1
|
Gao H, Huang X, Cai Z, Cai B, Wang K, Li J, Kuang J, Wang B, Zhai Z, Ming J, Cao S, Qin Y, Pei D. Generation of musculoskeletal cells from human urine epithelium-derived presomitic mesoderm cells. Cell Biosci 2024; 14:93. [PMID: 39010176 PMCID: PMC11251367 DOI: 10.1186/s13578-024-01274-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Numerous studies have shown that somite development is a necessary stage of myogenesis chondrogenesis and osteogenesis. Our previous study has established a stable presomitic mesoderm progenitor cell line (UiPSM) in vitro. Naturally, we wanted to explore whether UiPSM cell can develop bone and myogenic differentiation. RESULTS Selective culture conditions yielded PAX3 and PAX7 positive skeletal muscle precursors from UiPSM cells. The skeletal muscle precursors undergo in vitro maturation resulting in myotube formation. MYOD effectively promoted the maturity of the skeletal myocytes in a short time. We found that UiPSM and MYOD mediated UiPSM cell-derived skeletal myocytes were viable after transplantation into the tibialis anterior muscle of MITRG mice, as assessed by bioluminescence imaging and scRNA-seq. Lack of teratoma formation and evidence of long-term myocytes engraftment suggests considerable potential for future therapeutic applications. Moreover, UiPSM cells can differentiate into osteoblast and chondroblast cells in vitro. CONCLUSIONS UiPSM differentiation has potential as a developmental model for musculoskeletal development research and treatment of musculoskeletal disorders.
Collapse
Affiliation(s)
- Huiru Gao
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingnan Huang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Zepo Cai
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Baomei Cai
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Kaipeng Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Junyang Li
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Bo Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Ziwei Zhai
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jin Ming
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | | | - Yue Qin
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China.
| |
Collapse
|
2
|
Madrid JV, Vera-Colón MKM, zur Nieden NI. Perturbations in Osteogenic Cell Fate Following Exposure to Constituents Present in Tobacco: A Combinatorial Study. TOXICS 2023; 11:998. [PMID: 38133399 PMCID: PMC10747453 DOI: 10.3390/toxics11120998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 12/23/2023]
Abstract
Tobacco smoke contains between 7000 and 10,000 constituents, and only an evanescently low number of which have been identified, let alone been evaluated for their toxicity. Recently, the Food and Drug Administration has published a list of 93 chemical tobacco constituents that are harmful or potentially harmful to a number of cellular processes. However, their effect on developing skeletal cells is unknown. In this study, we used ToxPI, a computational tool, to prioritize constituents on this list for screening in osteogenically differentiating human embryonic stem cells and fibroblasts. In selected endpoint assays, we evaluated the potential of these chemicals to inhibit osteogenic differentiation success as well as their cytotoxicity. Six of these chemicals, which were ascribed an embryotoxic potential in our screen, as well as nicotine, which was not found to be osteotoxic in vitro, were then evaluated in combinatorial exposures, either in pairs of two or three. No one single chemical could be pinpointed as the culprit of reduced calcification in response to tobacco exposure. Combining chemicals at their half-maximal inhibitory concentration of differentiation often elicited expected decreases in calcification over the individual exposures; however, cytotoxicity was improved in many of the dual combinations. A reverse response was also noted, in which calcification output improved in combinatorial exposures. Results from ternary combinations reflected those from double combinations. Thus, the results from this study suggest that it may be difficult to isolate single chemicals as the primary drivers of skeletal embryotoxicity and that the full combination of chemicals in tobacco smoke may produce the hypomineralization phenotype that we have so far observed in vitro in human embryonic stem cells as well as in vivo in zebrafish.
Collapse
|
3
|
Iwobi N, Sparks NR. Endocrine Disruptor-Induced Bone Damage Due to Hormone Dysregulation: A Review. Int J Mol Sci 2023; 24:ijms24098263. [PMID: 37175969 PMCID: PMC10179611 DOI: 10.3390/ijms24098263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Hormones are indispensable for bone development, growth, and maintenance. While many of the genes associated with osteogenesis are well established, it is the recent findings in endocrinology that are advancing the fields of bone biology and toxicology. Endocrine-disrupting chemicals (EDCs) are defined as chemicals that interfere with the function of the endocrine system. Here, we report recent discoveries describing key hormone pathways involved in osteogenesis and the EDCs that alter these pathways. EDCs can lead to bone morphological changes via altering hormone receptors, signaling pathways, and gene expression. The objective of this review is to highlight the recent discoveries of the harmful effects of environmental toxicants on bone formation and the pathways impacted. Understanding the mechanisms of how EDCs interfere with bone formation contributes to providing a comprehensive toxicological profile of a chemical.
Collapse
Affiliation(s)
- Nneamaka Iwobi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California, Irvine, CA 92697, USA
| | - Nicole R Sparks
- Department of Occupational and Environmental Health, University of California, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Yang YY, Soh R, Vera-Colón M, Huang M, Zur Nieden NI, Wang Y. Targeted Proteomic Profiling Revealed Roles of Small GTPases during Osteogenic Differentiation. Anal Chem 2023; 95:6879-6887. [PMID: 37083350 PMCID: PMC10290900 DOI: 10.1021/acs.analchem.2c05781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The small GTPase superfamily of proteins are crucial for numerous cellular processes, including early development. The roles of these proteins in osteogenic differentiation, however, remained poorly explored. In this study, we employed a high-throughput targeted proteomic method, relying on scheduled liquid chromatography-multiple-reaction monitoring (LC-MRM) coupled with synthetic stable isotope-labeled peptides, to interrogate systematically the temporal responses of the entire small GTPase proteome during the course of osteogenic differentiation of H9 human embryonic stem cells. Our results demonstrated that the method offers high quantification accuracy, reproducibility, and throughput. In addition, the quantification results revealed altered expression of a large number of small GTPases accompanied with osteogenic differentiation, especially those involved with autophagy. We also documented a previously unrecognized role of KRAS in osteogenesis, where it regulates the accumulation of extracellular matrix for mineralization through attenuating the activity of secreted matrix metalloproteinase 9 (MMP9). Together, this study represents a novel application of a state-of-the-art analytical method, i.e., targeted quantitative proteomics, for revealing the progressive reprogramming of the small GTPase proteome during osteogenic differentiation of human embryonic stem cells, and our results revealed KRAS as a new regulator for osteogenesis.
Collapse
Affiliation(s)
- Yen-Yu Yang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Ruthia Soh
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Madeline Vera-Colón
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Ming Huang
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Nicole I Zur Nieden
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, California 92521-0403, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521-0403, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521-0403, United States
| |
Collapse
|
5
|
Sparks NRL, Walker LM, Sera SR, Madrid JV, Hanna M, Dominguez EC, zur Nieden NI. Sidestream Smoke Extracts from Harm-Reduction and Conventional Camel Cigarettes Inhibit Osteogenic Differentiation via Oxidative Stress and Differential Activation of intrinsic Apoptotic Pathways. Antioxidants (Basel) 2022; 11:2474. [PMID: 36552682 PMCID: PMC9774253 DOI: 10.3390/antiox11122474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Epidemiological studies suggest cigarette smoking as a probable environmental factor for a variety of congenital anomalies, including low bone mass, increased fracture risk and poor skeletal health. Human and animal in vitro models have confirmed hypomineralization of differentiating cell lines with sidestream smoke being more harmful to developing cells than mainstream smoke. Furthermore, first reports are emerging to suggest a differential impact of conventional versus harm-reduction tobacco products on bone tissue as it develops in the embryo or in vitro. To gather first insight into the molecular mechanism of such differences, we assessed the effect of sidestream smoke solutions from Camel (conventional) and Camel Blue (harm-reduction) cigarettes using a human embryonic stem cell osteogenic differentiation model. Sidestream smoke from the conventional Camel cigarettes concentration-dependently inhibited in vitro calcification triggered by high levels of mitochondrially generated oxidative stress, loss of mitochondrial membrane potential, and reduced ATP production. Camel sidestream smoke also induced DNA damage and caspase 9-dependent apoptosis. Camel Blue-exposed cells, in contrast, invoked only intermediate levels of reactive oxygen species insufficient to activate caspase 3/7. Despite the absence of apoptotic gene activation, damage to the mitochondrial phenotype was still noted concomitant with activation of an anti-inflammatory gene signature and inhibited mineralization. Collectively, the presented findings in differentiating pluripotent stem cells imply that embryos may exhibit low bone mineral density if exposed to environmental smoke during development.
Collapse
Affiliation(s)
- Nicole R. L. Sparks
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Lauren M. Walker
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Steven R. Sera
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, USA
- Cell, Molecular and Developmental Biology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Joseph V. Madrid
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Michael Hanna
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Edward C. Dominguez
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Nicole I. zur Nieden
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
- Cell, Molecular and Developmental Biology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
6
|
Martinez IKC, Sparks NRL, Madrid JV, Talbot P, Zur Nieden NI. Exposure to Cigarette Smoke Impedes Human Osteoblast Differentiation Independently of Nicotine. Nicotine Tob Res 2022; 24:1921-1926. [PMID: 35778911 DOI: 10.1093/ntr/ntac144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 05/09/2022] [Accepted: 06/29/2022] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Tobacco smoking has been implicated in an array of adverse health outcomes, including those that affect adult bone. However, little is known about the impact of tobacco products on developing bone tissue as it develops in the embryo. AIMS AND METHODS Here, human embryonic stem cells were differentiated into osteoblasts in vitro and concomitantly exposed to various concentrations of smoke solutions from two conventional, one additive-free and two harm-reduction brands of cigarettes. Differentiation inhibition was determined by calcium assays that quantified matrix mineralization and compared to the cytotoxicity of the tobacco product. RESULTS Exposure to mainstream smoke from conventional and additive-free cigarettes caused no inhibition of cell viability or mineralization, while sidestream smoke (SS) concentration-dependently produced cell death. In contrast, mineralization was inhibited only by the highest mainstream concentration of harm-reduction smoke solution. Additionally, sidestream smoke solution from the harm-reduction cigarettes impeded calcification at concentrations lower than those determined to be cytotoxic for conventional products. CONCLUSIONS Sidestream smoke impaired in vitro osteogenesis at subtoxic concentrations. In addition, though often perceived as safer, smoke from harm-reduction cigarettes was more potent in inhibiting in vitro osteogenesis than smoke from conventional cigarettes. IMPLICATIONS This study adds to a growing list of adverse outcomes associated with pre-natal tobacco exposure. Specifically, in vitro exposure to tobacco products interfered with osteogenic differentiation of human embryonic stem cells, a well-established surrogate model for human embryonic bone development. Contrasting a diverse array of tobacco products unveiled that sidestream smoke was generally more developmentally osteotoxic than mainstream smoke and that harm-reduction products may not be less harmful than conventional products, adverse effects that were seemingly independent of nicotine.
Collapse
Affiliation(s)
- Ivann K C Martinez
- Department of Molecular, Cell and Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, USA
- IGERT Graduate Program in Videobioinformatics and Cell, Molecular Developmental Biology Graduate Program, University of California Riverside, Riverside, CA, USA
| | - Nicole R L Sparks
- Department of Molecular, Cell and Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, USA
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA, USA
| | - J V Madrid
- Department of Molecular, Cell and Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, USA
| | - Prue Talbot
- Department of Molecular, Cell and Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, USA
- IGERT Graduate Program in Videobioinformatics and Cell, Molecular Developmental Biology Graduate Program, University of California Riverside, Riverside, CA, USA
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA, USA
| | - Nicole I Zur Nieden
- Department of Molecular, Cell and Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, USA
- IGERT Graduate Program in Videobioinformatics and Cell, Molecular Developmental Biology Graduate Program, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
7
|
Dienelt A, Keller KC, zur Nieden NI. High glucose impairs osteogenic differentiation of embryonic stem cells via early diversion of beta-catenin from Forkhead box O to T cell factor interaction. Birth Defects Res 2022; 114:1056-1074. [PMID: 36164276 PMCID: PMC9708100 DOI: 10.1002/bdr2.2085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Diabetes, which is characterized by an increase in blood glucose concentration, is accompanied by low bone turnover, increased fracture risk, and the formation of embryonic skeletal malformations. Yet, there are few studies elucidating the underlying alterations in signaling pathways leading to these osteogenic defects. We hypothesized here that bone formation deficiencies in a high glucose environment result from altered activity of beta-catenin (CTNNB1), a key contributor to osteogenic differentiation, dysregulation of which has also been implicated in the development of diabetes. METHODS To test this hypothesis, we used a previously established embryonic stem cell (ESC) model of differentiation that mimics the diabetic environment of the developing embryo. We differentiated murine ESCs within osteogenic-inducing media containing either high (diabetic) or low (physiological) levels of D-glucose and performed time course analyses to study the influence of high glucose on early and late bone cell differentiation. RESULTS Endpoint measures for osteogenic differentiation were reduced in a glucose-dependent manner and expression of precursor-specific markers altered at multiple time points. Furthermore, transcriptional activity of the lymphoid enhancer factor (LEF)/T cell factor (TCF) transcription factors during precursor formation stages was significantly elevated while levels of CTNNB1 complexed with Forkhead box O 3a (FOXO3a) declined. Modulation of AKT, a known upstream regulator of both LEF/TCF and FOXO3a, as well as CTNNB1 rescued some of the reductions in osteogenic output seen in the high glucose condition. CONCLUSIONS Within our in vitro model, we found a clear involvement of LEF/TCF and FOXO3a signaling pathways in the regulation of osteogenic differentiation, which may account for the skeletal deficiencies found in newborns of diabetic mothers.
Collapse
Affiliation(s)
- Anke Dienelt
- Department of Cell Therapy, Applied Stem Cell Technologies Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Kevin C. Keller
- Department of Molecular, Cell and Systems Biology & Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, USA
| | - Nicole I. zur Nieden
- Department of Cell Therapy, Applied Stem Cell Technologies Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Department of Molecular, Cell and Systems Biology & Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
8
|
Evaluation of the osteoinductive potential of HDPSCs cultured on β-glycerol phosphate functionalized MWCNTs/PCL membranes for bone regeneration. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Martinez IK, Bhanu B, Zur Nieden NI. Video-based calcification assay: A novel method for kinetic analysis of osteogenesis in live cultures. MethodsX 2021; 8:101265. [PMID: 34434787 PMCID: PMC8374304 DOI: 10.1016/j.mex.2021.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/04/2021] [Indexed: 11/30/2022] Open
Abstract
Traditional methods of quantifying osteoblast calcification in culture require the use of calcium sensitive dyes, such as Arsenazo III or Alizarin Red S, which have been successfully used for decades to assess osteogenesis. Because these dyes elicit a colorimetric change when reacted with a cell lysate and are cytotoxic to live cells, they forfeit the ability to trace calcification longitudinally over time. Here, we demonstrate that image analysis and quantification of calcification can be performed from a series of time-lapse images acquired from videos. This method capitalizes on the unique facet of the mineralized extracellular matrix to appear black when viewed with phase contrast optics. This appearance of calcified areas had been previously documented to be characteristic to the formation of bone nodules in vitro. Due to this distinguishable appearance, extracting the information corresponding to calcification through segmentation allowed us to threshold only the pixels that comprise the mineralized areas in the image. Ultimately, this method can be used to quantify calcification yield, rates and kinetics facilitating the analyses of bone-supportive properties of growth factors and morphogens as well as of adverse effects elicited by toxicants. It may also be used on images that were acquired manually.The method is less error-prone than absorption-based assays since it takes longitudinal measurements from the same cultures It is cost effective as it foregoes the use of calcium-sensitive dyes It is automatable and amenable to high-throughput and thus allows the concurrent quantification of multiple parameters of differentiation
Collapse
Affiliation(s)
- Ivann Kc Martinez
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, 92521, USA.,IGERT Graduate Program in Video Bioinformatics and Cell, Molecular Developmental Biology Graduate Program, University of California Riverside, Riverside, CA, 92521, USA
| | - Bir Bhanu
- IGERT Graduate Program in Video Bioinformatics and Cell, Molecular Developmental Biology Graduate Program, University of California Riverside, Riverside, CA, 92521, USA.,Center for Research in Intelligent Systems, Bourns College of Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - Nicole I Zur Nieden
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, 92521, USA.,IGERT Graduate Program in Video Bioinformatics and Cell, Molecular Developmental Biology Graduate Program, University of California Riverside, Riverside, CA, 92521, USA.,Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
10
|
An Evaluation of Human Induced Pluripotent Stem Cells to Test for Cardiac Developmental Toxicity. Int J Mol Sci 2021; 22:ijms22158114. [PMID: 34360880 PMCID: PMC8347148 DOI: 10.3390/ijms22158114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/11/2023] Open
Abstract
To prevent congenital defects arising from maternal exposure, safety regulations require pre-market developmental toxicity screens for industrial chemicals and pharmaceuticals. Traditional embryotoxicity approaches depend heavily on the use of low-throughput animal models which may not adequately predict human risk. The validated embryonic stem cell test (EST) developed in murine embryonic stem cells addressed the former problem over 15 years ago. Here, we present a proof-of-concept study to address the latter challenge by updating all three endpoints of the classic mouse EST with endpoints derived from human induced pluripotent stem cells (hiPSCs) and human fibroblasts. Exposure of hiPSCs to selected test chemicals inhibited differentiation at lower concentrations than observed in the mouse EST. The hiPSC-EST also discerned adverse developmental outcomes driven by novel environmental toxicants. Evaluation of the early cardiac gene TBX5 yielded similar toxicity patterns as the full-length hiPSC-EST. Together, these findings support the further development of hiPSCs and early molecular endpoints as a biologically relevant embryotoxicity screening approach for individual chemicals and mixtures.
Collapse
|
11
|
Soh R, Hardy A, Zur Nieden NI. The FOXO signaling axis displays conjoined functions in redox homeostasis and stemness. Free Radic Biol Med 2021; 169:224-237. [PMID: 33878426 PMCID: PMC9910585 DOI: 10.1016/j.freeradbiomed.2021.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Previous views of reactive oxygen species (ROS) depicted them as harmful byproducts of metabolism as uncontrolled levels of ROS can lead to DNA damage and cell death. However, recent studies have shed light into the key role of ROS in the self-renewal or differentiation of the stem cell. The interplay between ROS levels, metabolism, and the downstream redox signaling pathways influence stem cell fate. In this review we will define ROS, explain how they are generated, and how ROS signaling can influence transcription factors, first and foremost forkhead box-O transcription factors, that shape not only the cellular redox state, but also stem cell fate. Now that studies have illustrated the importance of redox homeostasis and the role of redox signaling, understanding the mechanisms behind this interplay will further shed light into stem cell biology.
Collapse
Affiliation(s)
- Ruthia Soh
- Department of Molecular, Cell and Systems Biology, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, 92521, CA, USA
| | - Ariana Hardy
- Department of Molecular, Cell and Systems Biology, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, 92521, CA, USA
| | - Nicole I Zur Nieden
- Department of Molecular, Cell and Systems Biology, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, 92521, CA, USA; Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, 92521, CA, USA.
| |
Collapse
|
12
|
Srinivasan A, Teo N, Poon KJ, Tiwari P, Ravichandran A, Wen F, Teoh SH, Lim TC, Toh YC. Comparative Craniofacial Bone Regeneration Capacities of Mesenchymal Stem Cells Derived from Human Neural Crest Stem Cells and Bone Marrow. ACS Biomater Sci Eng 2020; 7:207-221. [PMID: 33455206 DOI: 10.1021/acsbiomaterials.0c00878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Most craniofacial bones are derived from the ectodermal germ layer via neural crest stem cells, which are distinct from mesoderm-derived long bones. However, current craniofacial bone tissue engineering approaches do not account for this difference and utilize mesoderm-derived bone marrow mesenchymal stem cells (BM-MSCs) as a paradigm cell source. The effect of the embryonic origin (ontogeny) of an MSC population on its osteogenic differentiation potential and regenerative ability still remains unresolved. To clarify the effects of MSC ontogeny on bone regenerative ability, we directly compared the craniofacial bone regenerative abilities of an ecto-mesenchymal stem cell (eMSC) population, which is derived from human embryonic stem cells via a neural crest intermediate, with mesodermal adult BM-MSCs. eMSCs showed comparable osteogenic and chondrogenic ability to BM-MSCs in 2-D in vitro culture, but lower adipogenic ability. They exhibited greater proliferation than BM-MSCs and comparable construct mineralization in a well-established 3-D polycaprolactone-tricalcium phosphate (PCL-TCP) scaffold system in vitro. eMSC-derived 3D osteogenic constructs were maintained for longer in a proliferative osteoblast state and exhibited differential levels of genes related to fibroblast growth factor (FGF) signaling compared to BM-MSCs. Although both eMSC and BM-MSC-seeded scaffold constructs could promote bone regeneration in a rat calvarial defect model, eMSC-derived osseous constructs had significantly higher cellularity due to increased number of proliferative (Ki67+) cells than those seeded with BM-MSCs, and exhibited enhanced new bone formation in the defect area as compared to untreated controls. Overall, our study demonstrates the potential of human eMSCs for future clinical use in craniofacial regeneration applications and indicates the importance of considering MSC origin when selecting an MSC source for regenerative applications.
Collapse
Affiliation(s)
- Akshaya Srinivasan
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-08, Singapore, 117583.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119288.,NUS Tissue Engineering Program (NUSTEP), National University of Singapore, DSO (Kent Ridge), 27 Medical Drive, #04-01, Singapore, 117510
| | - Nelson Teo
- Department of Surgery, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228
| | - Kei Jun Poon
- Department of Surgery, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228
| | - Priya Tiwari
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, National University Hospital, 1E Kent Ridge Road, Singapore, 119228
| | - Akhilandeshwari Ravichandran
- School of Chemical and Biomedical Engineering & Lee Kong Chian School of Medicine, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459.,School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4001, Australia
| | - Feng Wen
- School of Chemical and Biomedical Engineering & Lee Kong Chian School of Medicine, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| | - Swee Hin Teoh
- School of Chemical and Biomedical Engineering & Lee Kong Chian School of Medicine, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| | - Thiam Chye Lim
- Department of Surgery, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, National University Hospital, 1E Kent Ridge Road, Singapore, 119228
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-08, Singapore, 117583.,NUS Tissue Engineering Program (NUSTEP), National University of Singapore, DSO (Kent Ridge), 27 Medical Drive, #04-01, Singapore, 117510.,School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4001, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia.,Centre for Biomedical Technologies, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia
| |
Collapse
|
13
|
Okamura K, Inagaki Y, Matsui TK, Matsubayashi M, Komeda T, Ogawa M, Mori E, Tanaka Y. RT-qPCR analyses on the osteogenic differentiation from human iPS cells: an investigation of reference genes. Sci Rep 2020; 10:11748. [PMID: 32678244 PMCID: PMC7367276 DOI: 10.1038/s41598-020-68752-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/24/2020] [Indexed: 11/09/2022] Open
Abstract
Reverse transcription quantitative PCR (RT-qPCR) is used to quantify gene expression and require standardization with reference genes. We sought to identify the reference genes best suited for experiments that induce osteogenic differentiation from human induced pluripotent stem cells. They were cultured in an undifferentiated maintenance medium and after confluence, further cultured in an osteogenic differentiation medium for 28 days. RT-qPCR was performed on undifferentiation markers, osteoblast and osteocyte differentiation markers, and reference gene candidates. The expression stability of each reference gene candidate was ranked using four algorithms. General rankings identified TATA box binding protein in the first place, followed by transferrin receptor, ribosomal protein large P0, and finally, beta-2-microglobulin, which was revealed as the least stable. Interestingly, universally used GAPDH and ACTB were found to be unsuitable. Our findings strongly suggest a need to evaluate the expression stability of reference gene candidates for each experiment.
Collapse
Affiliation(s)
- Kensuke Okamura
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - Yusuke Inagaki
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan.
| | - Takeshi K Matsui
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Masaya Matsubayashi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Tomoya Komeda
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Munehiro Ogawa
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Yasuhito Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| |
Collapse
|
14
|
Zujur D, Kanke K, Onodera S, Tani S, Lai J, Azuma T, Xin X, Lichtler AC, Rowe DW, Saito T, Tanaka S, Masaki H, Nakauchi H, Chung UI, Hojo H, Ohba S. Stepwise strategy for generating osteoblasts from human pluripotent stem cells under fully defined xeno-free conditions with small-molecule inducers. Regen Ther 2020; 14:19-31. [PMID: 31988991 PMCID: PMC6965656 DOI: 10.1016/j.reth.2019.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/20/2019] [Accepted: 12/24/2019] [Indexed: 01/01/2023] Open
Abstract
Clinically relevant human induced pluripotent stem cell (hiPSC) derivatives require efficient protocols to differentiate hiPSCs into specific lineages. Here we developed a fully defined xeno-free strategy to direct hiPSCs toward osteoblasts within 21 days. The strategy successfully achieved the osteogenic induction of four independently derived hiPSC lines by a sequential use of combinations of small-molecule inducers. The induction first generated mesodermal cells, which subsequently recapitulated the developmental expression pattern of major osteoblast genes and proteins. Importantly, Col2.3-Cherry hiPSCs subjected to this strategy strongly expressed the cherry fluorescence that has been observed in bone-forming osteoblasts in vivo. Moreover, the protocol combined with a three-dimensional (3D) scaffold was suitable for the generation of a xeno-free 3D osteogenic system. Thus, our strategy offers a platform with significant advantages for bone biology studies and it will also contribute to clinical applications of hiPSCs to skeletal regenerative medicine.
Collapse
Affiliation(s)
- Denise Zujur
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kosuke Kanke
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Shoichiro Tani
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jenny Lai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Xiaonan Xin
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Alexander C Lichtler
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - David W Rowe
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Taku Saito
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sakae Tanaka
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Masaki
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiromitsu Nakauchi
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ung-Il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hironori Hojo
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Ohba
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Expression of miRNAs from the Imprinted DLK1/DIO3 Locus Signals the Osteogenic Potential of Human Pluripotent Stem Cells. Cells 2019; 8:cells8121523. [PMID: 31779280 PMCID: PMC6953034 DOI: 10.3390/cells8121523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022] Open
Abstract
Substantial variations in differentiation properties have been reported among human pluripotent cell lines (hPSC), which could affect their utility and clinical safety. We characterized the variable osteogenic capacity observed between different human pluripotent stem cell lines. By focusing on the miRNA expression profile, we demonstrated that the osteogenic differentiation propensity of human pluripotent stem cell lines could be associated with the methylation status and the expression of miRNAs from the imprinted DLK1/DIO3 locus. More specifically, quantitative analysis of the expression of six different miRNAs of that locus prospectively identified human embryonic stem cells and human-induced pluripotent stem cells with differential osteogenic differentiation capacities. At the molecular and functional levels, we showed that these miRNAs modulated the expression of the activin receptor type 2B and the downstream signal transduction, which impacted osteogenesis. In conclusion, miRNAs of the imprinted DLK1/DIO3 locus appear to have both a predictive value and a functional impact in determining the osteogenic fate of human pluripotent stem cells.
Collapse
|
16
|
Gomez GA, Prasad MS, Wong M, Charney RM, Shelar PB, Sandhu N, Hackland JOS, Hernandez JC, Leung AW, García-Castro MI. WNT/β-catenin modulates the axial identity of embryonic stem cell-derived human neural crest. Development 2019; 146:dev.175604. [PMID: 31399472 DOI: 10.1242/dev.175604] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/26/2019] [Indexed: 12/27/2022]
Abstract
WNT/β-catenin signaling is crucial for neural crest (NC) formation, yet the effects of the magnitude of the WNT signal remain ill-defined. Using a robust model of human NC formation based on human pluripotent stem cells (hPSCs), we expose that the WNT signal modulates the axial identity of NCs in a dose-dependent manner, with low WNT leading to anterior OTX+ HOX- NC and high WNT leading to posterior OTX- HOX+ NC. Differentiation tests of posterior NC confirm expected derivatives, including posterior-specific adrenal derivatives, and display partial capacity to generate anterior ectomesenchymal derivatives. Furthermore, unlike anterior NC, posterior NC exhibits a transient TBXT+/SOX2+ neuromesodermal precursor-like intermediate. Finally, we analyze the contributions of other signaling pathways in posterior NC formation, which suggest a crucial role for FGF in survival/proliferation, and a requirement of BMP for NC maturation. As expected retinoic acid (RA) and FGF are able to modulate HOX expression in the posterior NC. Surprisingly, early RA supplementation prohibits NC formation. This work reveals for the first time that the amplitude of WNT signaling can modulate the axial identity of NC cells in humans.
Collapse
Affiliation(s)
- Gustavo A Gomez
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Maneeshi S Prasad
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Man Wong
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Rebekah M Charney
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Patrick B Shelar
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Nabjot Sandhu
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - James O S Hackland
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Jacqueline C Hernandez
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Alan W Leung
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Martín I García-Castro
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
17
|
Gomez GA, Prasad MS, Sandhu N, Shelar PB, Leung AW, García-Castro MI. Human neural crest induction by temporal modulation of WNT activation. Dev Biol 2019; 449:99-106. [PMID: 30826399 DOI: 10.1016/j.ydbio.2019.02.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/31/2019] [Accepted: 02/26/2019] [Indexed: 01/28/2023]
Abstract
The developmental biology of neural crest cells in humans remains unexplored due to technical and ethical challenges. The use of pluripotent stem cells to model human neural crest development has gained momentum. We recently introduced a rapid chemically defined approach to induce robust neural crest by WNT/β-CATENIN activation. Here we investigate the temporal requirements of ectopic WNT activation needed to induce neural crest cells. By altering the temporal activation of canonical WNT/β-CATENIN with a GSK3 inhibitor we find that a 2 Day pulse of WNT/β-CATENIN activation via GSK3 inhibition is optimal to generate bona fide neural crest cells, as shown by their capacity to differentiate to neural crest specific fates including peripheral neurons, glia, melanoblasts and ectomesenchymal osteocytes, chondrocytes and adipocytes. Although a 2 Day pulse can impart neural crest character when GSK3 is inhibited days after seeding, optimal results are obtained when WNT is activated from the beginning, and we find that the window of competence to induce NCs from non-neural ectodermal/placodal precursors closes by day 3 of culture. The reduced requirement for exogenous WNT activation offers an approach that is cost-effective, and we show that this adherent 2-dimensional approach is efficient in a broad range of culture platforms ranging from 96-well vessels to 10 cm dishes.
Collapse
Affiliation(s)
- Gustavo A Gomez
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Maneeshi S Prasad
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Nabjot Sandhu
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Patrick B Shelar
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Alan W Leung
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA; Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Martín I García-Castro
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA.
| |
Collapse
|
18
|
Martinez IKC, Sparks NRL, Madrid JV, Affeldt H, Vera MKM, Bhanu B, Zur Nieden NI. Video-based kinetic analysis of calcification in live osteogenic human embryonic stem cell cultures reveals the developmentally toxic effect of Snus tobacco extract. Toxicol Appl Pharmacol 2019; 363:111-121. [PMID: 30468815 PMCID: PMC6594699 DOI: 10.1016/j.taap.2018.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 11/21/2022]
Abstract
Epidemiological studies suggest tobacco consumption as a probable environmental factor for a variety of congenital anomalies, including low bone mass and increased fracture risk. Despite intensive public health initiatives to publicize the detrimental effects of tobacco use during pregnancy, approximately 10-20% of women in the United States still consume tobacco during pregnancy, some opting for so-called harm-reduction tobacco. These include Snus, a type of orally-consumed yet spit-free chewing tobacco, which is purported to expose users to fewer harmful chemicals. Concerns remain from a developmental health perspective since Snus has not reduced overall health risk to consumers and virtually nothing is known about whether skeletal problems from intrauterine exposure arise in the embryo. Utilizing a newly developed video-based calcification assay we determined that extracts from Snus tobacco hindered calcification of osteoblasts derived from pluripotent stem cells early on in their differentiation. Nicotine, a major component of tobacco products, had no measurable effect in the tested concentration range. However, through the extraction of video data, we determined that the tobacco-specific nitrosamine N'-nitrosonornicotine caused a reduction in calcification with similar kinetics as the complete Snus extract. From measurements of actual nitrosamine concentrations in Snus tobacco extract we furthermore conclude that N'-nitrosonornicotine has the potential to be a major trigger of developmental osteotoxicity caused by Snus tobacco.
Collapse
Affiliation(s)
- Ivann K C Martinez
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, United States; IGERT Graduate Program in Video Bioinformatics and Cell, Molecular and Developmental Biology Graduate Program, University of California Riverside, Riverside, CA, United States
| | - Nicole R L Sparks
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, United States; Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA, United States
| | - Joseph V Madrid
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, United States
| | - Henry Affeldt
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, United States
| | - Madeline K M Vera
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, United States; Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA, United States
| | - Bir Bhanu
- Center for Research in Intelligent Systems, Bourns College of Engineering, University of California Riverside, Riverside, CA, United States
| | - Nicole I Zur Nieden
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, United States; IGERT Graduate Program in Video Bioinformatics and Cell, Molecular and Developmental Biology Graduate Program, University of California Riverside, Riverside, CA, United States; Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA, United States.
| |
Collapse
|