1
|
Da Silva K, Kumar P, Choonara YE. The paradigm of stem cell secretome in tissue repair and regeneration: Present and future perspectives. Wound Repair Regen 2025; 33:e13251. [PMID: 39780313 PMCID: PMC11711308 DOI: 10.1111/wrr.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
As the number of patients requiring organ transplants continues to rise exponentially, there is a dire need for therapeutics, with repair and regenerative properties, to assist in alleviating this medical crisis. Over the past decade, there has been a shift from conventional stem cell treatments towards the use of the secretome, the protein and factor secretions from cells. These components may possess novel druggable targets and hold the key to profoundly altering the field of regenerative medicine. Despite the progress in this field, clinical translation of secretome-containing products is limited by several challenges including but not limited to ensuring batch-to-batch consistency, the prevention of further heterogeneity, production of sufficient secretome quantities, product registration, good manufacturing practice protocols and the pharmacokinetic/pharmacodynamic profiles of all the components. Despite this, the secretome may hold the key to unlocking the regenerative blockage scientists have encountered for years. This review critically analyses the secretome derived from different cell sources and used in several tissues for tissue regeneration. Furthermore, it provides an overview of the current delivery strategies and the future perspectives for the secretome as a potential therapeutic. The success and possible shortcomings of the secretome are evaluated.
Collapse
Affiliation(s)
- Kate Da Silva
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
2
|
Castilla-Casadiego DA, Loh DH, Pineda-Hernandez A, Rosales AM. Stimuli-Responsive Substrates to Control the Immunomodulatory Potential of Stromal Cells. Biomacromolecules 2024; 25:6319-6337. [PMID: 39283807 PMCID: PMC11506505 DOI: 10.1021/acs.biomac.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Mesenchymal stromal cells (MSCs) have broad immunomodulatory properties that range from regulation, proliferation, differentiation, and immune cell activation to secreting bioactive molecules that inhibit inflammation and regulate immune response. These properties provide MSCs with high therapeutic potency that has been shown to be relevant to tissue engineering and regenerative medicine. Hence, researchers have explored diverse strategies to control the immunomodulatory potential of stromal cells using polymeric substrates or scaffolds. These substrates alter the immunomodulatory response of MSCs, especially through biophysical cues such as matrix mechanical properties. To leverage these cell-matrix interactions as a strategy for priming MSCs, emerging studies have explored the use of stimuli-responsive substrates to enhance the therapeutic value of stromal cells. This review highlights how stimuli-responsive materials, including chemo-responsive, microenvironment-responsive, magneto-responsive, mechano-responsive, and photo-responsive substrates, have specifically been used to promote the immunomodulatory potential of stromal cells by controlling their secretory activity.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Darren H Loh
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Aldaly Pineda-Hernandez
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrianne M Rosales
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Ma Z, Liu T, Liu L, Pei Y, Wang T, Wang Z, Guan Y, Zhang X, Zhang Y, Chen X. Epidermal Neural Crest Stem Cell Conditioned Medium Enhances Spinal Cord Injury Recovery via PI3K/AKT-Mediated Neuronal Apoptosis Suppression. Neurochem Res 2024; 49:2854-2870. [PMID: 39023805 PMCID: PMC11365850 DOI: 10.1007/s11064-024-04207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/19/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
This study aimed to assess the impact of conditioned medium from epidermal neural crest stem cells (EPI-NCSCs-CM) on functional recovery following spinal cord injury (SCI), while also exploring the involvement of the PI3K-AKT signaling pathway in regulating neuronal apoptosis. EPI-NCSCs were isolated from 10-day-old Sprague-Dawley rats and cultured for 48 h to obtain EPI-NCSC-CM. SHSY-5Y cells were subjected with H2O2 treatment to induce apoptosis. Cell viability and survival rates were evaluated using the CCK-8 assay and calcein-AM/PI staining. SCI contusion model was established in adult Sprague-Dawley rats to assess functional recovery, utilizing the Basso, Beattie and Bresnahan (BBB) scoring system, inclined test, and footprint observation. Neurological restoration after SCI was analyzed through electrophysiological recordings. Histological analysis included hematoxylin and eosin (H&E) staining and Nissl staining to evaluate tissue organization. Apoptosis and oxidative stress levels were assessed using TUNEL staining and ROS detection methods. Additionally, western blotting was performed to examine the expression of apoptotic markers and proteins related to the PI3K/AKT signaling pathway. EPI-NCSC-CM significantly facilitated functional and histological recovery in SCI rats by inhibiting neuronal apoptosis through modulation of the PI3K/AKT pathway. Administration of EPI-NCSCs-CM alleviated H2O2-induced neurotoxicity in SHSY-5Y cells in vitro. The use of LY294002, a PI3K inhibitor, underscored the crucial role of the PI3K/AKT signaling pathway in regulating neuronal apoptosis. This study contributes to the ongoing exploration of molecular pathways involved in spinal cord injury (SCI) repair, focusing on the therapeutic potential of EPI-NCSC-CM. The research findings indicate that EPI-NCSC-CM exerts a neuroprotective effect by suppressing neuronal apoptosis through activation of the PI3K/AKT pathway in SCI rats. These results highlight the promising role of EPI-NCSC-CM as a potential treatment strategy for SCI, emphasizing the significance of the PI3K/AKT pathway in mediating its beneficial effects.
Collapse
Affiliation(s)
- Ziqian Ma
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China
| | - Tao Liu
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Liang Liu
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yilun Pei
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Tianyi Wang
- Department of Orthopedics, 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, 067000, Hebei Province, P.R. China
| | - Zhijie Wang
- Department of Pediatric Internal Medicine, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurological Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xinwei Zhang
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - Xueming Chen
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Enström A, Carlsson R, Buizza C, Lewi M, Paul G. Pericyte-Specific Secretome Profiling in Hypoxia Using TurboID in a Multicellular in Vitro Spheroid Model. Mol Cell Proteomics 2024; 23:100782. [PMID: 38705386 PMCID: PMC11176767 DOI: 10.1016/j.mcpro.2024.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024] Open
Abstract
Cellular communication within the brain is imperative for maintaining homeostasis and mounting effective responses to pathological triggers like hypoxia. However, a comprehensive understanding of the precise composition and dynamic release of secreted molecules has remained elusive, confined primarily to investigations using isolated monocultures. To overcome these limitations, we utilized the potential of TurboID, a non-toxic biotin ligation enzyme, to capture and enrich secreted proteins specifically originating from human brain pericytes in spheroid cocultures with human endothelial cells and astrocytes. This approach allowed us to characterize the pericyte secretome within a more physiologically relevant multicellular setting encompassing the constituents of the blood-brain barrier. Through a combination of mass spectrometry and multiplex immunoassays, we identified a wide spectrum of different secreted proteins by pericytes. Our findings demonstrate that the pericytes secretome is profoundly shaped by their intercellular communication with other blood-brain barrier-residing cells. Moreover, we identified substantial differences in the secretory profiles between hypoxic and normoxic pericytes. Mass spectrometry analysis showed that hypoxic pericytes in coculture increase their release of signals related to protein secretion, mTOR signaling, and the complement system, while hypoxic pericytes in monocultures showed an upregulation in proliferative pathways including G2M checkpoints, E2F-, and Myc-targets. In addition, hypoxic pericytes show an upregulation of proangiogenic proteins such as VEGFA but display downregulation of canonical proinflammatory cytokines such as CXCL1, MCP-1, and CXCL6. Understanding the specific composition of secreted proteins in the multicellular brain microvasculature is crucial for advancing our knowledge of brain homeostasis and the mechanisms underlying pathology. This study has implications for the identification of targeted therapeutic strategies aimed at modulating microvascular signaling in brain pathologies associated with hypoxia.
Collapse
Affiliation(s)
- Andreas Enström
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Robert Carlsson
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Carolina Buizza
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Marvel Lewi
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden; Department of Neurology, Scania University Hospital, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Shimizu Y, Ntege EH, Takahara E, Matsuura N, Matsuura R, Kamizato K, Inoue Y, Sowa Y, Sunami H. Adipose-derived stem cell therapy for spinal cord injuries: Advances, challenges, and future directions. Regen Ther 2024; 26:508-519. [PMID: 39161365 PMCID: PMC11331855 DOI: 10.1016/j.reth.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
Spinal cord injury (SCI) has limited treatment options for regaining function. Adipose-derived stem cells (ADSCs) show promise owing to their ability to differentiate into multiple cell types, promote nerve cell survival, and modulate inflammation. This review explores ADSC therapy for SCI, focusing on its potential for improving function, preclinical and early clinical trial progress, challenges, and future directions. Preclinical studies have demonstrated ADSC transplantation's effectiveness in promoting functional recovery, reducing cavity formation, and enhancing nerve regrowth and myelin repair. To improve ADSC efficacy, strategies including genetic modification and combination with rehabilitation are being explored. Early clinical trials have shown safety and feasibility, with some suggesting motor and sensory function improvements. Challenges remain for clinical translation, including optimizing cell survival and delivery, determining dosing, addressing tumor formation risks, and establishing standardized protocols. Future research should focus on overcoming these challenges and exploring the potential for combining ADSC therapy with other treatments, including rehabilitation and medication.
Collapse
Affiliation(s)
- Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Eisaku Takahara
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Naoki Matsuura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Rikako Matsuura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Kota Kamizato
- Department of Anesthesiology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Yoshikazu Inoue
- Department of Plastic and Reconstructive Surgery, School of Medicine, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, 329-0498, Tochigi, Japan
| | - Hiroshi Sunami
- Center for Advanced Medical Research, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| |
Collapse
|
6
|
Liu MC, Guo QF, Zhang WW, Luo HL, Zhang WJ, Hu HJ. Olfactory ensheathing cells as candidate cells for chronic pain treatment. J Chem Neuroanat 2024; 137:102413. [PMID: 38492895 DOI: 10.1016/j.jchemneu.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Chronic pain is often accompanied by tissue damage and pain hypersensitivity. It easily relapses and is challenging to cure, which seriously affects the patients' quality of life and is an urgent problem to be solved. Current treatment methods primarily rely on morphine drugs, which do not address the underlying nerve injury and may cause adverse reactions. Therefore, in recent years, scientists have shifted their focus from chronic pain treatment to cell transplantation. This review describes the classification and mechanism of chronic pain through the introduction of the characteristics of olfactory ensheathing cells (OECs), an in-depth discussion of special glial cells through the phagocytosis of nerve debris, receptor-ligand interactions, providing nutrition, and other inhibition of neuroinflammation, and ultimately supporting axon regeneration and mitigation of chronic pain. This review summarizes the potential and limitations of OECs for treating chronic pain by objectively analyzing relevant clinical trials and methods to enhance efficacy and future development prospects.
Collapse
Affiliation(s)
- Mei-Chen Liu
- The Second Clinical Medical College, Nanchang University, China
| | - Qing-Fa Guo
- The Second Clinical Medical College, Nanchang University, China
| | - Wei-Wei Zhang
- The Second Clinical Medical College, Nanchang University, China
| | - Hong-Liang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Hai-Jun Hu
- Anesthesiology Department, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
7
|
Lentilhas-Graça J, Santos DJ, Afonso J, Monteiro A, Pinho AG, Mendes VM, Dias MS, Gomes ED, Lima R, Fernandes LS, Fernandes-Amorim F, Pereira IM, de Sousa N, Cibrão JR, Fernandes AM, Serra SC, Rocha LA, Campos J, Pinho TS, Monteiro S, Manadas B, Salgado AJ, Almeida RD, Silva NA. The secretome of macrophages has a differential impact on spinal cord injury recovery according to the polarization protocol. Front Immunol 2024; 15:1354479. [PMID: 38444856 PMCID: PMC10912310 DOI: 10.3389/fimmu.2024.1354479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction The inflammatory response after spinal cord injury (SCI) is an important contributor to secondary damage. Infiltrating macrophages can acquire a spectrum of activation states, however, the microenvironment at the SCI site favors macrophage polarization into a pro-inflammatory phenotype, which is one of the reasons why macrophage transplantation has failed. Methods In this study, we investigated the therapeutic potential of the macrophage secretome for SCI recovery. We investigated the effect of the secretome in vitro using peripheral and CNS-derived neurons and human neural stem cells. Moreover, we perform a pre-clinical trial using a SCI compression mice model and analyzed the recovery of motor, sensory and autonomic functions. Instead of transplanting the cells, we injected the paracrine factors and extracellular vesicles that they secrete, avoiding the loss of the phenotype of the transplanted cells due to local environmental cues. Results We demonstrated that different macrophage phenotypes have a distinct effect on neuronal growth and survival, namely, the alternative activation with IL-10 and TGF-β1 (M(IL-10+TGF-β1)) promotes significant axonal regeneration. We also observed that systemic injection of soluble factors and extracellular vesicles derived from M(IL-10+TGF-β1) macrophages promotes significant functional recovery after compressive SCI and leads to higher survival of spinal cord neurons. Additionally, the M(IL-10+TGF-β1) secretome supported the recovery of bladder function and decreased microglial activation, astrogliosis and fibrotic scar in the spinal cord. Proteomic analysis of the M(IL-10+TGF-β1)-derived secretome identified clusters of proteins involved in axon extension, dendritic spine maintenance, cell polarity establishment, and regulation of astrocytic activation. Discussion Overall, our results demonstrated that macrophages-derived soluble factors and extracellular vesicles might be a promising therapy for SCI with possible clinical applications.
Collapse
Affiliation(s)
- José Lentilhas-Graça
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Diogo J. Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - João Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Andreia G. Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Vera M. Mendes
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Marta S. Dias
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Eduardo D. Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Luís S. Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Fernando Fernandes-Amorim
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Inês M. Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Nídia de Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Jorge R. Cibrão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Aline M. Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Sofia C. Serra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Luís A. Rocha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Tiffany S. Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Ramiro D. Almeida
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| |
Collapse
|
8
|
Chen X, Liu Y, Stavrinou P, Stavrinou L, Hu W, Goldbrunner R, Zheng F, He H. Spinal cord injury: Olfactory ensheathing cell-based therapeutic strategies. J Neurosci Res 2024; 102:e25283. [PMID: 38284859 DOI: 10.1002/jnr.25283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/22/2023] [Accepted: 11/16/2023] [Indexed: 01/30/2024]
Abstract
Spinal cord injury (SCI) is a highly disabling neurological disorder that is difficult to treat due to its complex pathophysiology and nerve regeneration difficulties. Hence, effective SCI treatments are necessary. Olfactory ensheathing cells (OECs), glial cells derived from the olfactory bulb or mucosa, are ideal candidates for SCI treatment because of their neuroprotective and regenerative properties, ample supply, and convenience. In vitro, animal model, and human trial studies have reported discoveries on OEC transplantation; however, shortcomings have also been demonstrated. Recent studies have optimized various OEC transplantation strategies, including drug integration, biomaterials, and gene editing. This review aims to introduce OECs mechanisms in repairing SCI, summarize the research progress of OEC transplantation-optimized strategies, and provide novel research ideas for SCI treatment.
Collapse
Affiliation(s)
- Xinli Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yibin Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Pantelis Stavrinou
- Department of Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
- Neurosurgery, Metropolitan Hospital, Athens, Greece
| | - Lampis Stavrinou
- 2nd Department of Neurosurgery, "Attikon" University Hospital, National and Kapodistrian University, Athens Medical School, Athens, Greece
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Roland Goldbrunner
- Department of Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hefan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
9
|
Liu Y, Wang Y, Wang Y, Zhou J, Ding W. The growth status and functions of olfactory ensheathing cells cultured on randomly oriented and aligned type-I-collagen-based nanofibrous scaffolds. NANOTECHNOLOGY 2023; 35:035101. [PMID: 37905427 DOI: 10.1088/1361-6528/ad02a4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
Aim. The potential of olfactory ensheathing cells (OECs) as a cell therapy for spinal cord reconstruction and regeneration after injury has drawn significant attention in recent years. This study attempted to investigate the influences of nano-fibrous scaffolds on the growth status and functional properties of OECs.Methods.The ultra-morphology of the scaffolds was visualized using scanning electron microscopy (SEM). To culture OECs, donated cells were subcultured and identified with p75. Cell proliferation, apoptosis, and survival rates were measured through MTT assay, Annexin-V/PI staining, and p75 cell counting, respectively. The adhesion of cells cultured on scaffolds was observed using SEM. Additionally, the functions of OECs cultured on scaffolds were assessed by testing gene expression levels through real time polymerase chain reaction.Results.The electrospun type I collagen-based nano-fibers exhibited a smooth surface and uniform distribution. It was indicated that the proliferation and survival rates of OECs cultured on both randomly oriented and aligned type I collagen-based nano-fibrous scaffolds were higher than those observed in the collagen-coated control. Conversely, apoptosis rates were lower in cells cultured on scaffolds. Furthermore, OEC adhesion was better on the scaffolds than on the control. The expression levels of target genes were significantly elevated in cells cultured on scaffolds versus the controls.Conclusion.As a whole, the utilization of aligned collagen nanofibers has demonstrated significant advantages in promoting cell growth and improving cell function. These findings have important implications for the field of regenerative medicine and suggest that the approach may hold promise for the future therapeutic applications.
Collapse
Affiliation(s)
- Yugang Liu
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, People's Republic of China
- Department of Orthopedic Surgery, Affiliated Hospital of Hebei University of Engineering, 81 Congtai Road, Handan, 056002, People's Republic of China
| | - Yansong Wang
- Department of Spine Surgery, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, People's Republic of China
| | - Ying Wang
- Department of Orthopedic Surgery, Affiliated Hospital of Hebei University of Engineering, 81 Congtai Road, Handan, 056002, People's Republic of China
| | - Jihui Zhou
- Department of Spine Surgery, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, People's Republic of China
| | - Wenyuan Ding
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, People's Republic of China
| |
Collapse
|
10
|
Drobiova H, Sindhu S, Ahmad R, Haddad D, Al-Mulla F, Al Madhoun A. Wharton's jelly mesenchymal stem cells: a concise review of their secretome and prospective clinical applications. Front Cell Dev Biol 2023; 11:1211217. [PMID: 37440921 PMCID: PMC10333601 DOI: 10.3389/fcell.2023.1211217] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Accumulating evidence indicates that most primary Wharton's jelly mesenchymal stem cells (WJ-MSCs) therapeutic potential is due to their paracrine activity, i.e., their ability to modulate their microenvironment by releasing bioactive molecules and factors collectively known as secretome. These bioactive molecules and factors can either be released directly into the surrounding microenvironment or can be embedded within the membrane-bound extracellular bioactive nano-sized (usually 30-150 nm) messenger particles or vesicles of endosomal origin with specific route of biogenesis, known as exosomes or carried by relatively larger particles (100 nm-1 μm) formed by outward blebbing of plasma membrane called microvesicles (MVs); exosomes and MVs are collectively known as extracellular vesicles (EVs). The bioactive molecules and factors found in secretome are of various types, including cytokines, chemokines, cytoskeletal proteins, integrins, growth factors, angiogenic mediators, hormones, metabolites, and regulatory nucleic acid molecules. As expected, the secretome performs different biological functions, such as immunomodulation, tissue replenishment, cellular homeostasis, besides possessing anti-inflammatory and anti-fibrotic effects. This review highlights the current advances in research on the WJ-MSCs' secretome and its prospective clinical applications.
Collapse
Affiliation(s)
- Hana Drobiova
- Human Genetics Unit, Department of Pathology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | - Sardar Sindhu
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
11
|
Sousa CS, Lima R, Cibrão JR, Gomes ED, Fernandes LS, Pinho TS, Silva D, Campos J, Salgado AJ, Silva NA. Pre-Clinical Assessment of Roflumilast Therapy in a Thoracic Model of Spinal Cord Injury. Pharmaceutics 2023; 15:1556. [PMID: 37242797 PMCID: PMC10222626 DOI: 10.3390/pharmaceutics15051556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The failure of axons to regenerate after a spinal cord injury (SCI) remains one of the greatest challenges in neuroscience. The initial mechanical trauma is followed by a secondary injury cascade, creating a hostile microenvironment, which not only is not permissive to regeneration but also leads to further damage. One of the most promising approaches for promoting axonal regeneration is to maintain the levels of cyclic adenosine monophosphate (cAMP), specifically by a phosphodiesterase-4 (PDE4) inhibitor expressed in neural tissues. Therefore, in our study, we evaluated the therapeutic effect of an FDA-approved PDE4 inhibitor, Roflumilast (Rof), in a thoracic contusion rat model. Results indicate that the treatment was effective in promoting functional recovery. Rof-treated animals showed improvements in both gross and fine motor function. Eight weeks post-injury, the animals significantly recovered by achieving occasional weight-supported plantar steps. Histological assessment revealed a significant decrease in cavity size, less reactive microglia, as well as higher axonal regeneration in treated animals. Molecular analysis revealed that IL-10 and IL-13 levels, as well as VEGF, were increased in the serum of Rof-treated animals. Overall, Roflumilast promotes functional recovery and supports neuroregeneration in a severe thoracic contusion injury model and may be important in SCI treatment.
Collapse
Affiliation(s)
- Carla S Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
- Department of Neurosurgery, Hospital Garcia de Orta, 2805-267 Almada, Portugal
| | - Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - Jorge R Cibrão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - Luís S Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - Tiffany S Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - Deolinda Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| |
Collapse
|
12
|
Ghasemi M, Roshandel E, Mohammadian M, Farhadihosseinabadi B, Akbarzadehlaleh P, Shamsasenjan K. Mesenchymal stromal cell-derived secretome-based therapy for neurodegenerative diseases: overview of clinical trials. Stem Cell Res Ther 2023; 14:122. [PMID: 37143147 PMCID: PMC10161443 DOI: 10.1186/s13287-023-03264-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/06/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Over the past few years, mesenchymal stromal cells (MSCs) have attracted a great deal of scientific attention owing to their promising results in the treatment of incurable diseases. However, there are several concerns about their possible side effects after direct cell transplantation, including host immune response, time-consuming cell culture procedures, and the dependence of cell quality on the donor, which limit the application of MSCs in clinical trials. On the other hand, it is well accepted that the beneficial effects of MSCs are mediated by secretome rather than cell replacement. MSC secretome refers to a variety of bioactive molecules involved in different biological processes, specifically neuro-regeneration. MAIN BODY Due to the limited ability of the central nervous system to compensate for neuronal loss and relieve disease progress, mesenchymal stem cell products may be used as a potential cure for central nervous system disorders. In the present study, the therapeutic effects of MSC secretome were reviewed and discussed the possible mechanisms in the three most prevalent central nervous system disorders, namely Alzheimer's disease, multiple sclerosis, and Parkinson's disease. The current work aimed to help discover new medicine for the mentioned complications. CONCLUSION The use of MSC-derived secretomes in the treatment of the mentioned diseases has encouraging results, so it can be considered as a treatment option for which no treatment has been introduced so far.
Collapse
Affiliation(s)
- Maryam Ghasemi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Mohammadian
- Department of Hematology, School of Medicine, Tarbiat Modares University (TMU), Tehran, Iran
| | | | - Parvin Akbarzadehlaleh
- Pharmaceutical Biotechnology Department, Pharmacy Faculty, Tabriz University of Medical Science, Tabriz, Iran
| | - Karim Shamsasenjan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Liu JP, Wang JL, Hu BE, Zou FL, Wu CL, Shen J, Zhang WJ. Olfactory ensheathing cells and neuropathic pain. Front Cell Dev Biol 2023; 11:1147242. [PMID: 37223000 PMCID: PMC10201020 DOI: 10.3389/fcell.2023.1147242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 08/29/2023] Open
Abstract
Damage to the nervous system can lead to functional impairment, including sensory and motor functions. Importantly, neuropathic pain (NPP) can be induced after nerve injury, which seriously affects the quality of life of patients. Therefore, the repair of nerve damage and the treatment of pain are particularly important. However, the current treatment of NPP is very weak, which promotes researchers to find new methods and directions for treatment. Recently, cell transplantation technology has received great attention and has become a hot spot for the treatment of nerve injury and pain. Olfactory ensheathing cells (OECs) are a kind of glial cells with the characteristics of lifelong survival in the nervous system and continuous division and renewal. They also secrete a variety of neurotrophic factors, bridge the fibers at both ends of the injured nerve, change the local injury microenvironment, and promote axon regeneration and other biological functions. Different studies have revealed that the transplantation of OECs can repair damaged nerves and exert analgesic effect. Some progress has been made in the effect of OECs transplantation in inhibiting NPP. Therefore, in this paper, we provided a comprehensive overview of the biology of OECs, described the possible pathogenesis of NPP. Moreover, we discussed on the therapeutic effect of OECs transplantation on central nervous system injury and NPP, and prospected some possible problems of OECs transplantation as pain treatment. To provide some valuable information for the treatment of pain by OECs transplantation in the future.
Collapse
Affiliation(s)
- Ji-peng Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jia-ling Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Bai-er Hu
- Department of Physical Examination, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Fei-long Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Chang-lei Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jie Shen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
Reshamwala R, Oieni F, Shah M. Non-stem Cell Mediated Tissue Regeneration and Repair. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
15
|
Lima R, Monteiro A, Salgado AJ, Monteiro S, Silva NA. Pathophysiology and Therapeutic Approaches for Spinal Cord Injury. Int J Mol Sci 2022; 23:ijms232213833. [PMID: 36430308 PMCID: PMC9698625 DOI: 10.3390/ijms232213833] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Spinal cord injury (SCI) is a disabling condition that disrupts motor, sensory, and autonomic functions. Despite extensive research in the last decades, SCI continues to be a global health priority affecting thousands of individuals every year. The lack of effective therapeutic strategies for patients with SCI reflects its complex pathophysiology that leads to the point of no return in its function repair and regeneration capacity. Recently, however, several studies started to uncover the intricate network of mechanisms involved in SCI leading to the development of new therapeutic approaches. In this work, we present a detailed description of the physiology and anatomy of the spinal cord and the pathophysiology of SCI. Additionally, we provide an overview of different molecular strategies that demonstrate promising potential in the modulation of the secondary injury events that promote neuroprotection or neuroregeneration. We also briefly discuss other emerging therapies, including cell-based therapies, biomaterials, and epidural electric stimulation. A successful therapy might target different pathologic events to control the progression of secondary damage of SCI and promote regeneration leading to functional recovery.
Collapse
Affiliation(s)
- Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence:
| |
Collapse
|
16
|
Hall A, Fortino T, Spruance V, Niceforo A, Harrop JS, Phelps PE, Priest CA, Zholudeva LV, Lane MA. Cell transplantation to repair the injured spinal cord. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:79-158. [PMID: 36424097 PMCID: PMC10008620 DOI: 10.1016/bs.irn.2022.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Adam Hall
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Tara Fortino
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Victoria Spruance
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Division of Kidney, Urologic, & Hematologic Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alessia Niceforo
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - James S Harrop
- Department of Neurological and Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patricia E Phelps
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA, United States
| | | | - Lyandysha V Zholudeva
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Gladstone Institutes, San Francisco, CA, United States
| | - Michael A Lane
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
17
|
Kiaie N, Gorabi AM, Loveless R, Teng Y, Jamialahmadi T, Sahebkar A. The regenerative potential of glial progenitor cells and reactive astrocytes in CNS injuries. Neurosci Biobehav Rev 2022; 140:104794. [PMID: 35902044 DOI: 10.1016/j.neubiorev.2022.104794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Cell therapeutic approaches focusing on the regeneration of damaged tissue have been a popular topic among researchers in recent years. In particular, self-repair scarring from the central nervous system (CNS) can significantly complicate the treatment of an injured patient. In CNS regeneration schemes, either glial progenitor cells or reactive glial cells have key roles to play. In this review, the contribution and underlying mechanisms of these progenitor/reactive glial cells during CNS regeneration are discussed, as well as their role in CNS-related diseases.
Collapse
Affiliation(s)
- Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Armita Mahdavi Gorabi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Fan H, Chen Z, Tang H, Shan L, Chen Z, Wang X, Huang D, Liu S, Chen X, Yang H, Hao D. Exosomes derived from olfactory ensheathing cells provided neuroprotection for spinal cord injury by switching the phenotype of macrophages/microglia. Bioeng Transl Med 2022; 7:e10287. [PMID: 35600663 PMCID: PMC9115713 DOI: 10.1002/btm2.10287] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
Transplantation of olfactory ensheathing cells (OECs) has been demonstrated to be beneficial for spinal cord injury (SCI) by modulating neuroinflammation, supporting neuronal survival and promoting angiogenesis. Besides OECs, the conditioned medium (CM) from OECs has also been proved to have therapeutic effects for SCI, indicating that the bioactive substances secreted by OECs are essential for its protective effects. Nevertheless, there is still little information regarding the underlying mechanisms. Considering that exosomes are crucial for intercellular communication and could be secreted by different types of cells, we speculated that the therapeutic potential of OECs for SCI might be partially based on their exosomes. To examine whether OECs could secret exosomes, we isolated exosomes by polyethylene glycol-based method, and identified them by electron microscopy study, nanoparticle tracking analysis (NTA) and western blotting. In view of phagocytic ability of microglia and its distinct roles in microenvironment regulation after SCI, we then focused the effects of OECs-derived exosomes (OECs-Exo) on microglial phenotypic regulation. We found that the extracted OECs-Exo could be engulfed by microglia and partially reverse the LPS-induced pro-inflammatory polarization through inhibiting NF-κB and c-Jun signaling pathways in vitro. Furthermore, OECs-Exo were found to inhibit the polarization of pro-inflammatory macrophages/microglia while increased the numbers of anti-inflammatory cells after SCI. Considering that the neuronal injury is closely related to the activation state of macrophages/microglia, co-culture of microglia and neurons were performed. Neuronal death induced by LPS-treated microglia could be significantly alleviated when microglia treated by LPS plus OECs-Exo in vitro. After SCI, NeuN-immunostaining and axonal tract-tracing were performed to assess neuronal survival and axon preservation. Our data showed that the OECs-Exo promoted the neuronal survival and axon preservation, and facilitated functional recovery after SCI. Our findings provide a promising therapeutic strategy for SCI based on exosome-immunomodulation.
Collapse
Affiliation(s)
- Hong Fan
- Department of Spine Surgery, Shaanxi Spine Medicine Research Center, Translational Medicine Center, Hong Hui HospitalXi'an Jiaotong UniversityXi'anChina
- Department of NeurologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zhe Chen
- Department of Spine Surgery, Shaanxi Spine Medicine Research Center, Translational Medicine Center, Hong Hui HospitalXi'an Jiaotong UniversityXi'anChina
| | - Hai‐Bin Tang
- Department of Laboratory Medicine, Xi'an Central HospitalXi'an Jiaotong UniversityXi'anChina
| | - Le‐Qun Shan
- Department of Spine Surgery, Shaanxi Spine Medicine Research Center, Translational Medicine Center, Hong Hui HospitalXi'an Jiaotong UniversityXi'anChina
| | - Zi‐Yi Chen
- Department of EndocrinologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiao‐Hui Wang
- Department of Spine Surgery, Shaanxi Spine Medicine Research Center, Translational Medicine Center, Hong Hui HospitalXi'an Jiaotong UniversityXi'anChina
| | - Da‐Geng Huang
- Department of Spine Surgery, Shaanxi Spine Medicine Research Center, Translational Medicine Center, Hong Hui HospitalXi'an Jiaotong UniversityXi'anChina
| | - Shi‐Chang Liu
- Department of Spine Surgery, Shaanxi Spine Medicine Research Center, Translational Medicine Center, Hong Hui HospitalXi'an Jiaotong UniversityXi'anChina
| | - Xun Chen
- Department of Bone Microsurgery, Hong Hui HospitalXi'an Jiaotong UniversityXi'anChina
| | - Hao Yang
- Department of Spine Surgery, Shaanxi Spine Medicine Research Center, Translational Medicine Center, Hong Hui HospitalXi'an Jiaotong UniversityXi'anChina
| | - Dingjun Hao
- Department of Spine Surgery, Shaanxi Spine Medicine Research Center, Translational Medicine Center, Hong Hui HospitalXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
19
|
Wang X, Jiang C, Zhang Y, Chen Z, Fan H, Zhang Y, Wang Z, Tian F, Li J, Yang H, Hao D. The promoting effects of activated olfactory ensheathing cells on angiogenesis after spinal cord injury through the PI3K/Akt pathway. Cell Biosci 2022; 12:23. [PMID: 35246244 PMCID: PMC8895872 DOI: 10.1186/s13578-022-00765-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the pro-angiogenic potential of olfactory ensheathing cells (OECs) activated by curcumin (CCM) and lipopolysaccharide (LPS) and the possible underlying mechanisms. METHODS Vascular endothelial cells or tissues were cultured and treated with conditioned medium (CM) extracted from activated OECs activated through the addition of LPS and CCM or unactivated controls. Concomitantly, the pro-angiogenic potential of OECs was assessed in vitro by aortic ring sprouting assay, endothelial wound healing assay, CCK-8 assay, and tube formation assay. Subsequently, the OECs were co-cultured with endothelial cells to evaluate their promoting effect on endothelial cell proliferation and migration following a mechanical scratch. Moreover, the spinal cord injury (SCI) model in rats was established, and the number of endothelial cells and vascular structure in the injured area after SCI was observed with OEC transplantation. Finally, the underlying mechanism was investigated by western blot analysis of phosphorylated kinase expression with or without the MK-2206 (Akt-inhibitor). RESULT The present results showed that the activated OECs can effectively promote vascular endothelial cells' proliferation, migration, and vessel-like structure formation. Strikingly, several pro-angiogenic growth factors such as VEGF-A and PDGF-AA, which facilitate vessel formation, were found to be significantly elevated in CM. In addition, the PI3K/Akt signaling pathway was found to be involved in pro-angiogenic events caused by activated OEC CM, displaying higher phosphorylation levels in cells. In contrast, the delivery of MK2206 can effectively abrogate all the positive effects. CONCLUSIONS OECs activated by LPS and CCM have a pro-angiogenic effect and can effectively promote angiogenesis and improve the microenvironment at the injury site when transplanted in the injured spinal cord. This potentiated ability of OECs to provide pro-angiogenic effects is likely mediated through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Chao Jiang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
| | - Yongyuan Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
| | - Zhe Chen
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
| | - Hong Fan
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004 China
| | - Yuyang Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
- Department of Medicine, Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Zhiyuan Wang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
| | - Fang Tian
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
| | - Jing Li
- Department of Orthopaedic, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004 China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, 710054 China
| |
Collapse
|
20
|
Zamani H, Soufizomorrod M, Oraee-Yazdani S, Naviafar D, Akhlaghpasand M, Seddighi A, Soleimani M. Safety and feasibility of autologous olfactory ensheathing cell and bone marrow mesenchymal stem cell co-transplantation in chronic human spinal cord injury: a clinical trial. Spinal Cord 2022; 60:63-70. [PMID: 34504283 DOI: 10.1038/s41393-021-00687-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023]
Abstract
STUDY DESIGN This is a phase I clinical trial. OBJECTIVES Our objective was to assess the safety and feasibility of autologous mucosal olfactory ensheathing cell (OEC) and bone marrow mesenchymal stem cell (MSC) co-transplantation in people with chronic, complete (American Spinal Injury Association (ASIA) Impairment Scale (AIS) classification A) spinal cord injury (SCI). SETTING This study was performed at Shohada Tajrish Hospital, Tehran, Iran. METHODS Three individuals with the traumatic SCI of the thoracic level were enrolled. They received the autologous OEC and MSC combination through the lumbar puncture. All adverse events and possible functional outcomes were documented performing pre- and post-operative general clinical examination, magnetic resonance imaging (MRI), neurological assessment based on the International Standard of Neurological Classification for SCI, and functional evaluation using Spinal Cord Independence Measure version III (SCIM III). RESULTS No serious safety issue was recorded during the 2 years of follow-up. MRI findings remained unchanged with no neoplastic tissue formation. AIS improved from A to B in one of the participants. SCIM III evaluation also showed some degrees of progress in this participant's functional ability. The two other research participants had negligible or no improvement in their sensory scores without any changes in the AIS and SCIM III scores. No motor recovery was observed in any of the participants. CONCLUSIONS Overall, this 2-year trial was not associated with any adverse findings, which may suggest the safety of autologous OEC and bone marrow MSC combination for the treatment of human SCI.
Collapse
Affiliation(s)
- Homa Zamani
- Department of Cell Therapy and Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mina Soufizomorrod
- Department of Cell Therapy and Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Mohammadhosein Akhlaghpasand
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsoun Seddighi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Cell Therapy and Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Immunomodulatory and regenerative effects of the full and fractioned adipose tissue derived stem cells secretome in spinal cord injury. Exp Neurol 2022; 351:113989. [DOI: 10.1016/j.expneurol.2022.113989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/09/2022] [Accepted: 01/15/2022] [Indexed: 11/18/2022]
|
22
|
Md Fadilah NI, Mohd Abdul Kader Jailani MS, Badrul Hisham MAI, Sunthar Raj N, Shamsuddin SA, Ng MH, Fauzi MB, Maarof M. Cell secretomes for wound healing and tissue regeneration: Next generation acellular based tissue engineered products. J Tissue Eng 2022; 13:20417314221114273. [PMID: 35923177 PMCID: PMC9340325 DOI: 10.1177/20417314221114273] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/01/2022] [Indexed: 12/20/2022] Open
Abstract
Wound represents a significant socioeconomic burden for both affected individuals and as a whole healthcare system. Accordingly, stem cells have garnered attention due to their differentiation capacity and ability to aid tissue regeneration by releasing biologically active molecules, found in the cells' cultivated medium which known as conditioned medium (CM) or secretomes. This acellular approach provides a huge advantage over conventional treatment options, which are mainly used cellular treatment at wound closure. Interestingly, the secretomes contained the cell-secreted proteins such as growth factors, cytokines, chemokines, extracellular matrix (ECM), and small molecules including metabolites, microvesicles, and exosomes. This review aims to provide a general view on secretomes and how it is proven to have great potential in accelerating wound healing. Utilizing the use of secretomes with its secreted proteins and suitable biomaterials for fabrications of acellular skin substitutes can be promising in treating skin loss and accelerate the healing process.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | | | - Muhd Aliff Iqmal Badrul Hisham
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Nithiaraj Sunthar Raj
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Sharen Aini Shamsuddin
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| |
Collapse
|
23
|
Zawadzka M, Kwaśniewska A, Miazga K, Sławińska U. Perspectives in the Cell-Based Therapies of Various Aspects of the Spinal Cord Injury-Associated Pathologies: Lessons from the Animal Models. Cells 2021; 10:cells10112995. [PMID: 34831217 PMCID: PMC8616284 DOI: 10.3390/cells10112995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic injury of the spinal cord (SCI) is a devastating neurological condition often leading to severe dysfunctions, therefore an improvement in clinical treatment for SCI patients is urgently needed. The potential benefits of transplantation of various cell types into the injured spinal cord have been intensively investigated in preclinical SCI models and clinical trials. Despite the many challenges that are still ahead, cell transplantation alone or in combination with other factors, such as artificial matrices, seems to be the most promising perspective. Here, we reviewed recent advances in cell-based experimental strategies supporting or restoring the function of the injured spinal cord with a particular focus on the regenerative mechanisms that could define their clinical translation.
Collapse
|
24
|
Tu YK, Hsueh YH, Huang HC. Human olfactory ensheathing cell-derived extracellular vesicles: miRNA profile and neuroprotective effect. Curr Neurovasc Res 2021; 18:395-408. [PMID: 34645375 DOI: 10.2174/1567202618666211012162111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Extracellular vesicle (EV)-based therapy has been identified as a leading alternative approach in several disease models. EV derived from the olfactory ensheathing cell (OEC) has been documented for its strong neuro-regenerative capacity. However, no information on its cargo that may contribute to its therapeutic effect has been available. OBJECTIVE To report the first miRNA profile of human OEC (hOEC) -EV, and investigate the neuroprotective effects. METHODS hOEC-EV was isolated and sequenced. We established in vitro experiments to assess the therapeutic potential of hOEC-EVs with respect to insulted neural progenitor cells (NPCs), and the angiogenesis effect. Secondary post-injury insults were imitated using t-BHP-mediated oxidative stress. RESULTS We noted a strong abundance of hOEC-EV-miRNAs, including hsa-miR148a-3p, has-miR151a-3p and several members of let-7 family. The common targets of 15 miRNAs among the top 20 miRNAs were thrombospondin 1 and cyclin dependent kinase 6. We demonstrated that hOEC-EVs promote normal NPC proliferation and differentiation to neuron-like morphologies with prolonged axons. hOEC-EVs protect cells from t-BHP mediated apoptosis. We also found that the migration rate of either NPCs or endothelial cells significantly improved with hOEC-EVs. Furthermore, in vitro tube formation assays indicated that angiogenesis, an important process for tissue repair, was significantly enhanced in human umbilical vein endothelial cells exposed to hOEC-EVs. CONCLUSION Our results revealed that hOEC-EVs exert neuroprotective effects by protecting cells from apoptosis and promoting in vitro biological processes that are important to neural tissue repair, including neural cell proliferation, axonal growth, and cell migration, in addition to enhancing angiogenesis. </p>.
Collapse
Affiliation(s)
- Yuan-Kun Tu
- Department of Orthopedic Surgery, E-Da Hospitall, I-Shou University, Kaohsiung city. Taiwan
| | - Yu-Huan Hsueh
- Department of Orthopedic Surgery, E-Da Hospitall, I-Shou University, Kaohsiung city. Taiwan
| | - Hsien-Chang Huang
- Department of Orthopedic Surgery, E-Da Hospitall, I-Shou University, Kaohsiung city. Taiwan
| |
Collapse
|
25
|
Gilmour AD, Reshamwala R, Wright AA, Ekberg JAK, St John JA. Optimizing Olfactory Ensheathing Cell Transplantation for Spinal Cord Injury Repair. J Neurotrauma 2021; 37:817-829. [PMID: 32056492 DOI: 10.1089/neu.2019.6939] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell transplantation constitutes an important avenue for development of new treatments for spinal cord injury (SCI). These therapies are aimed at supporting neural repair and/or replacing lost cells at the injury site. To date, various cell types have been trialed, with most studies focusing on different types of stem cells or glial cells. Here, we review commonly used cell transplantation approaches for spinal cord injury (SCI) repair, with focus on transplantation of olfactory ensheathing cells (OECs), the glial cells of the primary olfactory nervous system. OECs are promising candidates for promotion of neural repair given that they support continuous regeneration of the olfactory nerve that occurs throughout life. Further, OECs can be accessed from the nasal mucosa (olfactory neuroepithelium) at the roof of the nasal cavity and can be autologously transplanted. OEC transplantation has been trialed in many animal models of SCI, as well as in human clinical trials. While several studies have been promising, outcomes are variable and the method needs improvement to enhance aspects such as cell survival, integration, and migration. As a case study, we include the approaches used by our team (the Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia) to address the current problems with OEC transplantation and discuss how the therapeutic potential of OEC transplantation can be improved. Our approach includes discovery research to improve our knowledge of OEC biology, identifying natural and synthetic compounds to stimulate the neural repair properties of OECs, and designing three-dimensional cell constructs to create stable and transplantable cell structures.
Collapse
Affiliation(s)
- Aaron D Gilmour
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - Ronak Reshamwala
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Alison A Wright
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - Jenny A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
26
|
Sadat-Ali M, Al-Dakheel DA, Ahmed A, Al-Turki HA, Al-Omran AS, Acharya S, Al-Bayat MI. Spinal cord injury regeneration using autologous bone marrow-derived neurocytes and rat embryonic stem cells: A comparative study in rats. World J Stem Cells 2020; 12:1591-1602. [PMID: 33505602 PMCID: PMC7789116 DOI: 10.4252/wjsc.v12.i12.1591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/24/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is an important cause of traumatic paralysis and is mainly due to motor vehicle accidents. However, there is no definite treatment for spinal cord damage. AIM To assess the outcome of rat embryonic stem cells (rESC) and autologous bone marrow-derived neurocytes (ABMDN) treatment in iatrogenic SCI created in rats, and to compare the efficacy of the two different cell types. METHODS The study comprised 45 male Wistar rats weighing between 250 and 300 g, which were divided into three groups, the control, rESC and ABMDN groups. The anesthetized animals underwent exposure of the thoracic 8th to lumbar 1st vertebrae. A T10-thoracic 12th vertebrae laminectomy was performed to expose the spinal cord. A drop-weight injury using a 10 g weight from a height of 25 cm onto the exposed spinal cord was conducted. The wound was closed in layers. The urinary bladder was manually evacuated twice daily and after each evacuation Ringer lactate 5 mL/100 g was administered, twice daily after each bladder evacuation for the first 7 postoperative days. On the 10th day, the rats underwent nerve conduction studies and behavioral assessment [Basso, Beattie, Brenham (BBB)] to confirm paraplegia. Rat embryonic stem cells, ABMDN and saline were injected on the 10th day. The animals were euthanized after 8 wk and the spinal cord was isolated, removed and placed in 2% formalin for histopathological analysis to assess the healing of neural tissues at the axonal level. RESULTS All the animals tolerated the procedure well. The BBB scale scoring showed that at the end of the first week no recovery was observed in the groups. Post-injection, there was a strong and significant improvement in rats receiving rESC and ABMDN as compared to the control group based on the BBB scale, and the Train-of-four-Watch SX acceleromyography device exhibited statistically significant (P < 0.0001) regeneration of neural tissue after SCI. Histological evaluation of the spinal cord showed maximum vacuolization and least gliosis in the control group compared to the rESC and ABMDN treated animals. In the ABMDN group, limited vacuolization and more prominent gliosis were observed in all specimens as compared to the control and rESC groups. CONCLUSION This study provided strong evidence to support that transplantation of rESC and ABMDN can improve functional recovery after iatrogenic SCI. The transplanted cells showed a beneficial therapeutic effect when compared to the control group.
Collapse
Affiliation(s)
- Mir Sadat-Ali
- Department of Orthopedic Surgery, Imam Abdulrahman Bin Faisal University and King Fahd Hospital of the University, Dammam 31952, Saudi Arabia.
| | - Dakheel A Al-Dakheel
- Department of Orthopedic Surgery, Imam Abdulrahman Bin Faisal University, AlKhobar 31952, Saudi Arabia
| | - Ayesha Ahmed
- Department of Pathology, Imam Abdulrahman Bin Faisal University, Dammam 31952, Saudi Arabia
| | - Haifa A Al-Turki
- Department of Obstetrics and Gynecology, Imam Abdulrahman Bin Faisal University, Dammam 31142, Saudi Arabia
| | - Abdallah S Al-Omran
- Department of Orthopedic Surgery, Imam Abdulrahman Bin Faisal University and King Fahd Hospital of the University, AlKhobar 31952, Saudi Arabia
| | - Sadananda Acharya
- Department of Public Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Methal I Al-Bayat
- Department of Pathology, Imam Abdulrahman Bin Faisal University, Dammam 31952, Saudi Arabia
| |
Collapse
|
27
|
Martins-Macedo J, Lepore AC, Domingues HS, Salgado AJ, Gomes ED, Pinto L. Glial restricted precursor cells in central nervous system disorders: Current applications and future perspectives. Glia 2020; 69:513-531. [PMID: 33052610 DOI: 10.1002/glia.23922] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022]
Abstract
The crosstalk between glial cells and neurons represents an exceptional feature for maintaining the normal function of the central nervous system (CNS). Increasing evidence has revealed the importance of glial progenitor cells in adult neurogenesis, reestablishment of cellular pools, neuroregeneration, and axonal (re)myelination. Several types of glial progenitors have been described, as well as their potentialities for recovering the CNS from certain traumas or pathologies. Among these precursors, glial-restricted precursor cells (GRPs) are considered the earliest glial progenitors and exhibit tripotency for both Type I/II astrocytes and oligodendrocytes. GRPs have been derived from embryos and embryonic stem cells in animal models and have maintained their capacity for self-renewal. Despite the relatively limited knowledge regarding the isolation, characterization, and function of these progenitors, GRPs are promising candidates for transplantation therapy and reestablishment/repair of CNS functions in neurodegenerative and neuropsychiatric disorders, as well as in traumatic injuries. Herein, we review the definition, isolation, characterization and potentialities of GRPs as cell-based therapies in different neurological conditions. We briefly discuss the implications of using GRPs in CNS regenerative medicine and their possible application in a clinical setting. MAIN POINTS: GRPs are progenitors present in the CNS with differentiation potential restricted to the glial lineage. These cells have been employed in the treatment of a myriad of neurodegenerative and traumatic pathologies, accompanied by promising results, herein reviewed.
Collapse
Affiliation(s)
- Joana Martins-Macedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Helena S Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
28
|
Gomes ED, Ghosh B, Lima R, Goulão M, Moreira-Gomes T, Martins-Macedo J, Urban MW, Wright MC, Gimble JM, Sousa N, Silva NA, Lepore AC, Salgado AJ. Combination of a Gellan Gum-Based Hydrogel With Cell Therapy for the Treatment of Cervical Spinal Cord Injury. Front Bioeng Biotechnol 2020; 8:984. [PMID: 32984278 PMCID: PMC7479129 DOI: 10.3389/fbioe.2020.00984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022] Open
Abstract
Cervical spinal cord trauma represents more than half of the spinal cord injury (SCI) cases worldwide. Respiratory compromise, as well as severe limb motor deficits, are among the main consequences of cervical lesions. In the present work, a Gellan Gum (GG)-based hydrogel modified with GRGDS peptide, together with adipose tissue-derived stem/stromal cells (ASCs) and olfactory ensheathing cells (OECs), was used as a therapeutic strategy after a C2 hemisection SCI in rats. Hydrogel or cells alone, and a group without treatment, were also tested. Four weeks after injury, compound muscle action potentials (CMAPs) were performed to assess functional phrenic motor neuron (PhMN) innervation of the diaphragm; no differences were observed amongst groups, confirming that the PhMN pool located between C3 and C5 was not affected by the C2 injury or by the treatments. In the same line, the vast majority of diaphragmatic neuromuscular junctions remained intact. Five weeks post-injury, inspiratory bursting of the affected ipsilateral hemidiaphragm was evaluated through EMG recordings of dorsal, medial and ventral subregions of the muscle. All treatments significantly increased EMG amplitude at the ventral portion in comparison to untreated animals, but only the combinatorial group presented increased EMG amplitude at the medial portion of the hemidiaphragm. No differences were observed in forelimb motor function, neither in markers for axonal regrowth (neuronal tracers), astrogliosis (GFAP) and inflammatory cells (CD68). Moreover, using Von Frey testing of mechanical allodynia, it was possible to find a significant effect of the group combining hydrogel and cells on hypersensitivity; rats with a SCI displayed an increased response of the contralateral forelimb to a normally innocuous mechanical stimulus, but after treatment with the combinatorial therapy this behavior was reverted almost to the levels of uninjured controls. These results suggest that our therapeutic approach may have beneficial effects on both diaphragmatic recovery and sensory function.
Collapse
Affiliation(s)
- Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Biswarup Ghosh
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Miguel Goulão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.,Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tiago Moreira-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Joana Martins-Macedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Mark W Urban
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Megan C Wright
- Department of Biology, Arcadia University, Glenside, PA, United States
| | - Jeffrey M Gimble
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, United States
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
29
|
Yu F, Li P, Du S, Lui KW, Lin Y, Chen L, Ren Q, Wang J, Mei J, Xiao J, Zhu J. Olfactory ensheathing cells seeded decellularized scaffold promotes axonal regeneration in spinal cord injury rats. J Biomed Mater Res A 2020; 109:779-787. [PMID: 32720459 DOI: 10.1002/jbm.a.37066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 01/01/2023]
Abstract
Spinal cord decellularized (DC) scaffolds can promote axonal regeneration and restore hindlimb motor function of spinal cord defect rats. However, scarring caused by damage to the astrocytes at the margin of injury can hinder axon regeneration. Olfactory ensheathing cells (OECs) integrate and migrate with astrocytes at the site of spinal cord injury, providing a bridge for axons to penetrate the scars and grow into lesion cores. The purpose of this study was to evaluate whether DC scaffolds carrying OECs could better promote axon growth. For these studies, DC scaffolds were cocultured with primary extracted and purified OECs. Immunofluorescence and electron microscopy were used for verification of cells adhere and growth on the scaffold. Scaffolds with OECs were transplanted into rat spinal cord defects to evaluate axon regeneration and functional recovery of hind limbs. Basso, Beattie, and Bresnahan (BBB) scoring was used to assess motor function recovery, and glial fibrillary acidic protein (GFAP) and NF200-stained tissue sections were used to evaluate axonal regeneration and astrological scar distribution. Our results indicated that spinal cord DC scaffolds have good histocompatibility and spatial structure, and can promote the proliferation of adherent OECs. In animal experiments, scaffolds carrying OECs have better axon regeneration promoting protein expression than the SCI model, and improve the proliferation and distribution of astrocytes at the site of injury. These results proved that the spinal cord DC scaffold with OECs can promote axon regeneration at the site of injury, providing a new basis for clinical application.
Collapse
Affiliation(s)
- Fangzheng Yu
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peifeng Li
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shenghu Du
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - KoonHei W Lui
- Department of Plastic Surgery, The First affiliated hospital of Sun Yat-Sen University, Guangdong, China
| | - Yutian Lin
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lumin Chen
- Wenzhou Medical University, Wenzhou, China
| | - Qi Ren
- Wenzhou Medical University, Wenzhou, China
| | - Jian Wang
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jin Mei
- Institute of Neuroscience, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junyi Zhu
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
30
|
Astaneh ME, Goodarzi A, Khanmohammadi M, Shokati A, Mohandesnezhad S, Ataollahi MR, Najafipour S, Farahani MS, Ai J. Chitosan/gelatin hydrogel and endometrial stem cells with subsequent atorvastatin injection impact in regenerating spinal cord tissue. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101831] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Ahi ZB, Assunção-Silva RC, Salgado AJ, Tuzlakoglu K. A combinatorial approach for spinal cord injury repair using multifunctional collagen-based matrices: development, characterization and impact on cell adhesion and axonal growth. ACTA ACUST UNITED AC 2020; 15:055024. [PMID: 32396889 DOI: 10.1088/1748-605x/ab924d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Spinal cord injury is a devastating condition of the central nervous system, in which traditional treatments are largely ineffective due to the complex nature of the injured tissue. Therefore, biomaterial-based systems have been developed as possible alternative strategies to repair the damaged tissue. In the present study, we aimed to design bioactive agent loaded scaffolds composed of two layers with distinct physical properties to improve tissue regeneration. An electrospun layer with aligned nanofibers was made of collagen (Col) Type-I, poly(lactide-co-glycolide) (PLGA) and laminin to promote cell attachment of mesenchymal-like stem cells towards the direction of fibers, while a Col-based second layer was fabricated by plastic compression to act as a releasing system for NT-3 and chondroitinase ABC, so that axonal growth could be stimulated. Results showed that a source of mesenchymal stem cell (MSC)-like cells, adipose tissue-derived stem cells cultured on the fibrous layer of the matrices were able to adhere and proliferate, where the aligned fibers promoted the cell growth in an organized way. Furthermore, the bilayered matrices also promoted dorsal root ganglion neurite outgrowth. The bilayered matrice with Col/PLGA + laminin top layer appears to promote higher neurite growth. Collectively, the designed constructs show promising structural properties and biological performance for being employed as a scaffold for engineering the spinal cord tissue.
Collapse
Affiliation(s)
- Zehra Betül Ahi
- Department of Polymer Engineering, Yalova University, Yalova, Turkey. Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal. ICVS/3B's, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | | | | | | |
Collapse
|
32
|
Alizadeh A, Moradi L, Katebi M, Ai J, Azami M, Moradveisi B, Ostad SN. Delivery of injectable thermo-sensitive hydrogel releasing nerve growth factor for spinal cord regeneration in rat animal model. J Tissue Viability 2020; 29:359-366. [PMID: 32839065 DOI: 10.1016/j.jtv.2020.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/06/2020] [Accepted: 06/24/2020] [Indexed: 01/11/2023]
Abstract
The main goal of this study was to explore the beneficial effect of nerve growth factor (NGF)-overexpressing of human adipose-derived mesenchymal stem cells (hADSCs) encapsulated in injectable chitosan/β-glycerophosphate/hydroxyethylcellulose (CS/β-GP/HEC) hydrogel for spinal cord regeneration. The CS/β-GP/HEC hydrogel and genetically transduced hADSCs using pseudo-lentiviruses-NGF were prepared. The mechanical properties, morphology and cytotoxicity of the hydrogel were investigated by rheometry, scanning electron microscope (SEM), and MTT assay, respectively. Rats animals were undergone spinal cord injury (SCI), then one-week post-injury, CS/β-GP/HEC hydrogel, transduced hADSCs and transduced hADSCs/CS/β-GP/HEC hydrogel injected into the site of the lesion. Animals with SCI and animals with laminectomy without SCI were considered as negative control and sham groups, respectively. Positive control group received no surgical intervention. At eight weeks post-injection, histological studies indicated a significant increase in cell proliferation, a smaller cavity in size at the SCI site as well as better locomotor functions for transduced hADSCs/CS/β-GP/HEC hydrogel group (P ≤ 0.05) compared to other experimental groups. Our results showed that CS/β-GP/HEC hydrogel in combination with transduced-hADSCs is able to successfully regenerate SCI. These results may be applicable in the selection of the best therapeutic strategy based on gene therapy and tissue engineering for SCI treatment.
Collapse
Affiliation(s)
- Akram Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Lida Moradi
- Department of Dermatology, School of Medicine, New York University, USA
| | - Majid Katebi
- Department of Anatomy, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Borhan Moradveisi
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Poisoning and Toxicology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Obara K, Tohgi N, Shirai K, Mii S, Hamada Y, Arakawa N, Aki R, Singh SR, Hoffman RM, Amoh Y. Hair-Follicle-Associated Pluripotent (HAP) Stem Cells Encapsulated on Polyvinylidene Fluoride Membranes (PFM) Promote Functional Recovery from Spinal Cord Injury. Stem Cell Rev Rep 2020; 15:59-66. [PMID: 30341634 DOI: 10.1007/s12015-018-9856-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our previous studies showed that nestin-expressing hair follicle-associated-pluripotent (HAP) stem cells, which reside in the bulge area of the hair follicle, could restore injured nerve and spinal cord and differentiate into cardiac muscle cells. Here we transplanted mouse green fluorescent protein (GFP)-expressing HAP stem-cell colonies enclosed on polyvinylidene fluoride membranes (PFM) into the severed thoracic spinal cord of nude mice. After seven weeks of implantation, we found the differentiation of HAP stem cells into neurons and glial cells. Our results also showed that PFM-captured GFP-expressing HAP stem-cell colonies assisted complete reattachment of the thoracic spinal cord. Furthermore, our quantitative motor function analysis with the Basso Mouse Scale for Locomotion (BMS) score demonstrated a significant improvement in the implanted mice compared to non-implanted mice with a severed spinal cord. Our study also showed that it is easy to obtain HAP stem cells, they do not develop teratomas, and do not loose differentiation ability when cryopreserved. Collectively our results suggest that HAP stem cells could be a better source compared to induced pluripotent stem cells (iPS) or embryonic stem (ES) cells for regenerative medicine, specifically for spinal cord repair.
Collapse
Affiliation(s)
- Koya Obara
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, 252-0374, Japan
| | - Natsuko Tohgi
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, 252-0374, Japan
| | - Kyoumi Shirai
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, 252-0374, Japan
| | - Sumiyuki Mii
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, 252-0374, Japan
| | - Yuko Hamada
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, 252-0374, Japan
| | - Nobuko Arakawa
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, 252-0374, Japan
| | - Ryoichi Aki
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, 252-0374, Japan
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Robert M Hoffman
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA, 92111, USA. .,Department of Surgery, University of California, San Diego, CA, 92103, USA.
| | - Yasuyuki Amoh
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, 252-0374, Japan.
| |
Collapse
|
34
|
Rocha LA, Gomes ED, Afonso JL, Granja S, Baltazar F, Silva NA, Shoichet MS, Sousa RA, Learmonth DA, Salgado AJ. In vitro Evaluation of ASCs and HUVECs Co-cultures in 3D Biodegradable Hydrogels on Neurite Outgrowth and Vascular Organization. Front Cell Dev Biol 2020; 8:489. [PMID: 32612997 PMCID: PMC7308435 DOI: 10.3389/fcell.2020.00489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Vascular disruption following spinal cord injury (SCI) decisively contributes to the poor functional recovery prognosis facing patients with the condition. Using a previously developed gellan gum hydrogel to which the adhesion motif GRGDS was grafted (GG-GRGDS), this work aimed to understand the ability of adipose-derived stem cells (ASCs) to impact vascular organization of human umbilical vein endothelial cells (HUVECs), and how this in turn affects neurite outgrowth of dorsal root ganglia (DRG) explants. Our data shows that culturing these cells together lead to a synergistic effect as showed by increased stimulation of neuritogenesis on DRG. Importantly, HUVECs were only able to assemble into vascular-like structures when cultured in the presence of ASCs, which shows the capacity of these cells in reorganizing the vascular milieu. Analysis of selected neuroregulatory molecules showed that the co-culture upregulated the secretion of several neurotrophic factors. On the other hand, ASCs, and ASCs + HUVECs presented a similar profile regarding the presence of angiotrophic molecules herein analyzed. Finally, the implantation of GG-GRGDS hydrogels encapsulating ASCs in the chick chorioallantoic membrane (CAM) lead to increases in vascular recruitment toward the hydrogels in comparison to GG-GRGDS alone. This indicates that the combination of ASCs with GG-GRGDS hydrogels could promote re-vascularization in trauma-related injuries in the central nervous system and thus control disease progression and induce functional recovery.
Collapse
Affiliation(s)
- Luís A Rocha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimaraes, Portugal.,Stemmatters, Biotecnologia e Medicina Regenerativa SA, Barco, Portugal
| | - Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimaraes, Portugal
| | - João L Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimaraes, Portugal
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimaraes, Portugal
| | - Fatima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimaraes, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimaraes, Portugal
| | - Molly S Shoichet
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Rui A Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Barco, Portugal
| | - David A Learmonth
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Barco, Portugal
| | - Antonio J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimaraes, Portugal
| |
Collapse
|
35
|
Yang B, Zhang F, Cheng F, Ying L, Wang C, Shi K, Wang J, Xia K, Gong Z, Huang X, Yu C, Li F, Liang C, Chen Q. Strategies and prospects of effective neural circuits reconstruction after spinal cord injury. Cell Death Dis 2020; 11:439. [PMID: 32513969 PMCID: PMC7280216 DOI: 10.1038/s41419-020-2620-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Due to the disconnection of surviving neural elements after spinal cord injury (SCI), such patients had to suffer irreversible loss of motor or sensory function, and thereafter enormous economic and emotional burdens were brought to society and family. Despite many strategies being dealing with SCI, there is still no effective regenerative therapy. To date, significant progress has been made in studies of SCI repair strategies, including gene regulation of neural regeneration, cell or cell-derived exosomes and growth factors transplantation, repair of biomaterials, and neural signal stimulation. The pathophysiology of SCI is complex and multifaceted, and its mechanisms and processes are incompletely understood. Thus, combinatorial therapies have been demonstrated to be more effective, and lead to better neural circuits reconstruction and functional recovery. Combinations of biomaterials, stem cells, growth factors, drugs, and exosomes have been widely developed. However, simply achieving axon regeneration will not spontaneously lead to meaningful functional recovery. Therefore, the formation and remodeling of functional neural circuits also depend on rehabilitation exercises, such as exercise training, electrical stimulation (ES) and Brain-Computer Interfaces (BCIs). In this review, we summarize the recent progress in biological and engineering strategies for reconstructing neural circuits and promoting functional recovery after SCI, and emphasize current challenges and future directions.
Collapse
Affiliation(s)
- Biao Yang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Feng Zhang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Feng Cheng
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Liwei Ying
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Chenggui Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Kesi Shi
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Jingkai Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Kaishun Xia
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Zhe Gong
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Xianpeng Huang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Cao Yu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Fangcai Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| | - Chengzhen Liang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| | - Qixin Chen
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
36
|
Wang L, Li Y, Zhang M, Huang K, Peng S, Xiao J. Application of Nanomaterials in Regulating the Fate of Adipose-derived Stem Cells. Curr Stem Cell Res Ther 2020; 16:3-13. [PMID: 32357820 DOI: 10.2174/1574888x15666200502000343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 01/22/2023]
Abstract
Adipose-derived stem cells are adult stem cells which are easy to obtain and multi-potent. Stem-cell therapy has become a promising new treatment for many diseases, and plays an increasingly important role in the field of tissue repair, regeneration and reconstruction. The physicochemical properties of the extracellular microenvironment contribute to the regulation of the fate of stem cells. Nanomaterials have stable particle size, large specific surface area and good biocompatibility, which has led them being recognized as having broad application prospects in the field of biomedicine. In this paper, we review recent developments of nanomaterials in adipose-derived stem cell research. Taken together, the current literature indicates that nanomaterials can regulate the proliferation and differentiation of adipose-derived stem cells. However, the properties and regulatory effects of nanomaterials can vary widely depending on their composition. This review aims to provide a comprehensive guide for future stem-cell research on the use of nanomaterials.
Collapse
Affiliation(s)
- Lang Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yong Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - Maorui Zhang
- Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - Kui Huang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shuanglin Peng
- Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jingang Xiao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
37
|
Pinho AG, Cibrão JR, Silva NA, Monteiro S, Salgado AJ. Cell Secretome: Basic Insights and Therapeutic Opportunities for CNS Disorders. Pharmaceuticals (Basel) 2020; 13:E31. [PMID: 32093352 PMCID: PMC7169381 DOI: 10.3390/ph13020031] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Transplantation of stem cells, in particular mesenchymal stem cells (MSCs), stands as a promising therapy for trauma, stroke or neurodegenerative conditions such as spinal cord or traumatic brain injuries (SCI or TBI), ischemic stroke (IS), or Parkinson's disease (PD). Over the last few years, cell transplantation-based approaches have started to focus on the use of cell byproducts, with a strong emphasis on cell secretome. Having this in mind, the present review discusses the current state of the art of secretome-based therapy applications in different central nervous system (CNS) pathologies. For this purpose, the following topics are discussed: (1) What are the main cell secretome sources, composition, and associated collection techniques; (2) Possible differences of the therapeutic potential of the protein and vesicular fraction of the secretome; and (3) Impact of the cell secretome on CNS-related problems such as SCI, TBI, IS, and PD. With this, we aim to clarify some of the main questions that currently exist in the field of secretome-based therapies and consequently gain new knowledge that may help in the clinical application of secretome in CNS disorders.
Collapse
Affiliation(s)
- Andreia G. Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.G.P.); (J.R.C.); (N.A.S.); (S.M.)
- ICVS/3B’s PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Jorge R. Cibrão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.G.P.); (J.R.C.); (N.A.S.); (S.M.)
- ICVS/3B’s PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.G.P.); (J.R.C.); (N.A.S.); (S.M.)
- ICVS/3B’s PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.G.P.); (J.R.C.); (N.A.S.); (S.M.)
- ICVS/3B’s PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.G.P.); (J.R.C.); (N.A.S.); (S.M.)
- ICVS/3B’s PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
38
|
Zhang Y, Wang WT, Gong CR, Li C, Shi M. Combination of olfactory ensheathing cells and human umbilical cord mesenchymal stem cell-derived exosomes promotes sciatic nerve regeneration. Neural Regen Res 2020; 15:1903-1911. [PMID: 32246639 PMCID: PMC7513967 DOI: 10.4103/1673-5374.280330] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Olfactory ensheathing cells (OECs) are promising seed cells for nerve regeneration. However, their application is limited by the hypoxic environment usually present at the site of injury. Exosomes derived from human umbilical cord mesenchymal stem cells have the potential to regulate the pathological processes that occur in response to hypoxia. The ability of OECs to migrate is unknown, especially in hypoxic conditions, and the effect of OECs combined with exosomes on peripheral nerve repair is not clear. Better understanding of these issues will enable the potential of OECs for the treatment of nerve injury to be addressed. In this study, OECs were acquired from the olfactory bulb of Sprague Dawley rats. Human umbilical cord mesenchymal stem cell-derived exosomes (0–400 μg/mL) were cultured with OECs for 12–48 hours. After culture with 400 μg/mL exosomes for 24 hours, the viability and proliferation of OECs were significantly increased. We observed changes to OECs subjected to hypoxia for 24 hours and treatment with exosomes. Exosomes significantly promoted the survival and migration of OECs in hypoxic conditions, and effectively increased brain-derived neurotrophic factor gene expression, protein levels and secretion. Finally, using a 12 mm left sciatic nerve defect rat model, we confirmed that OECs and exosomes can synergistically promote motor and sensory function of the injured sciatic nerve. These findings show that application of OECs and exosomes can promote nerve regeneration and functional recovery. This study was approved by the Institutional Ethical Committee of the Air Force Medical University, China (approval No. IACUC-20181004) on October 7, 2018; and collection and use of human umbilical cord specimens was approved by the Ethics Committee of the Linyi People’s Hospital, China (approval No. 30054) on May 20, 2019.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Wen-Tao Wang
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chun-Rong Gong
- Rehabilitation Center, North District Hospital of the People's Hospital of Lin Yi City, Linyi, Shandong Province, China
| | - Chao Li
- Department of Orthopedics, The Eighth Medical Center of Chinese PLA general Hospital, Beijing, China
| | - Mei Shi
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
39
|
Kallmeyer K, André-Lévigne D, Baquié M, Krause KH, Pepper MS, Pittet-Cuénod B, Modarressi A. Fate of systemically and locally administered adipose-derived mesenchymal stromal cells and their effect on wound healing. Stem Cells Transl Med 2019; 9:131-144. [PMID: 31613054 PMCID: PMC6954716 DOI: 10.1002/sctm.19-0091] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
There is increasing interest in the use of adipose‐derived mesenchymal stromal cells (ASCs) for wound repair. As the fate of administered cells is still poorly defined, we aimed to establish the location, survival, and effect of ASCs when administered either systemically or locally during wound repair under physiological conditions. To determine the behavior of ASCs, a rat model with wounds on the dorsal aspect of the hind paws was used and two treatment modes were assessed: ASCs administered systemically into the tail vein or locally around the wound. ASCs were transduced to express both firefly luciferase (Fluc) and green fluorescent protein to enable tracking by bioluminescence imaging and immunohistological analysis. Systemically administered ASCs were detected in the lungs 3 hours after injection with a decrease in luminescent signal at 48 hours and signal disappearance from 72 hours. No ASCs were detected in the wound. Locally administered ASCs remained strongly detectable for 7 days at the injection site and became distributed within the wound bed as early as 24 hours post injection with a significant increase observed at 72 hours. Systemically administered ASCs were filtered out in the lungs, whereas ASCs administered locally remained and survived not only at the injection site but were also detected within the wound bed. Both treatments led to enhanced wound closure. It appears that systemically administered ASCs have the potential to enhance wound repair distally from their site of entrapment in the lungs whereas locally administered ASCs enhanced wound repair as they became redistributed within the wound bed.
Collapse
Affiliation(s)
- Karlien Kallmeyer
- Department of Plastic, Reconstructive & Aesthetic Surgery, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland.,Institute for Cellular and Molecular Medicine (ICMM), Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, Pretoria, South Africa
| | - Dominik André-Lévigne
- Department of Plastic, Reconstructive & Aesthetic Surgery, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| | | | - Karl-Heinz Krause
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Michael S Pepper
- Institute for Cellular and Molecular Medicine (ICMM), Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, Pretoria, South Africa.,Department of Human Genetics and Development, University of Geneva, Geneva, Switzerland
| | - Brigitte Pittet-Cuénod
- Department of Plastic, Reconstructive & Aesthetic Surgery, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| | - Ali Modarressi
- Department of Plastic, Reconstructive & Aesthetic Surgery, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
40
|
Zhang L, Li B, Liu B, Dong Z. Co-transplantation of Epidermal Neural Crest Stem Cells and Olfactory Ensheathing Cells Repairs Sciatic Nerve Defects in Rats. Front Cell Neurosci 2019; 13:253. [PMID: 31244611 PMCID: PMC6582070 DOI: 10.3389/fncel.2019.00253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022] Open
Abstract
Cell-based therapy is an alternative strategy to improve outcomes of peripheral nerve injury (PNI). Epidermal neural crest stem cell (EPI-NCSC) is obtained from autologous tissue without immunological rejection, which could expand quickly in vitro and is suitable candidate for cell-based therapy. Olfactory ensheathing cell (OEC) could secrete multiple neurotrophic factors (NTFs), which is often used to repair PNI individually. However, whether the combination of EPI-NCSC and OEC have better effects on PNI repair remains unclear. Here we use EPI-NCSC and OEC co-transplantation in a rat sciatic nerve defect model to ascertain the effects and potential mechanisms of cells co-transplantation on PNI. The effect of EPI-NCSC and OEC co-transplantation on PNI is assessed by using a combination of immunohistochemistry (IHC), electrophysiological recording and neural function test. Co-transplantation of EPI-NCSC and OEC exerts a beneficial effect upon PNI such as better organized structure, nerve function recovery, and lower motoneuron apoptosis. IHC and enzyme-linked immuno sorbent assay (ELISA) further demonstrate that cells co-transplantation may improve PNI via the expression of brain derived growth factor (BDNF) and nerve growth factor (NGF) up-regulated by EPI-NCSC and OEC synergistically. Eventually, the results from this study reveal that EPI-NCSC and OEC co-transplantation effectively repairs PNI through enhancing the level of BDNF and NGF, indicating that cells co-transplantation may serve as a fruitful avenue for PNI in clinic treatment.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Bingcang Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Bin Liu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhifang Dong
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| |
Collapse
|
41
|
Pereira IM, Marote A, Salgado AJ, Silva NA. Filling the Gap: Neural Stem Cells as A Promising Therapy for Spinal Cord Injury. Pharmaceuticals (Basel) 2019; 12:ph12020065. [PMID: 31035689 PMCID: PMC6631328 DOI: 10.3390/ph12020065] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) can lead to severe motor, sensory and social impairments having a huge impact on patients’ lives. The complex and time-dependent SCI pathophysiology has been hampering the development of novel and effective therapies. Current treatment options include surgical interventions, to stabilize and decompress the spinal cord, and rehabilitative care, without providing a cure for these patients. Novel therapies have been developed targeting different stages during trauma. Among them, cell-based therapies hold great potential for tissue regeneration after injury. Neural stem cells (NSCs), which are multipotent cells with inherent differentiation capabilities committed to the neuronal lineage, are especially relevant to promote and reestablish the damaged neuronal spinal tracts. Several studies demonstrate the regenerative effects of NSCs in SCI after transplantation by providing neurotrophic support and restoring synaptic connectivity. Therefore, human clinical trials have already been launched to assess safety in SCI patients. Here, we review NSC-based experimental studies in a SCI context and how are they currently being translated into human clinical trials.
Collapse
Affiliation(s)
- Inês M Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
42
|
Multifunctionalized hydrogels foster hNSC maturation in 3D cultures and neural regeneration in spinal cord injuries. Proc Natl Acad Sci U S A 2019; 116:7483-7492. [PMID: 30923117 PMCID: PMC6462084 DOI: 10.1073/pnas.1818392116] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cells reside in 3D microenvironments in living tissues; consequently, 3D cultures gained great interest because they better mimic the natural conditions of cells. Self-assembling peptides (SAPs) are synthetic bioabsorbable biomaterials that can provide customized 3D microenvironments regulating cell functionalities and tissue repair. Here we introduce a SAP-hydrogel designed to support human neural stem cell (hNSC) differentiation in 3D serum-free conditions, generating mature and active human neurons in vitro. We also demonstrate its functional neurorigenerative potential in rat spinal cord injuries, peaking when seeded with hNSCs progeny predifferentiated in vitro for 6 weeks. Despite these promising results, this approach should be confirmed in the future with medium-size animal models and with additional and refined behavioral tests before entering a clinical trial. Three-dimensional cell cultures are leading the way to the fabrication of tissue-like constructs useful to developmental biology and pharmaceutical screenings. However, their reproducibility and translational potential have been limited by biomaterial and culture media compositions, as well as cellular sources. We developed a construct comprising synthetic multifunctionalized hydrogels, serum-free media, and densely seeded good manufacturing practice protocol-grade human neural stem cells (hNSC). We tracked hNSC proliferation, differentiation, and maturation into GABAergic, glutamatergic, and cholinergic neurons, showing entangled electrically active neural networks. The neuroregenerative potential of the “engineered tissue” was assessed in spinal cord injuries, where hNSC-derived progenitors and predifferentiated hNSC progeny, embedded in multifunctionalized hydrogels, were implanted. All implants decreased astrogliosis and lowered the immune response, but scaffolds with predifferentiated hNSCs showed higher percentages of neuronal markers, better hNSC engraftment, and improved behavioral recovery. Our hNSC-construct enables the formation of 3D functional neuronal networks in vitro, allowing novel strategies for hNSC therapies in vivo.
Collapse
|
43
|
Influence of passage number on the impact of the secretome of adipose tissue stem cells on neural survival, neurodifferentiation and axonal growth. Biochimie 2018; 155:119-128. [PMID: 30342112 DOI: 10.1016/j.biochi.2018.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs), and within them adipose tissue derived stem cells (ASCs), have been shown to have therapeutic effects on central nervous system (CNS) cell populations. Such effects have been mostly attributed to soluble factors, as well as vesicles, present in their secretome. Yet, little is known about the impact that MSC passaging might have in the secretion therapeutic profile. Our aim was to show how human ASCs (hASCs) passage number influences the effect of their secretome in neuronal survival, differentiation and axonal growth. For this purpose, post-natal rat hippocampal primary cultures, human neural progenitor cell (hNPCs) cultures and dorsal root ganglia (DRGs) explants were incubated with secretome, collected as conditioned media (CM), obtained from hASCs in P3, P6, P9 and P12. Results showed no differences when comparing percentages of MAP-2 positive cells (a mature neuronal marker) in neuronal cultures or hNPCs, after incubation with hASCs secretome from different passages. The same was observed regarding DRG neurite outgrowth. In order to characterize the secretomes obtained from different passages, a proteomic analysis was performed, revealing that its composition did not vary significantly with passage number P3 to P12. Results allowed us to identify several key proteins, such as pigment epithelium derived factor (PEDF), DJ-1, interleucin-6 (IL-6) and galectin, all of which have already proven to play neuroprotective and neurodifferentiating roles. Proteins that promote neurite outgrowth were also found present, such as semaphorin 7A and glypican-1. We conclude that cellular passaging does not influence significantly hASCs's secretome properties especially their ability to support post-natal neuronal survival, induce neurodifferentiation and promote axonal growth.
Collapse
|
44
|
Chen L, Zhang Y, He X, Hooshang S. Comparison of intramedullary transplantation of olfactory ensheathing cell for patients with chronic complete spinal cord injury worldwide. JOURNAL OF NEURORESTORATOLOGY 2018. [DOI: 10.26599/jnr.2018.9040012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Objectives: Traumatic spinal cord injury (tSCI) remains a major clinical challenge. Cell transplantation brings a glimmer of light, among them olfactory ensheathing cells (OECs) have shown some neurorestorative effect. Due to the results of each group lack basic consistency, many technical details are believed to affect the overall outcome. We compare the clinical outcome of intramedullary transplant of olfactory ensheathing cells for patients with spinal cord injury at multi-centers worldwide, and to explore the potential standardized transplantation that suits for the clinical requirements. Methods: Here, we used the Pubmed and CNKI databases to search online the literatures published in the last 20 years for the clinical studies/trials of OECs for chronic spinal cord injury in the representative clinical center. The results of these representative clinical treatment centers were searched and analyzed. The parameters which may affect the effect including the concentration of cells, the total number of cells, the choice of incision, the site of transplantation, the number of transplantation sites, the advantages and disadvantages of transplantation equipment, and postoperative management, were compared carefully to clarify its impact on the clinical results. Results: In these literatures, 2 Chinese centers, 1 Australian center and 1 European center were selected for intraspinal transplantation. The reason of different results may be due to the excessive injection times and/or the excessive total injection volume. Conclusions: Cell implant to the spinal cord parenchyma is effective for restoring neurological functions, but improper procedures may lead to ineffective results. Concise surgery appears to be more suitable for clinical application than ostensibly precise and complex injection procedures. Sufficient rehabilitation training is surely necessary for the integration of motor recovery after cell transplantation.
Collapse
|