a substitute for allograft meniscus transplantation, but their initial results were poor, leading to little progress in this area. However, recent animal experiments and clinical studies have demonstrated promising results in using autologous tendon grafts for meniscal transplantation, including improvements in pain and quality of life for patients. Further research is needed to evaluate the effectiveness of segmental meniscal reconstruction using autologous tendon grafts, but it could potentially lead to more accessible and cost-effective treatment options for patients with meniscal deficiency.
Collapse
Affiliation(s)
- Ling Yang
- Department of Orthopedic Surgery, Division of Sports Medicine Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Linkou, Taoyuan 333, Taiwan; (L.Y.); (C.-H.C.); (K.-Y.H.); (C.-A.C.); (A.C.-Y.C.)
| | - Chih-Hao Chiu
- Department of Orthopedic Surgery, Division of Sports Medicine Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Linkou, Taoyuan 333, Taiwan; (L.Y.); (C.-H.C.); (K.-Y.H.); (C.-A.C.); (A.C.-Y.C.)
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
- Comprehensive Sports Medicine Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
| | - Kuo-Yao Hsu
- Department of Orthopedic Surgery, Division of Sports Medicine Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Linkou, Taoyuan 333, Taiwan; (L.Y.); (C.-H.C.); (K.-Y.H.); (C.-A.C.); (A.C.-Y.C.)
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
- Comprehensive Sports Medicine Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
| | - Chieh-An Chuang
- Department of Orthopedic Surgery, Division of Sports Medicine Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Linkou, Taoyuan 333, Taiwan; (L.Y.); (C.-H.C.); (K.-Y.H.); (C.-A.C.); (A.C.-Y.C.)
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
- Comprehensive Sports Medicine Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
| | - Alvin Chao-Yu Chen
- Department of Orthopedic Surgery, Division of Sports Medicine Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Linkou, Taoyuan 333, Taiwan; (L.Y.); (C.-H.C.); (K.-Y.H.); (C.-A.C.); (A.C.-Y.C.)
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
- Comprehensive Sports Medicine Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
| | - Yi-Sheng Chan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
- Comprehensive Sports Medicine Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, Keelung 204, Taiwan
| | - Cheng-Pang Yang
- Department of Orthopedic Surgery, Division of Sports Medicine Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Linkou, Taoyuan 333, Taiwan; (L.Y.); (C.-H.C.); (K.-Y.H.); (C.-A.C.); (A.C.-Y.C.)
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
- Comprehensive Sports Medicine Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
| |
Collapse
|
10
|
The Potential of Using an Autogenous Tendon Graft by Injecting Bone Marrow Aspirate in a Rabbit Meniscectomy Model. Int J Mol Sci 2022; 23:ijms232012458. [PMID: 36293313 PMCID: PMC9604205 DOI: 10.3390/ijms232012458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022] Open
Abstract
Bone marrow aspirate (BMA) is an excellent source of cells and growth factors and has been used successfully for bone, cartilage, and soft-tissue healing. This study aimed to investigate the histological and biomechanical properties of autogenous tendon graft by injecting BMA and its protective effect against degenerative changes in a rabbit model of meniscal defects. Adult white rabbits were divided into untreated, tendon, and tendon + BMA groups, and meniscal defects were created in the knees. The tendon graft and articular cartilage status were evaluated by macroscopic and histological analysis at 4, 12, and 24 weeks postoperatively among the three groups. The tendon graft in the tendon and tendon + BMA groups were used for biomechanical evaluation at 4, 12, and 24 weeks postoperatively. The meniscal covering ratio in the tendon + BMA group was better than that in the tendon and untreated groups at 12 and 24 weeks postoperatively. The matrix around the central portion of cells in the tendon + BMA group was positively stained by safranin O and toluidine blue staining with metachromasia at 24 weeks. The histological score of the tendon graft in the tendon + BMA group was significantly higher than that in the untreated and tendon groups at 12 and 24 weeks postoperatively. In the tendon + BMA group, cartilage erosion was not shown at 4 weeks, developed slowly, and was better preserved at 12 and 24 weeks compared to the untreated and tendon groups. Histological scores for the articular cartilage were significantly better in the tendon + BMA group at 24 weeks. The compressive stress on the tendon graft in the tendon + BMA group was significantly higher than that in the tendon group at 12 weeks postoperatively. Transplantation of autogenous tendon grafts by injecting BMA improved the histologic score of the regenerated meniscal tissue and was more effective than the tendon and untreated group for preventing cartilage degeneration in a rabbit model of massive meniscal defects.
Collapse
|
11
|
Effect of CD44 signal axis in the gain of mesenchymal stem cell surface antigens from synovial fibroblasts in vitro. Heliyon 2022; 8:e10739. [PMID: 36247177 PMCID: PMC9557910 DOI: 10.1016/j.heliyon.2022.e10739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/24/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
|
12
|
Nishino K, Hashimoto Y, Nishida Y, Orita K, Takigami J, Nakamura H. Transplantation of Parathyroid Hormone-Treated Achilles Tendon Promotes Meniscal Regeneration in a Rat Meniscal Defect Model. Am J Sports Med 2022; 50:3102-3111. [PMID: 35914290 DOI: 10.1177/03635465221112954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Autologous tendon grafts are used for meniscal reconstruction of surgically removed knee joint meniscus. However, as meniscal reconstruction cannot prevent the progression of cartilage degeneration, additional procedures that confer meniscus-like histological properties to the transplanted tendon are required for improved outcomes. HYPOTHESES Parathyroid hormone (PTH)(1-34) induces cartilage formation in the rat tendon, and transplantation of PTH-treated tendon promotes meniscal regeneration. STUDY DESIGN Controlled laboratory study. METHODS Rat Achilles tendon-derived cells were cultured with or without PTH for 28 days and stained with Alcian blue to determine chondrogenic differentiation. After 14 and 28 days of incubation, gene expression was assessed using quantitative real-time polymerase chain reaction. In an in vivo study, rat Achilles tendon was injected with PTH and then transplanted onto a medial meniscal defect. Macroscopic and histological assessments of the regenerated meniscus and of cartilage degeneration in the tibial plateau were performed at 4 and 8 weeks after surgery. RESULTS In vitro, PTH-treated cells showed better staining with Alcian blue than the control (normal medium) group. PTH1R, Col2a1, Sox9, and RUNX2 were significantly upregulated in PTH-treated cells (P < .05). Macroscopically, the in vivo results revealed more prominent meniscal coverage and lesser progression of articular cartilage degeneration in the PTH group than in the phosphate-buffered saline-injected group. Histologically, toluidine blue staining revealed metachromasia in the PTH-injected tissue at 4 and 8 weeks. The PTH-treated regenerated meniscus showed positive immunostaining for type II collagen in the area exhibiting metachromasia. Moreover, PTH-treated tendon had an enhanced histological score compared with the untreated group at 4 and 8 weeks (P < .05). CONCLUSION PTH(1-34) induced cartilage formation in the rat tendon. Transplantation of PTH(1-34)-treated Achilles tendon in a rat meniscal defect model induced meniscal regeneration and preserved knee articular cartilage. Macroscopically, PTH groups showed a greater coverage of the regenerated meniscus. Histologically, the regenerated meniscus had higher cartilaginous matrix content in rats transplanted with PTH-treated tendons. PTH(1-34) stimulated tendon-derived cells to promote chondrogenic differentiation. CLINICAL RELEVANCE Meniscal transplantation using PTH-injected autologous tendon grafts might promote meniscal regeneration and prevent progression of cartilage degeneration by stimulating chondrogenic differentiation of tendon-derived cells.
Collapse
Affiliation(s)
- Kazuya Nishino
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Hashimoto
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yohei Nishida
- Department of Orthopaedic Surgery, Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Kumi Orita
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Junsei Takigami
- Department of Orthopaedic Surgery, Shimada Hospital, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
13
|
Mao B, Zhang Z, Lai S, Zhang K, Li J, Fu W. Demineralized Cortical Bone Matrix Augmented With Peripheral Blood-Derived Mesenchymal Stem Cells for Rabbit Medial Meniscal Reconstruction. Front Bioeng Biotechnol 2022; 10:855103. [PMID: 35573229 PMCID: PMC9091599 DOI: 10.3389/fbioe.2022.855103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
Tissue engineering is a promising treatment strategy for meniscal regeneration after meniscal injury. However, existing scaffold materials and seed cells still have many disadvantages. The objective of the present study is to explore the feasibility of peripheral blood-derived mesenchymal stem cells (PBMSCs) augmented with demineralized cortical bone matrix (DCBM) pretreated with TGF-β3 as a tissue-engineered meniscus graft and the repair effect. PBMSCs were collected from rabbit peripheral blood and subjected to three-lineage differentiation and flow cytometry identification. DCBM was prepared by decalcification, decellularization, and cross-linking rabbit cortical bone. Various characteristics such as biomechanical properties, histological characteristics, microstructure and DNA content were characterized. The cytotoxicity and the effects of DCBM on the adhesion and migration of PBMSCs were evaluated separately. The meniscus-forming ability of PBMSCs/DCBM complex in vitro induced by TGF-β3 was also evaluated at the molecular and genetic levels, respectively. Eventually, the present study evaluated the repair effect and cartilage protection effect of PBMSCs/DCBM as a meniscal graft in a rabbit model of medial meniscal reconstruction in 3 and 6 months. The results showed PBMSCs positively express CD29 and CD44, negatively express CD34 and CD45, and have three-lineage differentiation ability, thus can be used as tissue engineering meniscus seed cells. After the sample procedure, the cell and DNA contents of DCBM decreased, the tensile modulus did not decrease significantly, and the DCBM had a pore structure and no obvious cytotoxicity. PBMSCs could adhere and grow on the scaffold. Under induction of TGF-β3, PBMSCs/DCBM composites expressed glycosaminoglycan (GAG), and the related gene expression also increased. The results of the in vivo experiments that the PBMSCs/DCBM group had a better repair effect than the DCBM group and the control group at both 12 and 24 weeks, and the protective effect on cartilage was also better. Therefore, the application of DCBM augmented with PBMSCs for meniscus injury treatment is a preferred option for tissue-engineered meniscus.
Collapse
Affiliation(s)
- Beini Mao
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Zhong Zhang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthopaedics, No.3 People’s Hospital of Chengdu, Chengdu, China
| | - Sike Lai
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Kaibo Zhang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Weili Fu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Zamudio-Cuevas Y, Plata-Rodríguez R, Fernández-Torres J, Flores KM, Cárdenas-Soria VH, Olivos-Meza A, Hernández-Rangel A, Landa-Solís C. Synovial membrane mesenchymal stem cells for cartilaginous tissues repair. Mol Biol Rep 2022; 49:2503-2517. [PMID: 35013859 DOI: 10.1007/s11033-021-07051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The present review is focused on general aspects of the synovial membrane as well as specialized aspects of its cellular constituents, particularly the composition and location of synovial membrane mesenchymal stem cells (S-MSCs). S-MSC multipotency properties are currently at the center of translational medicine for the repair of multiple joint tissues, such as articular cartilage and meniscus lesions. METHODS AND RESULTS We reviewed the results of in vitro and in vivo research on the current clinical applications of S-MSCs, surface markers, cell culture techniques, regenerative properties, and immunomodulatory mechanisms of S-MSCs as well as the practical limitations of the last twenty-five years (1996 to 2021). CONCLUSIONS Despite the poor interest in the development of new clinical trials for the application of S-MSCs in joint tissue repair, we found evidence to support the clinical use of S-MSCs for cartilage repair. S-MSCs can be considered a valuable therapy for the treatment of repairing joint lesions.
Collapse
Affiliation(s)
- Yessica Zamudio-Cuevas
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289 Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Ricardo Plata-Rodríguez
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289 Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Javier Fernández-Torres
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289 Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Karina Martínez Flores
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289 Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Víctor Hugo Cárdenas-Soria
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289. Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Anell Olivos-Meza
- Ortopedia del Deporte y Artroscopía, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289 Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Adriana Hernández-Rangel
- Instituto Politécnico Nacional-ESIQIE, Av. Luis Enrique Erro S/N, Nueva Industrial Vallejo, Gustavo A. Madero, 07738, Mexico City, CDMX, Mexico
| | - Carlos Landa-Solís
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289. Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico.
| |
Collapse
|
15
|
Synovial mesenchymal stem cell-derived exosomal miR-320c enhances chondrogenesis by targeting ADAM19. Future Med Chem 2021; 14:81-96. [PMID: 34927445 DOI: 10.4155/fmc-2021-0177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Synovial mesenchymal stem cell (SMSC)-derived exosomes show treatment potential in osteoarthritis, although their functional mechanism is still unclear. Materials & methods: Osteoarthritis chondrocytes and normal SMSC were cultured. Subsequently, chondrocytes were co-cultured with SMSC or miR-320c-overexpressing SMSC-derived exosomes, or directly transfected with miR-320c mimic. Furthermore, compensate experiments were conducted. Results: SMSC promoted chondrocyte proliferation, migration, COL2A1 and ACAN expressions while suppressing apoptosis by transmitting exosomes. Furthermore, miR-320c-overexpressing SMSC-derived exosomes and direct miR-320c overexpression in chondrocytes presented more significant effect on enhancing chondrogenesis. In addition, miR-320c directly targeted ADAM19, and ADAM19 overexpression compensated the regulation of miR-320c on chondrogenesis. Conclusion: SMSC-derived exosomal miR-320c enhances chondrogenesis through targeting ADAM19, highlighting a potentially novel mechanism of SMSC in treating osteoarthritis.
Collapse
|
16
|
Xu Y, Zhang WX, Wang LN, Ming YQ, Li YL, Ni GX. Stem cell therapies in tendon-bone healing. World J Stem Cells 2021; 13:753-775. [PMID: 34367476 PMCID: PMC8316867 DOI: 10.4252/wjsc.v13.i7.753] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/08/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Tendon-bone insertion injuries such as rotator cuff and anterior cruciate ligament injuries are currently highly common and severe. The key method of treating this kind of injury is the reconstruction operation. The success of this reconstructive process depends on the ability of the graft to incorporate into the bone. Recently, there has been substantial discussion about how to enhance the integration of tendon and bone through biological methods. Stem cells like bone marrow mesenchymal stem cells (MSCs), tendon stem/progenitor cells, synovium-derived MSCs, adipose-derived stem cells, or periosteum-derived periosteal stem cells can self-regenerate and potentially differentiate into different cell types, which have been widely used in tissue repair and regeneration. Thus, we concentrate in this review on the current circumstances of tendon-bone healing using stem cell therapy.
Collapse
Affiliation(s)
- Yue Xu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Wan-Xia Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Li-Na Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Yue-Qing Ming
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Yu-Lin Li
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Guo-Xin Ni
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
17
|
Kawata K, Koga H, Tsuji K, Miyatake K, Nakagawa Y, Yokota T, Sekiya I, Katagiri H. Extracellular vesicles derived from mesenchymal stromal cells mediate endogenous cell growth and migration via the CXCL5 and CXCL6/CXCR2 axes and repair menisci. Stem Cell Res Ther 2021; 12:414. [PMID: 34294118 PMCID: PMC8296733 DOI: 10.1186/s13287-021-02481-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Background Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) are promising candidates for tissue regeneration therapy. However, the therapeutic efficacy of MSC-EVs for meniscus regeneration is uncertain, and the mechanisms underlying MSC-EV-mediated tissue regeneration have not been fully elucidated. The aims of this study were to evaluate the therapeutic efficacy of intra-articular MSC-EV injection in a meniscus defect model and elucidate the mechanism underlying MSC-EV-mediated tissue regeneration via combined bioinformatic analyses. Methods MSC-EVs were isolated from human synovial MSC culture supernatants via ultrafiltration. To evaluate the meniscus regeneration ability, MSC-EVs were injected intra-articularly in the mouse meniscus defect model immediately after meniscus resection and weekly thereafter. After 1 and 3 weeks, their knees were excised for histological and immunohistochemical evaluations. To investigate the mechanisms through which MSC-EVs accelerate meniscus regeneration, cell growth, migration, and chondrogenesis assays were performed using treated and untreated chondrocytes and synovial MSCs with or without MSC-EVs. RNA sequencing assessed the gene expression profile of chondrocytes stimulated by MSC-EVs. Antagonists of the human chemokine CXCR2 receptor (SB265610) were used to determine the role of CXCR2 on chondrocyte cell growth and migration induced by MSC-EVs. Results In the meniscus defect model, MSC-EV injection accelerated meniscus regeneration and normalized the morphology and composition of the repaired tissue. MSC-EVs stimulated chondrocyte and synovial MSC cell growth and migration. RNA sequencing revealed that MSC-EVs induced 168 differentially expressed genes in the chondrocytes and significantly upregulated CXCL5 and CXCL6 in chondrocytes and synovial MSCs. Suppression of CXCL5 and CXCL6 and antagonism of the CXCR2 receptor binding CXCL5 and CXCL6 negated the influence of MSC-EVs on chondrocyte cell growth and migration. Conclusions Intra-articular MSC-EV administration repaired meniscus defects and augmented chondrocyte and synovial MSC cell growth and migration. Comprehensive transcriptome/RNA sequencing data confirmed that MSC-EVs upregulated CXCL5 and CXCL6 in chondrocytes and mediated the cell growth and migration of these cells via the CXCR2 axis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02481-9.
Collapse
Affiliation(s)
- Kazumasa Kawata
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Kunikazu Tsuji
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Kazumasa Miyatake
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Yusuke Nakagawa
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Hiroki Katagiri
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan. .,Department of Orthopedics, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minamikoshigaya, Koshigaya, Saitama, 343-8555, Japan.
| |
Collapse
|
18
|
Xu H, Huang H, Zou X, Xia P, Foon WALS, Wang J. A novel bio-active microsphere for meniscus regeneration via inducing cell migration and chondrocyte differentiation. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00118-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Horiuchi K, Ozeki N, Endo K, Mizuno M, Katano H, Akiyama M, Tsuji K, Koga H, Sekiya I. Thawed cryopreserved synovial mesenchymal stem cells show comparable effects to cultured cells in the inhibition of osteoarthritis progression in rats. Sci Rep 2021; 11:9683. [PMID: 33958682 PMCID: PMC8102597 DOI: 10.1038/s41598-021-89239-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Intra-articular injections of mesenchymal stem cells (MSCs) can inhibit the progression of osteoarthritis (OA). Previous reports have used cultured MSCs, but the ability to use thawed cryopreserved MSC stocks would be highly advantageous. Our purpose was to elucidate whether thawed cryopreserved MSCs show comparable inhibitory effects on OA progression in rats to those obtained with cultured MSCs. Cultured rat synovial MSCs or thawed MSCs were compared for in vitro viability and properties. The inhibitory effect of thawed MSCs on OA progression was evaluated by injecting cryopreservation fluid and thawed MSCs in meniscectomized rats. Cartilage degeneration was assessed using gross finding and histological scores. Cultured MSCs were then injected into one knee and thawed MSCs into the contralateral knee of the same individual to compare their effects. Cultured MSCs and MSCs thawed after cryopreservation had comparable in vitro colony formation and chondrogenic potentials. In the rat OA model, the gross finding and histological scores were significantly lower in the thawed MSC group than in the cryopreservation fluid group at 8 weeks. Finally, cartilage degeneration did not differ significantly after injection of cultured and thawed MSCs. In conclusion, thawed MSCs showed comparable inhibitory effects on OA progression to cultured MSCs.
Collapse
Affiliation(s)
- Kiyotaka Horiuchi
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Nobutake Ozeki
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kentaro Endo
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hisako Katano
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masako Akiyama
- Research Administration Division, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
20
|
Ozeki N, Kohno Y, Kushida Y, Watanabe N, Mizuno M, Katano H, Masumoto J, Koga H, Sekiya I. Synovial mesenchymal stem cells promote the meniscus repair in a novel pig meniscus injury model. J Orthop Res 2021; 39:177-183. [PMID: 32886427 PMCID: PMC7821148 DOI: 10.1002/jor.24846] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/20/2020] [Accepted: 09/02/2020] [Indexed: 02/04/2023]
Abstract
Stem cell therapy has potential for the treatment of degenerative meniscus injuries; however, an optimal animal model has not been established. Basic and clinical research show that synovial mesenchymal stem cells (MSCs) promote meniscus repair. The purposes of this study were to create a novel meniscus injury model in microminipigs and to investigate the effectiveness of synovial MSCs on meniscus healing in this model. The posterior portion of the medial meniscus in microminipigs was punctuated 200 times with a 23G needle. Allogenic synovial MSC suspension was placed on the injury site for 10 min for transplantation. The meniscus was evaluated histologically and via sagittal magnetic resonance imaging (MRI), radial MRI reconstructed in three dimensional, and T2 mapping at 1 and 8 weeks. Proteoglycan content stained with safranin-o disappeared 1 week after treatment in both the MSC and control groups but increased at 8 weeks only in the MSC group. Histological scores at 8 weeks were significantly higher in the MSC group than in the control group (n = 6). At 8 weeks, the T2 values of the MSC group were significantly closer to those of a normal meniscus than were those of the control group. High signal intensity areas of the MRIs and positive areas stained with picrosirius red coincided with meniscal lesions. In conclusion, we created a novel meniscus injury model in microminipigs. Evaluation via histology, MRIs, and polarized microscopy showed that transplantation of synovial MSCs improved meniscus healing.
Collapse
Affiliation(s)
- Nobutake Ozeki
- Center for Stem Cell and Regenerative MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Yuji Kohno
- Center for Stem Cell and Regenerative MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Yoshihisa Kushida
- Center for Stem Cell and Regenerative MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Naoto Watanabe
- Center for Stem Cell and Regenerative MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Mitsuru Mizuno
- Center for Stem Cell and Regenerative MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Hisako Katano
- Center for Stem Cell and Regenerative MedicineTokyo Medical and Dental UniversityTokyoJapan
| | | | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative MedicineTokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
21
|
Kushida Y, Ozeki N, Mizuno M, Katano H, Otabe K, Tsuji K, Koga H, Kishima K, Soma Y, Sekiya I. Two- and three-dimensional optical coherence tomography to differentiate degenerative changes in a rat meniscectomy model. J Orthop Res 2020; 38:2592-2600. [PMID: 32697398 DOI: 10.1002/jor.24808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/18/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023]
Abstract
Optical coherence tomography (OCT) is an attractive tool for evaluating cartilage. We developed an OCT system that reconstructs and analyzes a three-dimensional (3D) OCT image by determining the cartilage surface and cartilage-bone boundary from the image taken with currently available OCT devices. We examined the usefulness of 3D renderings of OCT images. In a rat meniscectomized model, the tibia was harvested after 0, 2, 4, or 8 weeks (n = 6). We scanned 300 slices in the y-plane to cover a 4 × 3 × 6-mm section (x-plane; 10 µm × 400 pixels, y-plane; 10 µm × 300 pixels, z-plane; 12.66 µm × 500 pixels) of the medial tibial cartilage. The cartilage surface line and the cartilage-bone boundary were plotted semi-automatically. Slices from 300 two-dimensional (2D) sequential images were systematically and visually checked and corrected, as necessary. We set a region of interest in the cartilage and quantified the cartilage volume in the 3D image. The Osteoarthritis Research Society International (OARSI) histological score was also obtained. The cartilage volume determined using 3D OCT images was 0.291 ± 0.022 mm3 in the normal, 0.264 ± 0.009 mm3 at 2 weeks, 0.210 ± 0.012 mm3 at 4 weeks, and 0.205 ± 0.011 mm3 at 8 weeks. The cartilage volume significantly decreased at 4 and 8 weeks and was significantly correlated with the OARSI histological score (r = -0.674; P = .002). Although the 3D image information could be obtained from the 2D images, the 3D OCT images provided easier-to-understand information because the 3D reconstructed cartilage provided information about the smoothness of the surface, the area, and depth of the defect at a glance.
Collapse
Affiliation(s)
- Yoshihisa Kushida
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobutake Ozeki
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hisako Katano
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koji Otabe
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Yoshio Soma
- Sony Imaging Products & Solutions Inc, Tokyo, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
22
|
Nishida Y, Hashimoto Y, Orita K, Nishino K, Kinoshita T, Nakamura H. Intra-Articular Injection of Stromal Cell-Derived Factor 1α Promotes Meniscal Healing via Macrophage and Mesenchymal Stem Cell Accumulation in a Rat Meniscal Defect Model. Int J Mol Sci 2020; 21:ijms21155454. [PMID: 32751701 PMCID: PMC7432222 DOI: 10.3390/ijms21155454] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
The stromal-cell-derived factor-1α (SDF-1) is well-known for playing important roles in the regeneration of tissue by enhancing cell migration. However, the effect of SDF-1 in meniscal healing remains unknown. The purpose of this study is to investigate the effects of intra-articular injection of SDF-1 on meniscus healing in a rat meniscal defect model. The intra-articular SDF-1 injection was performed at meniscectomy and one week later. Macroscopic and histological assessments of the reparative meniscus were conducted at one, two and six weeks after meniscectomy in rats. In the macroscopic evaluation, the SDF-1 group showed an increase in the size of the reparative meniscus at six weeks after meniscectomy compared to the phosphate-buffered saline (PBS) injection (no-treatment) group. Histological findings showed that intra-articular injection of SDF-1 enhanced the migration of macrophages to the site of the regenerative meniscus at one and two weeks after meniscectomy. CD68- and CD163-positive cells in the SDF-1 group at one week after meniscectomy were significantly higher than in the no-treatment group. CD163-positive cells in the SDF-1 group at two weeks were significantly higher than in the no-treatment group. At one week after meniscectomy, there were cells expressing mesenchymal-stem-cell-related markers in the SDF-1 group. These results indicate the potential of regenerative healing of the meniscus by SDF-1 injection via macrophage and mesenchymal stem cell accumulation. In the present study, intra-articular administration of SDF-1 contributed to meniscal healing via macrophage, CD90-positive cell and CD105-positive cell accumulation in a rat meniscal defect model. The SDF-1–CXCR4 pathway plays an important role in the meniscal healing process. For potential clinical translation, SDF-1 injection therapy seems to be a promising approach for the biological augmentation in meniscal injury areas to enhance healing capacity.
Collapse
|
23
|
Nakagawa Y, Fortier LA, Mao JJ, Lee CH, Goodale MB, Koff MF, Uppstrom TJ, Croen B, Wada S, Carballo CB, Potter HG, Rodeo SA. Long-term Evaluation of Meniscal Tissue Formation in 3-dimensional-Printed Scaffolds With Sequential Release of Connective Tissue Growth Factor and TGF-β3 in an Ovine Model. Am J Sports Med 2019; 47:2596-2607. [PMID: 31386550 PMCID: PMC7422478 DOI: 10.1177/0363546519865513] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Artificial meniscal scaffolds are being developed to prevent development of osteoarthritis after meniscectomy. Previously, it was reported that 3-dimensional (3D) anatomic scaffolds loaded with connective tissue growth factor (CTGF) and transforming growth factor β3 (TGF-β3) achieved meniscal regeneration in an ovine model. This was a relatively short-term study (3 months postoperative), and outcome analyses did not include magnetic resonance imaging (MRI). PURPOSE To evaluate long-term outcome of meniscal replacement with growth factor-laden poly-ε-caprolactone (PCL) scaffolds. STUDY DESIGN Controlled laboratory study. METHODS Anatomically shaped ovine meniscal scaffolds were fabricated from PCL with a 3D printer based on MRI data. Skeletally mature sheep (N = 34) were randomly allocated to 3 groups: scaffold without growth factor (0-µg group), scaffold with CTGF microspheres (µS) (5 µg) + TGF-β3 µS (5 µg) (5-µg group), and scaffold with CTGF µS (10 µg) + TGF-β3 µS (10 µg) (10-µg group). Unilateral medial meniscal replacement was performed. Animals were euthanized at 6 or 12 months. Regenerated meniscus, articular cartilage status, and synovial reaction were evaluated quantitatively with gross inspection, histology, and MRI. Kruskal-Wallis and Dunn tests were used to compare the 3 groups. RESULTS Remnants of the PCL scaffold were evident in the 6-month specimens and were decreased but still present at 12 months in most animals. There were no significant differences among groups in gross inspection, histology, or MRI for either meniscal regeneration or articular cartilage protection. All experimental groups exhibited articular cartilage degeneration as compared with control (nonoperated). In terms of synovitis, there were no clear differences among groups, suggesting that growth factors did not increase inflammation and fibrosis. MRI revealed that meniscal extrusion was observed in most animals (82.7%). CONCLUSION Previously, the combination of CTGF and TGF-β3 was shown to stimulate mesenchymal stem cells into a fibrochondrocyte lineage. CTGF and TGF-β3 did not aggravate synovitis, suggesting no adverse response to the combination of 3D-printed PCL scaffold combined with CTGF and TGF-β3. Further work will be required to improve scaffold fixation to avoid meniscal extrusion. CLINICAL RELEVANCE A significant advantage of this technique is the ability to print custom-fit scaffolds from MRI-generated templates. In addition, average-size menisci could be printed and available for off-the-shelf applications. Based on the 1-year duration of the study, the approach appears to be promising for meniscal regeneration in humans.
Collapse
Affiliation(s)
- Yusuke Nakagawa
- Laboratory for Joint Tissue Repair and Regeneration,
Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New
York, USA., Department of Cartilage Regeneration, Graduate
School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Lisa A. Fortier
- Department of Clinical Sciences, College of
Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jeremy J. Mao
- Tissue Engineering and Regenerative Medicine
Laboratory, Columbia University Medical Center, Columbia University, New York, New
York, USA
| | - Chang Hun Lee
- Tissue Engineering and Regenerative Medicine
Laboratory, Columbia University Medical Center, Columbia University, New York, New
York, USA
| | - Margaret B. Goodale
- Department of Clinical Sciences, College of
Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Matthew F. Koff
- Department of Radiology and Imaging, Hospital for
Special Surgery, New York, New York, USA
| | - Tyler J. Uppstrom
- Laboratory for Joint Tissue Repair and Regeneration,
Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New
York, USA
| | - Brett Croen
- Laboratory for Joint Tissue Repair and Regeneration,
Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New
York, USA
| | - Susumu Wada
- Laboratory for Joint Tissue Repair and Regeneration,
Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New
York, USA
| | - Camila B. Carballo
- Laboratory for Joint Tissue Repair and Regeneration,
Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New
York, USA
| | - Hollis G. Potter
- Department of Radiology and Imaging, Hospital for
Special Surgery, New York, New York, USA
| | - Scott A. Rodeo
- Address correspondence to Scott A. Rodeo, MD,
Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA., Laboratory for Joint Tissue Repair and Regeneration,
Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New
York, USA
| |
Collapse
|
24
|
Kamatsuki Y, Aoyama E, Furumatsu T, Miyazawa S, Maehara A, Yamanaka N, Nishida T, Kubota S, Ozaki T, Takigawa M. Possible reparative effect of low-intensity pulsed ultrasound (LIPUS) on injured meniscus. J Cell Commun Signal 2018; 13:193-207. [PMID: 30460593 DOI: 10.1007/s12079-018-0496-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022] Open
Abstract
Menisci are a pair of crescent-shaped fibrocartilages, particularly of which their inner region of meniscus is an avascular tissue. It has characteristics similar to those of articular cartilage, and hence is inferior in healing. We previously reported that low-intensity pulsed ultrasound (LIPUS) treatment stimulates the production of CCN2/CTGF, a protein involved in repairing articular cartilage, and the gene expression of major cartilage matrices such as type II collagen and aggrecan in cultured chondrocytes. Therefore, in this present study, we investigated whether LIPUS has also favorable effect on meniscus cells and tissues. LIPUS applied with a 60 mW/cm2 intensity for 20 min stimulated the gene expression and protein production of CCN2 via ERK and p38 signaling pathways, as well as gene expression of SOX9, aggrecan, and collagen type II in human inner meniscus cells in culture, and slightly stimulated the gene expression of CCN2 and promoted the migration in human outer meniscus cells in culture. LIPUS also induced the expression of Ccn2, Sox9, Col2a1, and Vegf in rat intact meniscus. Furthermore, histological evaluations showed that LIPUS treatment for 1 to 4 weeks promoted healing of rat injured lateral meniscus, as evidenced by better and earlier angiogenesis and extracellular matrix synthesis. The data presented indicate that LIPUS treatment might prevent meniscus from degenerative change and exert a reparative effect on injured meniscus via up-regulation of repairing factors such as CCN2 and that it might thus be useful for treatment of an injured meniscus as a non-invasive therapy.
Collapse
Affiliation(s)
- Yusuke Kamatsuki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan.,Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takayuki Furumatsu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Shinichi Miyazawa
- Department of Intelligent Orthopedic System, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, Japan
| | - Ami Maehara
- Department of Intelligent Orthopedic System, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, Japan
| | | | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Satoshi Kubota
- Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.,Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
25
|
Comparative efficacy of stem cells and secretome in articular cartilage regeneration: a systematic review and meta-analysis. Cell Tissue Res 2018; 375:329-344. [PMID: 30084022 DOI: 10.1007/s00441-018-2884-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022]
Abstract
Articular cartilage defect remains the most challenging joint disease due to limited intrinsic healing capacity of the cartilage that most often progresses to osteoarthritis. In recent years, stem cell therapy has evolved as therapeutic strategies for articular cartilage regeneration. However, a number of studies have shown that therapeutic efficacy of stem cell transplantation is attributed to multiple secreted factors that modulate the surrounding milieu to evoke reparative processes. This systematic review and meta-analysis aim to evaluate and compare the therapeutic efficacy of stem cell and secretome in articular cartilage regeneration in animal models. We systematically searched the PubMed, CINAHL, Cochrane Library, Ovid Medline and Scopus databases until August 2017 using search terms related to stem cells, cartilage regeneration and animals. A random effect meta-analysis of the included studies was performed to assess the treatment effects on new cartilage formation on an absolute score of 0-100% scale. Subgroup analyses were also performed by sorting studies independently based on similar characteristics. The pooled analysis of 59 studies that utilized stem cells significantly improved new cartilage formation by 25.99% as compared with control. Similarly, the secretome also significantly increased cartilage regeneration by 26.08% in comparison to the control. Subgroup analyses revealed no significant difference in the effect of stem cells in new cartilage formation. However, there was a significant decline in the effect of stem cells in articular cartilage regeneration during long-term follow-up, suggesting that the duration of follow-up is a predictor of new cartilage formation. Secretome has shown a similar effect to stem cells in new cartilage formation. The risk of bias assessment showed poor reporting for most studies thereby limiting the actual risk of bias assessment. The present study suggests that both stem cells and secretome interventions improve cartilage regeneration in animal trials. Graphical abstract ᅟ.
Collapse
|
26
|
Cell-Free Strategies for Repair and Regeneration of Meniscus Injuries through the Recruitment of Endogenous Stem/Progenitor Cells. Stem Cells Int 2018; 2018:5310471. [PMID: 30123286 PMCID: PMC6079391 DOI: 10.1155/2018/5310471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/24/2018] [Indexed: 12/25/2022] Open
Abstract
The meniscus plays a vital role in protecting the articular cartilage of the knee joint. The inner two-thirds of the meniscus are avascular, and injuries to this region often fail to heal without intervention. The use of tissue engineering and regenerative medicine techniques may offer novel and effective approaches to repairing meniscal injuries. Meniscal tissue engineering and regenerative medicine typically use one of two techniques, cell-based or cell-free. While numerous cell-based strategies have been applied to repair and regenerate meniscal defects, these techniques possess certain limitations including cellular contamination and an increased risk of disease transmission. Cell-free strategies attempt to repair and regenerate the injured tissues by recruiting endogenous stem/progenitor cells. Cell-free strategies avoid several of the disadvantages of cell-based techniques and, therefore, may have a wider clinical application. This review first compares cell-based to cell-free techniques. Next, it summarizes potential sources for endogenous stem/progenitor cells. Finally, it discusses important recruitment factors for meniscal repair and regeneration. In conclusion, cell-free techniques, which focus on the recruitment of endogenous stem and progenitor cells, are growing in efficacy and may play a critical role in the future of meniscal repair and regeneration.
Collapse
|
27
|
Xie X, Zhu J, Hu X, Dai L, Fu X, Zhang J, Duan X, Ao Y. A co-culture system of rat synovial stem cells and meniscus cells promotes cell proliferation and differentiation as compared to mono-culture. Sci Rep 2018; 8:7693. [PMID: 29769537 PMCID: PMC5955983 DOI: 10.1038/s41598-018-25709-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 03/09/2018] [Indexed: 12/25/2022] Open
Abstract
A meniscus tear often happens during active sports. It needs to be repaired or replaced surgically to avoid further damage to the articular cartilage. To address the shortage of autologous meniscal cells, we designed a co-culture system of synovial stem cells (SMSCs) and meniscal cells (MCs) to produce a large cell number and to maintain characteristics of MCs. Different ratios of SMSCs and MCs at 3:1, 1:1, and 1:3 were tested. Mono-culture of SMSCs or MCs served as control groups. Proliferation and differentiation abilities were compared. The expression of extracellular matrix (ECM) genes in MCs was assessed using an ECM array to reveal the mechanism at the gene level. The co-culture system of SMSCs/MCs at the ratio of 1:3 showed better results than the control groups or those at other ratios. This co-culture system may be a promising strategy for meniscus repair with tissue engineering.
Collapse
Affiliation(s)
- Xing Xie
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Third Hospital of Peking University, Beijing, China
| | - Jingxian Zhu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Third Hospital of Peking University, Beijing, China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Third Hospital of Peking University, Beijing, China
| | - Linghui Dai
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Third Hospital of Peking University, Beijing, China
| | - Xin Fu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Third Hospital of Peking University, Beijing, China
| | - Jiying Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Third Hospital of Peking University, Beijing, China
| | - Xiaoning Duan
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Third Hospital of Peking University, Beijing, China
| | - Yingfang Ao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Third Hospital of Peking University, Beijing, China.
| |
Collapse
|
28
|
Novel technique for repairing posterior medial meniscus root tears using porcine knees and biomechanical study. PLoS One 2018; 13:e0192027. [PMID: 29408892 PMCID: PMC5800675 DOI: 10.1371/journal.pone.0192027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/16/2018] [Indexed: 11/19/2022] Open
Abstract
Transtibial pullout suture (TPS) repair of posterior medial meniscus root (PMMR) tears was shown to achieve good clinical outcomes. The purpose of this study was to compare biomechanically, a novel technique designed to repair PMMR tears using tendon graft (TG) and conventional TPS repair. Twelve porcine tibiae (n = 6 each) TG group: flexor digitorum profundus tendon was passed through an incision in the root area, created 5 mm postero-medially along the edge of the attachment area. TPS group: a modified Mason-Allen suture was created using no. 2 FiberWire. The tendon grafts and sutures were threaded through the bone tunnel and then fixed to the anterolateral cortex of the tibia. The two groups underwent cyclic loading followed by a load-to-failure test. Displacements of the constructs after 100, 500, and 1000 loading cycles, and the maximum load, stiffness, and elongation at failure were recorded. The TG technique had significantly lower elongation and higher stiffness compared with the TPS. The maximum load of the TG group was significantly lower than that of the TPS group. Failure modes for all specimens were caused by the suture or graft cutting through the meniscus. Lesser elongation and higher stiffness of the constructs in TG technique over those in the standard TPS technique might be beneficial for postoperative biological healing between the meniscus and tibial plateau. However, a slower rehabilitation program might be necessary due to its relatively lower maximum failure load.
Collapse
|
29
|
Native tissue-based strategies for meniscus repair and regeneration. Cell Tissue Res 2018; 373:337-350. [PMID: 29397425 DOI: 10.1007/s00441-017-2778-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
Meniscus injuries appear to be becoming increasingly common and pose a challenge for orthopedic surgeons. However, there is no curative approach for dealing with defects in the inner meniscus region due to its avascular nature. Numerous strategies have been applied to regenerate and repair meniscus defects and native tissue-based strategies have received much attention. Native tissue usually has good biocompatibility, excellent mechanical properties and a suitable microenvironment for cellular growth, adhesion, redifferentiation, extracellular matrix deposition and remodeling. Classically, native tissue-based strategies for meniscus repair and regeneration are divided into autogenous and heterogeneous tissue transplantation. Autogenous tissue transplantation is performed more widely than heterogeneous tissue transplantation because there is no immunological rejection and the success rates are higher. This review first discusses the native meniscus structure and function and then focuses on the use of the autogenous tissue for meniscus repair and regeneration. Finally, it summarizes the advantages and disadvantages of heterogeneous tissue transplantation. We hope that this review provides some suggestions for the future design of meniscus repair and regeneration strategies.
Collapse
|
30
|
Bravo B, Argüello JM, Gortazar AR, Forriol F, Vaquero J. Modulation of Gene Expression in Infrapatellar Fat Pad-Derived Mesenchymal Stem Cells in Osteoarthritis. Cartilage 2018; 9:55-62. [PMID: 29156945 PMCID: PMC5724676 DOI: 10.1177/1947603516686144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim In the osteoarthritis (OA) disease, all structures of the joint are involved. The infrapatellar Hoffa fat pad is rich in macrophages and granulocytes, which also represents a source of adipose mesenchymal progenitor cells (ASC) cells. In our study, we analyze how OA affects the ability of ASC-derived from Hoffa's fat pad to differentiate into chondrocytes. Material and methodology We took knee Hoffa's pad samples and adipose tissue from the proximal thigh from 6 patients diagnosed with severe OA and from another 6 patients with an anterior cruciate ligament (ACL) rupture without OA. From all the patients, we took subcutaneous adipose tissue from the thigh, as the control group. Samples of synovial fluid (SF) were also extracted. The gene expression was analyzed by real-time quantitative polymerase chain reaction. Results PTH1R and MMP13 expression during chondrogenic differentiation were similar between OA and ACL groups, while the expression of OPG, FGF2, TGFβ, MMP3 were significantly lower in the OA group. Exposure of differentiated ASC to OA SF induced an increase in the expression of OPG, PTH1R, and MMP13 and a decrease in the expression of FGF2 in cell culture of the ACL group. However, expression of none of these factors was altered by the OA synovial fluid in ASC cells of the OA group. Conclusion OA of the knee also affects the mesenchymal stem cells of Hoffa fat, suggesting that Hoffa fat is a new actor in the OA degenerative process that can contribute to the origin, onset, and progression of the disease.
Collapse
Affiliation(s)
- Beatriz Bravo
- CEU-San Pablo University School of Medicine, IMMA, Boadilla del Monte, Madrid, Spain
| | | | - Arancha R. Gortazar
- CEU-San Pablo University School of Medicine, IMMA, Boadilla del Monte, Madrid, Spain
| | - Francisco Forriol
- CEU-San Pablo University School of Medicine, IMMA, Boadilla del Monte, Madrid, Spain,Francisco Forriol, CEU-San Pablo University School of Medicine, Campus Montepríncipe, Boadilla del Monte, Madrid 28668, Spain.
| | - Javier Vaquero
- Department of Orthopaedic Surgery, Hospital Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
31
|
Desando G, Giavaresi G, Cavallo C, Bartolotti I, Sartoni F, Nicoli Aldini N, Martini L, Parrilli A, Mariani E, Fini M, Grigolo B. Autologous Bone Marrow Concentrate in a Sheep Model of Osteoarthritis: New Perspectives for Cartilage and Meniscus Repair. Tissue Eng Part C Methods 2017; 22:608-19. [PMID: 27151837 DOI: 10.1089/ten.tec.2016.0033] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Cell-based therapies are becoming a valuable tool to treat osteoarthritis (OA). This study investigated and compared the regenerative potential of bone marrow concentrate (BMC) and mesenchymal stem cells (MSC), both engineered with Hyaff(®)-11 (HA) for OA treatment in a sheep model. METHODS OA was induced via unilateral medial meniscectomy. Bone marrow was aspirated from the iliac crest, followed by concentration processes or cell isolation and expansion to obtain BMC and MSC, respectively. Treatments consisted of autologous BMC and MSC seeded onto HA. The regenerative potential of bone, cartilage, menisci, and synovia was monitored using macroscopy, histology, immunohistochemistry, and micro-computed tomography at 12 weeks post-op. Data were analyzed using the general linear model with adjusted Sidak's multiple comparison and Spearman's tests. RESULTS BMC-HA treatment showed a greater repair ability in inhibiting OA progression compared to MSC-HA, leading to a reduction of inflammation in cartilage, meniscus, and synovium. Indeed, the decrease of inflammation positively contributed to counteract the progression of fibrotic and hypertrophic processes, known to be involved in tissue failure. Moreover, the treatment with BMC-HA showed the best results in allowing meniscus regeneration. Minor healing effects were noticed at bone level for both cell strategies; however, a downregulation of subchondral bone thickness (Cs.Th) was found in both cell treatments compared to the OA group in the femur. CONCLUSION The transplantation of BMC-HA provided the best effects in supporting regenerative processes in cartilage, meniscus, and synovium and at less extent in bone. On the whole, both MSC and BMC combined with HA reduced inflammation and contributed to switch off fibrotic and hypertrophic processes. The observed regenerative potential by BMC-HA on meniscus could open new perspectives, suggesting its use not only for OA care but also for the treatment of meniscal lesions, even if further analyses are necessary to confirm its healing potential at long-term follow-up.
Collapse
Affiliation(s)
- Giovanna Desando
- 1 Laboratory RAMSES, Rizzoli Orthopedic Institute , Bologna, Italy
| | - Gianluca Giavaresi
- 2 Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute , Bologna, Italy .,3 Laboratory BITTA, Rizzoli Orthopedic Institute , Bologna, Italy
| | - Carola Cavallo
- 1 Laboratory RAMSES, Rizzoli Orthopedic Institute , Bologna, Italy
| | - Isabella Bartolotti
- 4 Laboratory of Immunorheumatology and Tissue Regeneration, Rizzoli Orthopedic Institute , Bologna, Italy
| | - Federica Sartoni
- 1 Laboratory RAMSES, Rizzoli Orthopedic Institute , Bologna, Italy
| | - Nicolò Nicoli Aldini
- 2 Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute , Bologna, Italy .,3 Laboratory BITTA, Rizzoli Orthopedic Institute , Bologna, Italy
| | - Lucia Martini
- 2 Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute , Bologna, Italy .,3 Laboratory BITTA, Rizzoli Orthopedic Institute , Bologna, Italy
| | | | - Erminia Mariani
- 4 Laboratory of Immunorheumatology and Tissue Regeneration, Rizzoli Orthopedic Institute , Bologna, Italy .,5 Department of Medical and Surgical Science, University of Bologna , Bologna, Italy
| | - Milena Fini
- 2 Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute , Bologna, Italy .,3 Laboratory BITTA, Rizzoli Orthopedic Institute , Bologna, Italy
| | - Brunella Grigolo
- 1 Laboratory RAMSES, Rizzoli Orthopedic Institute , Bologna, Italy .,4 Laboratory of Immunorheumatology and Tissue Regeneration, Rizzoli Orthopedic Institute , Bologna, Italy
| |
Collapse
|
32
|
The potential of using semitendinosus tendon as autograft in rabbit meniscus reconstruction. Sci Rep 2017; 7:7033. [PMID: 28765605 PMCID: PMC5539314 DOI: 10.1038/s41598-017-07166-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/23/2017] [Indexed: 01/12/2023] Open
Abstract
Since transplantation of meniscal allograft or artificial menisci is limited by graft sources and a series of adverse events, substitution for meniscus reconstruction still needs to be explored. Natural biomaterials, which can provide a unique 3-D microenvironment, remain a promising alternative for tissue engineering. Among them, autograft is a preferred option for its safety and excellent biocompatibility. In this study, we utilized semitendinosus tendon autograft in meniscus reconstruction to investigate its fibrochondrogenic metaplasticity potential and chondroprotective effect. Tendon-derived stem cells (TDSCs) and synovial-derived mesenchymal stem cells (SMSCs), two most important stem cell sources in our strategy, exhibited excellent viability, distribution, proliferation and fibrochondrogenic differentiation ability in decellularized semitendinosus tendon (DST) scaffolds in vitro. Histologic evaluation of the tendon grafts in vivo suggested endogenous stem cells differentiated into fibrochondrocytes, synthesized proteoglycan, type II collagen and radial type I collagen at 12 weeks and 24 weeks post-surgery. As for elastic modulus and hardness of the grafts, there were no significant differences between native meniscus and regenerated meniscus at 24 weeks. The protection of condylar cartilage from degeneration was significantly better in the reconstruction group comparing to control group. Overall, semitendinosus tendon autograft seems to be a promising substitution in meniscus reconstruction.
Collapse
|
33
|
Prospectively isolated mesenchymal stem/stromal cells are enriched in the CD73 + population and exhibit efficacy after transplantation. Sci Rep 2017; 7:4838. [PMID: 28684854 PMCID: PMC5500568 DOI: 10.1038/s41598-017-05099-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs), which reside in the bone marrow (BM) and various other tissues, can self-renew and differentiate into mesenchymal lineages. Many groups have harvested rat MSCs (rMSCs) from rat BM (rBM) by using a flush-out procedure and have evaluated surface marker expression after long-term culture. However, MSCs gradually differentiate during expansion and exhibit altered proliferation rates, morphological features and functions in vitro. Variations in MSC isolation methods may alter the effectiveness of therapeutic applications. Here, on the basis of CD29 (Itgb1) and CD54 (Icam1) expression, we prospectively isolated a population with a high colony-forming ability and multi-lineage potential from the rBM, and we demonstrated that most of these cells expressed CD73. Successful engraftment of rMSCs was achieved by using a fluorescence-conjugated anti-CD73 antibody. In humans and mice, MSCs were also purified by CD73, thus suggesting that CD73 may serve as a universal marker for prospective isolation of MSCs. Our results may facilitate investigations of MSC properties and function.
Collapse
|
34
|
Ozeki N, Muneta T, Kawabata K, Koga H, Nakagawa Y, Saito R, Udo M, Yanagisawa K, Ohara T, Mochizuki T, Tsuji K, Saito T, Sekiya I. Centralization of extruded medial meniscus delays cartilage degeneration in rats. J Orthop Sci 2017; 22:542-548. [PMID: 28351717 DOI: 10.1016/j.jos.2017.01.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 11/25/2016] [Accepted: 01/22/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Meniscus extrusion often observed in knee osteoarthritis has a strong correlation with the progression of cartilage degeneration and symptom in the patients. We recently reported a novel procedure "arthroscopic centralization" in which the capsule was sutured to the edge of the tibial plateau to reduce meniscus extrusion in the human knee. However, there is no animal model to study the efficacy of this procedure. The purposes of this study were [1] to establish a model of centralization for the extruded medial meniscus in a rat model; and [2] to investigate the chondroprotective effect of this procedure. METHODS Medial meniscus extrusion was induced by the release of the anterior synovial capsule and the transection of the meniscotibial ligament. Centralization was performed by the pulled-out suture technique. Alternatively, control rats had only the medial meniscus extrusion surgery. Medial meniscus extrusion was evaluated by micro-CT and macroscopic findings. Cartilage degeneration of the medial tibial plateau was evaluated macroscopically and histologically. RESULTS By micro-CT analysis, the medial meniscus extrusion was significantly improved in the centralization group in comparison to the extrusion group throughout the study. Both macroscopically and histologically, the cartilage lesion of the medial tibial plateau was prevented in the centralization group but was apparent in the control group. CONCLUSIONS We developed medial meniscus extrusion in a rat model, and centralization of the extruded medial meniscus by the pull-out suture technique improved the medial meniscus extrusion and delayed cartilage degeneration, though the effect was limited. Centralization is a promising treatment to prevent the progression of osteoarthritis.
Collapse
Affiliation(s)
- Nobutake Ozeki
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Japan; Department of Orthopaedic Surgery, Yokohama City University, Japan
| | - Takeshi Muneta
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Japan
| | - Kenichi Kawabata
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Japan
| | - Yusuke Nakagawa
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Japan; Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Japan
| | - Ryusuke Saito
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Japan
| | - Mio Udo
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Japan
| | - Katsuaki Yanagisawa
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Japan
| | - Toshiyuki Ohara
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Japan
| | - Tomoyuki Mochizuki
- Department of Joint Reconstruction, Graduate School, Tokyo Medical and Dental University, Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration, Graduate School, Tokyo Medical and Dental University, Japan
| | - Tomoyuki Saito
- Department of Orthopaedic Surgery, Yokohama City University, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Japan.
| |
Collapse
|
35
|
Korpershoek JV, de Windt TS, Hagmeijer MH, Vonk LA, Saris DBF. Cell-Based Meniscus Repair and Regeneration: At the Brink of Clinical Translation?: A Systematic Review of Preclinical Studies. Orthop J Sports Med 2017; 5:2325967117690131. [PMID: 28321424 PMCID: PMC5347439 DOI: 10.1177/2325967117690131] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Meniscus damage can be caused by trauma or degeneration and is therefore common among patients of all ages. Repair or regeneration of the menisci could be of great importance not only for pain relief or regaining function but also to prevent degenerative disease and osteoarthritis. Current treatment does not offer consistent long-term improvement. Although preclinical research focusing on augmentation of meniscal tear repair and regeneration after meniscectomy is encouraging, clinical translation remains difficult. Purpose: To systematically evaluate the literature on in vivo meniscus regeneration and explore the optimal cell sources and conditions for clinical translation. We aimed at thorough evaluation of current evidence as well as clarifying the challenges for future preclinical and clinical studies. Study Design: Systematic review. Methods: A search was conducted using the electronic databases of MEDLINE, Embase, and the Cochrane Collaboration. Search terms included meniscus, regeneration, and cell-based. Results: After screening 81 articles based on title and abstract, 51 articles on in vivo meniscus regeneration could be included; 2 additional articles were identified from the references. Repair and regeneration of the meniscus has been described by intra-articular injection of multipotent mesenchymal stromal (stem) cells from adipose tissue, bone marrow, synovium, or meniscus or the use of these cell types in combination with implantable or injectable scaffolds. The use of fibrochondrocytes, chondrocytes, and transfected myoblasts for meniscus repair and regeneration is limited to the combination with different scaffolds. The comparative in vitro and in vivo studies mentioned in this review indicate that the use of allogeneic cells is as successful as the use of autologous cells. In addition, the implantation or injection of cell-seeded scaffolds increased tissue regeneration and led to better structural organization compared with scaffold implantation or injection of a scaffold alone. None of the studies mentioned in this review compare the effectiveness of different (cell-seeded) scaffolds. Conclusion: There is heterogeneity in animal models, cell types, and scaffolds used, and limited comparative studies are available. The comparative in vivo research that is currently available is insufficient to draw strong conclusions as to which cell type is the most promising. However, there is a vast amount of in vivo research on the use of different types of multipotent mesenchymal stromal (stem) cells in different experimental settings, and good results are reported in terms of tissue formation. None of these studies compare the effectiveness of different cell-scaffold combinations, making it hard to conclude which scaffold has the greatest potential.
Collapse
Affiliation(s)
- Jasmijn V Korpershoek
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tommy S de Windt
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michella H Hagmeijer
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lucienne A Vonk
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daniel B F Saris
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.; MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
36
|
Tsuji K, Ojima M, Otabe K, Horie M, Koga H, Sekiya I, Muneta T. Effects of Different Cell-Detaching Methods on the Viability and Cell Surface Antigen Expression of Synovial Mesenchymal Stem Cells. Cell Transplant 2017; 26:1089-1102. [PMID: 28139195 DOI: 10.3727/096368917x694831] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Flow cytometric analysis of cell surface antigens is a powerful tool for the isolation and characterization of stem cells residing in adult tissues. In contrast to the collection of hematopoietic stem cells, the process of enzymatic digestion is usually necessary to prepare mesenchymal stem cells (MSCs) suspensions, which can influence the expression of cell surface markers. In this study, we examined the effects of various cell-detaching reagents and digestion times on the expression of stem cell-related surface antigens and MSC functions. Human MSCs were detached from dishes using four different reagents: trypsin, TrypLE, collagenase, and a nonenzymatic cell dissociation reagent (C5789; Sigma-Aldrich). Following dissociation reagent incubations ranging from 5 to 120 min, cell surface markers were analyzed by flow cytometry. Trypsin and TrypLE quickly dissociated the cells within 5 min, while collagenase and C5789 required 60 min to obtain maximum cell yields. C5789 significantly decreased cell viability at 120 min. Trypsin treatment significantly reduced CD44+, CD55+, CD73+, CD105+, CD140a+, CD140b+, and CD201+ cell numbers within 30 min. Collagenase treatment reduced CD140a expression by 30 min. In contrast, TrypLE treatment did not affect the expression of any cell surface antigens tested by 30 min. Despite the significant loss of surface antigen expression after 60 min of treatment with trypsin, adverse effects of enzymatic digestion on multipotency of MSCs were limited. Overall, our data indicated that TrypLE is advantageous over other cell dissociation reagents tested for the rapid preparation of viable MSC suspensions.
Collapse
|
37
|
Fellows CR, Matta C, Zakany R, Khan IM, Mobasheri A. Adipose, Bone Marrow and Synovial Joint-Derived Mesenchymal Stem Cells for Cartilage Repair. Front Genet 2016; 7:213. [PMID: 28066501 PMCID: PMC5167763 DOI: 10.3389/fgene.2016.00213] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/22/2016] [Indexed: 01/15/2023] Open
Abstract
Current cell-based repair strategies have proven unsuccessful for treating cartilage defects and osteoarthritic lesions, consequently advances in innovative therapeutics are required and mesenchymal stem cell-based (MSC) therapies are an expanding area of investigation. MSCs are capable of differentiating into multiple cell lineages and exerting paracrine effects. Due to their easy isolation, expansion, and low immunogenicity, MSCs are an attractive option for regenerative medicine for joint repair. Recent studies have identified several MSC tissue reservoirs including in adipose tissue, bone marrow, cartilage, periosteum, and muscle. MSCs isolated from these discrete tissue niches exhibit distinct biological activities, and have enhanced regenerative potentials for different tissue types. Each MSC type has advantages and disadvantages for cartilage repair and their use in a clinical setting is a balance between expediency and effectiveness. In this review we explore the challenges associated with cartilage repair and regeneration using MSC-based cell therapies and provide an overview of phenotype, biological activities, and functional properties for each MSC population. This paper also specifically explores the therapeutic potential of each type of MSC, particularly focusing on which cells are capable of producing stratified hyaline-like articular cartilage regeneration. Finally we highlight areas for future investigation. Given that patients present with a variety of problems it is unlikely that cartilage regeneration will be a simple "one size fits all," but more likely an array of solutions that need to be applied systematically to achieve regeneration of a biomechanically competent repair tissue.
Collapse
Affiliation(s)
| | - Csaba Matta
- Faculty of Health and Medical Sciences, University of SurreyGuildford, UK
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecen, Hungary
| | - Roza Zakany
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecen, Hungary
| | - Ilyas M. Khan
- Centre for NanoHealth, Swansea University Medical SchoolSwansea, UK
| | - Ali Mobasheri
- Faculty of Health and Medical Sciences, University of SurreyGuildford, UK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Queen's Medical CentreNottingham, UK
- King Fahd Medical Research Center, King AbdulAziz UniversityJeddah, Saudi Arabia
- Sheik Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis with Stem Cells, King AbdulAziz UniversityJeddah, Saudi Arabia
| |
Collapse
|
38
|
Yuan Z, Liu S, Hao C, Guo W, Gao S, Wang M, Chen M, Sun Z, Xu Y, Wang Y, Peng J, Yuan M, Guo QY. AMECM/DCB scaffold prompts successful total meniscus reconstruction in a rabbit total meniscectomy model. Biomaterials 2016; 111:13-26. [PMID: 27718449 DOI: 10.1016/j.biomaterials.2016.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/25/2016] [Accepted: 09/25/2016] [Indexed: 10/20/2022]
Abstract
Tissue-engineered meniscus regeneration is a very promising treatment strategy for meniscus lesions. However, generating the scaffold presents a huge challenge for meniscus engineering as this has to meet particular biomechanical and biocompatibility requirements. In this study, we utilized acellular meniscus extracellular matrix (AMECM) and demineralized cancellous bone (DCB) to construct three different types of three-dimensional porous meniscus scaffold: AMECM, DCB, and AMECM/DCB, respectively. We tested the scaffolds' physicochemical characteristics and observed their interactions with meniscus fibrochondrocytes to evaluate their cytocompatibility. We implanted the three different types of scaffold into the medial knee menisci of New Zealand rabbits that had undergone total meniscectomy; negative control rabbits received no implants. The reconstructed menisci and corresponding femoral condyle and tibial plateau cartilage were all evaluated at 3 and 6 months (n = 8). The in vitro study demonstrated that the AMECM/DCB scaffold had the most suitable biomechanical properties, as this produced the greatest compressive and tensile strength scores. The AMECM/DCB and AMECM scaffolds facilitated fibrochondrocyte proliferation and the secretion of collagen and glycosaminoglycans (GAGs) more effectively than did the DCB scaffold. The in vivo experiments demonstrated that both the AMECM/DCB and DCB groups had generated neomeniscus at both 3 and 6 months post-implantation, but there was no obvious meniscus regeneration in the AMECM or control groups, so the neomeniscus analysis could not perform on AMECM and control group. At both 3 and 6 months, histological scores were better for regenerated menisci in the AMECM/DCB than in the DCB group, and significantly better for articular cartilage in the AMECM/DCB group compared with the other three groups. Knee MRI scores (Whole-Organ Magnetic Resonance Imaging Scores (WORMS)) were better in the AMECM/DCB group than in the other three groups at both 3 and 6 months. At both 3 and 6 months, RT-PCR demonstrated that aggrecan, Sox9, and collagen II content was significantly higher, and mechanical testing demonstrated greater tensile strength, in the AMECM/DCB group neomenisci compared with the DCB group.
Collapse
Affiliation(s)
- Zhiguo Yuan
- Key Lab of Musculoskeletal Trauma&War Injuries, PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Shuyun Liu
- Key Lab of Musculoskeletal Trauma&War Injuries, PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Chunxiang Hao
- Department of Anesthesia, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Weimin Guo
- Key Lab of Musculoskeletal Trauma&War Injuries, PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Shuang Gao
- Center for Biomaterial and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Mingjie Wang
- Key Lab of Musculoskeletal Trauma&War Injuries, PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Mingxue Chen
- Key Lab of Musculoskeletal Trauma&War Injuries, PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Zhen Sun
- Key Lab of Musculoskeletal Trauma&War Injuries, PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yichi Xu
- Key Lab of Musculoskeletal Trauma&War Injuries, PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yu Wang
- Key Lab of Musculoskeletal Trauma&War Injuries, PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Jiang Peng
- Key Lab of Musculoskeletal Trauma&War Injuries, PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Mei Yuan
- Key Lab of Musculoskeletal Trauma&War Injuries, PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Quan-Yi Guo
- Key Lab of Musculoskeletal Trauma&War Injuries, PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
39
|
de Soure AM, Fernandes-Platzgummer A, da Silva CL, Cabral JMS. Scalable microcarrier-based manufacturing of mesenchymal stem/stromal cells. J Biotechnol 2016; 236:88-109. [PMID: 27527397 DOI: 10.1016/j.jbiotec.2016.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Due to their unique features, mesenchymal stem/stromal cells (MSC) have been exploited in clinical settings as therapeutic candidates for the treatment of a variety of diseases. However, the success in obtaining clinically-relevant MSC numbers for cell-based therapies is dependent on efficient isolation and ex vivo expansion protocols, able to comply with good manufacturing practices (GMP). In this context, the 2-dimensional static culture systems typically used for the expansion of these cells present several limitations that may lead to reduced cell numbers and compromise cell functions. Furthermore, many studies in the literature report the expansion of MSC using fetal bovine serum (FBS)-supplemented medium, which has been critically rated by regulatory agencies. Alternative platforms for the scalable manufacturing of MSC have been developed, namely using microcarriers in bioreactors, with also a considerable number of studies now reporting the production of MSC using xenogeneic/serum-free medium formulations. In this review we provide a comprehensive overview on the scalable manufacturing of human mesenchymal stem/stromal cells, depicting the various steps involved in the process from cell isolation to ex vivo expansion, using different cell tissue sources and culture medium formulations and exploiting bioprocess engineering tools namely microcarrier technology and bioreactors.
Collapse
Affiliation(s)
- António M de Soure
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal.
| |
Collapse
|
40
|
Advances in combining gene therapy with cell and tissue engineering-based approaches to enhance healing of the meniscus. Osteoarthritis Cartilage 2016; 24:1330-9. [PMID: 27063441 PMCID: PMC5298218 DOI: 10.1016/j.joca.2016.03.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/17/2016] [Accepted: 03/25/2016] [Indexed: 02/02/2023]
Abstract
Meniscal lesions are common problems in orthopaedic surgery and sports medicine, and injury or loss of the meniscus accelerates the onset of knee osteoarthritis (OA). Despite a variety of therapeutic options in the clinics, there is a critical need for improved treatments to enhance meniscal repair. In this regard, combining gene-, cell-, and tissue engineering-based approaches is an attractive strategy to generate novel, effective therapies to treat meniscal lesions. In the present work, we provide an overview of the tools currently available to improve meniscal repair and discuss the progress and remaining challenges for potential future translation in patients.
Collapse
|
41
|
Ozeki N, Muneta T, Koga H, Nakagawa Y, Mizuno M, Tsuji K, Mabuchi Y, Akazawa C, Kobayashi E, Matsumoto K, Futamura K, Saito T, Sekiya I. Not single but periodic injections of synovial mesenchymal stem cells maintain viable cells in knees and inhibit osteoarthritis progression in rats. Osteoarthritis Cartilage 2016; 24:1061-70. [PMID: 26880531 DOI: 10.1016/j.joca.2015.12.018] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 11/23/2015] [Accepted: 12/27/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We investigated the effects of single or repetitive intra-articular injections of synovial mesenchymal stem cells (MSCs) on a rat osteoarthritis (OA) model, and elucidated the behaviors and underlying mechanisms of the stem cells after the injection. DESIGN One week after the transection of the anterior cruciate ligament (ACL) of wild type Lewis rats, one million synovial MSCs were injected into the knee joint every week. Cartilage degeneration was evaluated with safranin-o staining after the first injection. To analyze cell kinetics or MSC properties, luciferase, LacZ, and GFP expressing synovial MSCs were used. To confirm the role of MSCs, species-specific microarray and PCR analyses were performed using human synovial MSCs. RESULTS Histological analysis for femoral and tibial cartilage showed that a single injection was ineffective but weekly injections had significant chondroprotective effects for 12 weeks. Histological and flow-cytometric analyses of LacZ and GFP expressing synovial MSCs revealed that injected MSCs migrated mainly into the synovium and most of them retained their undifferentiated MSC properties though the migrated cells rapidly decreased. In vivo imaging analysis revealed that MSCs maintained in knees while weekly injection. Species-specific microarray and PCR analyses showed that the human mRNAs on day 1 for 21 genes increased over 50-fold, and increased the expressions of PRG-4, BMP-2, and BMP-6 genes encoding chondroprotective proteins, and TSG-6 encoding an anti-inflammatory one. CONCLUSION Not single but periodic injections of synovial MSCs maintained viable cells without losing their MSC properties in knees and inhibited osteoarthritis (OA) progression by secretion of trophic factors.
Collapse
Affiliation(s)
- N Ozeki
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan; Department of Orthopaedic Surgery, Yokohama City University, Yokohama, 236-0004, Japan
| | - T Muneta
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - H Koga
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Y Nakagawa
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - M Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - K Tsuji
- Department of Cartilage Regeneration, Graduate School, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Y Mabuchi
- Department of Biochemistry and Biophysics, Graduate School, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - C Akazawa
- Department of Biochemistry and Biophysics, Graduate School, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - E Kobayashi
- Department of Organ Fabrication, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - K Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - K Futamura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - T Saito
- Department of Orthopaedic Surgery, Yokohama City University, Yokohama, 236-0004, Japan
| | - I Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.
| |
Collapse
|
42
|
Yanagisawa K, Muneta T, Ozeki N, Nakagawa Y, Udo M, Saito R, Koga H, Tsuji K, Sekiya I. Weekly injections of Hylan G-F 20 delay cartilage degeneration in partial meniscectomized rat knees. BMC Musculoskelet Disord 2016; 17:188. [PMID: 27118194 PMCID: PMC4847373 DOI: 10.1186/s12891-016-1051-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/22/2016] [Indexed: 12/01/2022] Open
Abstract
Background Cross-linked hyaluronan—also called Hylan G-F 20—is a medical device developed to treat osteoarthritis of the knee. However, it is still controversial whether Hylan G-F 20 has a cartilage protective effect in trauma-induced osteoarthritis. We investigated whether Hylan G-F 20 delayed osteoarthritis progression in a partial meniscectomized rat model. Methods Lewis rats were used for the experiments. The anterior medial meniscus was resected at the level of the medial collateral ligament in both knees. From 1 week after the surgery, 50 μl of Hylan G-F 20 was injected weekly into the left knee and phosphate buffered saline was injected into the right knee. Cartilage was evaluated for macroscopic findings, histology with safranin-o, and expression of type II collagen at 2, 4, and 8 weeks. Synovitis was also evaluated, and immunohistochemical analysis was performed for ED1. Results Macroscopic findings demonstrated that India ink positive area, representing fibrillated cartilage, was significantly smaller in the Hylan G-F 20 group than in the control group at 2, 4, and 8 weeks (n = 5). There were no significant differences in osteophyte score between the Hylan G-F 20 group and the control group at 2, 4, and 8 weeks. Histologically, the cartilage in the medial tibial plateau was destroyed at 8 weeks in the control group, while type II collagen expression was still observed at 8 weeks in the Hylan G-F 20 group. OARSI score for cartilage histology was significantly lower in the Hylan G-F 20 group than in the control group at 4 and 8 weeks (n = 5). There were no significant differences in synovial cell number or modified synovitis score between the Hylan G-F 20 group and the control group at 2, 4, and 8 weeks (n = 5). In the Hylan G-F 20 group, foreign bodies surrounded by ED1 positive macrophages were observed in the synovium. Conclusion Weekly injections of Hylan G-F 20 starting 1 week after surgery delayed cartilage degeneration after meniscectomy in a rat model. Synovitis induced by meniscectomy was not alleviated by Hylan G-F 20. Insoluble gels were observed in the synovium after the Hylan G-F 20 injection.
Collapse
Affiliation(s)
- Katsuaki Yanagisawa
- Department of Joint Surgery and Sports Medicine, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Takeshi Muneta
- Department of Joint Surgery and Sports Medicine, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Nobutake Ozeki
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yusuke Nakagawa
- Department of Joint Surgery and Sports Medicine, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Mio Udo
- Department of Joint Surgery and Sports Medicine, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Ryusuke Saito
- Department of Joint Surgery and Sports Medicine, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
43
|
Hao ZC, Wang SZ, Zhang XJ, Lu J. Stem cell therapy: a promising biological strategy for tendon-bone healing after anterior cruciate ligament reconstruction. Cell Prolif 2016; 49:154-62. [PMID: 26929145 DOI: 10.1111/cpr.12242] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/09/2015] [Indexed: 12/12/2022] Open
Abstract
Tendon-bone healing after anterior cruciate ligament (ACL) reconstruction is a complex process, impacting significantly on patients' prognosis. Natural tendon-bone healing usually results in fibrous scar tissue, which is of inferior quality compared to native attachment. In addition, the early formed fibrous attachment after surgery is often not reliable to support functional rehabilitation, which may lead to graft failure or unsatisfied function of the knee joint. Thus, strategies to promote tendon-bone healing are crucial for prompt and satisfactory functional recovery. Recently, a variety of biological approaches, including active substances, gene transfer, tissue engineering and stem cells, have been proposed and applied to enhance tendon-bone healing. Among these, stem cell therapy has been shown to have promising prospects and draws increasing attention. From commonly investigated bone marrow-derived mesenchymal stem cells (bMSCs) to emerging ACL-derived CD34+ stem cells, multiple stem cell types have been proven to be effective in accelerating tendon-bone healing. This review describes the current understanding of tendon-bone healing and summarizes the current status of related stem cell therapy. Future limitations and perspectives are also discussed.
Collapse
Affiliation(s)
- Zi-Chen Hao
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Shan-Zheng Wang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Xue-Jun Zhang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Jun Lu
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China.,Surgical Research Center, Medical School of Southeast University, Nanjing, 210009, China
| |
Collapse
|
44
|
|
45
|
Ozeki N, Muneta T, Mizuno M, Sekiya I. Preparation of Synovial Mesenchymal Stem Cells from a Rat Knee Joint. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
46
|
Mizuno M, Katano H, Otabe K, Komori K, Matsumoto Y, Fujii S, Ozeki N, Tsuji K, Koga H, Muneta T, Matsuyama A, Sekiya I. Platelet-derived growth factor (PDGF)-AA/AB in human serum are potential indicators of the proliferative capacity of human synovial mesenchymal stem cells. Stem Cell Res Ther 2015; 6:243. [PMID: 26652649 PMCID: PMC4675012 DOI: 10.1186/s13287-015-0239-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/20/2015] [Accepted: 11/17/2015] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION For expansion of human mesenchymal stem cells (MSCs), autologous human serum is safer than fetal bovine serum in clinical situations. One of the problems with the use of autologous human serum is that its proliferative effect on MSCs varies widely between donors. The threefold goals of this study were: (1) to demonstrate an improved method for preparing human serum; (2) to identify growth factors predictive of proliferative potential; and (3) to identify a cytokine to promote MSC proliferation in human serum. METHODS Fresh blood was collected using a closed bag system containing glass beads. The bag was shaken at 20 °C for 30 minutes for rapid preparation, or kept stationary at 4 °C for 24 hours for slow preparation. Passage 0 synovial MSCs derived from four donors were cultured with 10 % conventional rapid preparation serum or modified slow preparation serum from four different donors. To perform the colony-forming unit assay, synovial MSCs were cultured in these serums. The protein expression profile in serum was analyzed using cytokine array. The candidate proteins were speculated from the correlation between the colony-forming ability and protein expression. As an evaluation of the candidate proteins, proliferation ability, surface marker phenotype and differentiation capability of synovial MSCs were examined. RESULTS Compared with rapid preparation serum, slow preparation serum resulted in a significantly higher total colony number and twofold higher expression levels of nine proteins (angiopoietin-1, BDNF, EGF, ENA-78, IGFBP-2, platelet-derived growth factor (PDGF)-AA, PDGF-AB/BB, RANTES and TfR). Colony number was positively correlated with PDGF-AA/AB concentrations. Exogenous PDGF-AA significantly promoted proliferation of synovial MSCs, whereas PDGF receptor (PDGFR) inhibitor decreased it. Addition of PDGFs or PDGFR inhibitor did not affect surface epitopes of synovial MSCs. Pretreatment with PDGFs or PDGFR inhibitor did not affect chondrogenic, adipogenic, or calcification potentials of synovial MSCs. CONCLUSION Slow preparation serum contained higher concentrations of PDGF-AA/AB and increased the colony formation number of synovial MSCs. PDGF-AA/AB were indicators of the proliferative potential of human serum. Exogenous PDGF-AA increased proliferation of synovial MSCs without alteration of surface epitopes and differentiation potentials.
Collapse
Affiliation(s)
- Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Hisako Katano
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Koji Otabe
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Keiichiro Komori
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Yukie Matsumoto
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Shizuka Fujii
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Nobutake Ozeki
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Takeshi Muneta
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Akifumi Matsuyama
- Department of Bioresources for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
47
|
|
48
|
Tong W, Geng Y, Huang Y, Shi Y, Xiang S, Zhang N, Qin L, Shi Q, Chen Q, Dai K, Zhang X. In Vivo Identification and Induction of Articular Cartilage Stem Cells by Inhibiting NF-κB Signaling in Osteoarthritis. Stem Cells 2015; 33:3125-37. [PMID: 26285913 DOI: 10.1002/stem.2124] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/30/2015] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA) is a highly prevalent and debilitating joint disorder characterized by the degeneration of articular cartilage. However, no effective medical therapy has been found yet for such condition. In this study, we directly confirmed the existence of articular cartilage stem cells (ACSCs) in vivo and in situ for the first time both in normal and OA articular cartilage, and explored their chondrogenesis in Interleukin-1β (IL-1β) induced inflammation environment and disclose whether the inhibition of NF-κB signaling can induce ACSCs activation thus improve the progression of experimental OA. We found an interesting phenomenon that ACSCs were activated and exhibited a transient proliferative response in early OA as an initial attempt for self-repair. During the in vitro mechanism study, we discovered IL-1β can efficiently activate the NF-κB pathway and potently impair the responsiveness of ACSCs, whereas the NF-κB pathway inhibitor rescued the ACSCs chondrogenesis. The final in vivo experiments further confirmed ACSCs' activation were maintained by NF-κB pathway inhibitor, which induced cartilage regeneration, and protected articular cartilage from injury in an OA animal model. Our results provided in vivo evidence of the presence of ACSCs, and disclosed their action in the early OA stage and gradual quiet as OA process, presented a potential mechanism for both cartilage intrinsic repair and its final degradation, and demonstrated the feasibility of inducing endogenous adult tissue-specific mesenchymal stem cells for articular cartilage repair and OA therapy.
Collapse
Affiliation(s)
- Wenxue Tong
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China.,Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yiyun Geng
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China
| | - Yan Huang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yu Shi
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China
| | - Shengnan Xiang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China
| | - Ning Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China
| | - Ling Qin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Qin Shi
- Orthopaedics Research Laboratory, Research Center, Sacré-Coeur Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Qian Chen
- Cell and Molecular Biology Laboratory, Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, USA
| | - Kerong Dai
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoling Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|