1
|
Yang X, Yu L, Shao M, Yang H, Qi K, He G, Wang L, Kong D, Gu J, Xu X, Wang L. N6-methyladenosine-modified GPX2 impacts cancer cell stemness and TKI resistance through regulating of redox metabolism. Cell Death Dis 2025; 16:458. [PMID: 40533443 PMCID: PMC12177039 DOI: 10.1038/s41419-025-07764-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 05/13/2025] [Accepted: 06/03/2025] [Indexed: 06/22/2025]
Abstract
As a predominant oncogenic driver in non-small cell lung cancer (NSCLC), EGFR frequently undergoes amplification or mutation, with EGFR-tyrosine kinase inhibitors (EGFR-TKIs) like gefitinib and erlotinib constituting frontline therapy for advanced EGFR-mutant cases. However, both primary and acquired resistance significantly limit clinical efficacy. Here, we revealed that glutathione metabolic pathway controlled by glutathione peroxidase GPX2 was abnormally activated in gefitinib-resistant A549 and HCC827-GR cell lines. Mechanistically, GPX2 triggers Hedgehog signaling activation through releasing GLI transcriptional regulator, promoting cancer stem cell (CSC) characteristics and TKI resistance. Notably, N6-methyladenosine (m6A) modification on GPX2 mRNA mediated by METTL14 diminished its stability. In vivo, GPX2 deletion constrained glutathione metabolism and boosted the effectiveness of TKI in cell line-derived xenograft models. Collectively, these findings demonstrate that GPX2 serves as a positive regulator of both primary and acquired EGFR-TKI resistance and could be a promising therapeutic target for precise treatment of NSCLC.
Collapse
Affiliation(s)
- Xu Yang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Long Yu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Miaomiao Shao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huiling Yang
- Department of Pathology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Kangwei Qi
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Gaofei He
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lanxin Wang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Di Kong
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jianxin Gu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaolin Xu
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Lan Wang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Attili I, Corvaja C, Spitaleri G, Trillo Aliaga P, Del Signore E, Passaro A, de Marinis F. Post-Progression Analysis of EGFR-Mutant NSCLC Following Osimertinib Therapy in Real-World Settings. Cancers (Basel) 2024; 16:2589. [PMID: 39061227 PMCID: PMC11274531 DOI: 10.3390/cancers16142589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Platinum-based chemotherapy is the current standard treatment option in patients with EGFR-mutant non-small-cell lung cancer (NSCLC) who progress on osimertinib. However, outcomes with chemotherapy are dismal, and the treatment of central nervous system (CNS) disease is an unmet need in this setting. METHODS Patients with EGFR-mutant NSCLC who were candidates to receive osimertinib in the metastatic setting at our Center from 2015 to 2022 were retrospectively evaluated to identify patients who received standard platinum-based chemotherapy post-osimertinib. Data were collected on treatment outcomes, with a focus on brain metastases and progression patterns. RESULTS A total of 220 patients received indication for osimertinib in the study period; n = 176 had adequate follow-up data. Overall, n = 117 patients experienced disease progression on osimertinib. The median time to osimertinib progressive disease (PD) was 15 months (95% confidence interval CI 13-18). Of them, 51 patients (45%) had no access to further treatments. Of the remaining patients, n = 8 received experimental treatments, and n = 55 received standard platinum-based chemotherapy and were considered for this study. Median duration of chemotherapy was 3 months (95% CI 2-5); the best responses among 53 evaluable patients were observed as follows: 15% partial response/complete response (PR/CR), 40% stable disease (SD), 45% PD. Median progression-free survival (PFS) and overall survival (OS) were 3 (95% CI 2-5) and 10 (95% CI 6-15) months, respectively. All patients had baseline and follow-up brain radiologic assessments, and n = 23 had brain metastases at the start of chemotherapy. With a median follow-up of 13 months, intracranial PD occurred in 47% patients, being the first site of PD in 59% of cases. The median time for intracranial (IC) PD was 2 months (95% CI 2-7). IC PD occurred as oligometastatic in 29%, whereas in 71% of cases, it was associated with systemic PD. CONCLUSIONS Access to subsequent treatments and CNS progression are confirmed unmet needs in EGFR-mutant NSCLC patients. Clinical and CNS-specific outcomes in patients receiving standard chemotherapy after the failure of osimertinib are dismal. Novel upfront treatment options with demonstrated prolonged PFS and better CNS outcomes may help address this important issue.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (I.A.); (C.C.); (G.S.); (P.T.A.); (E.D.S.); (F.d.M.)
| | | |
Collapse
|
3
|
Iyer RS, Needham SR, Galdadas I, Davis BM, Roberts SK, Man RCH, Zanetti-Domingues LC, Clarke DT, Fruhwirth GO, Parker PJ, Rolfe DJ, Gervasio FL, Martin-Fernandez ML. Drug-resistant EGFR mutations promote lung cancer by stabilizing interfaces in ligand-free kinase-active EGFR oligomers. Nat Commun 2024; 15:2130. [PMID: 38503739 PMCID: PMC10951324 DOI: 10.1038/s41467-024-46284-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
The Epidermal Growth Factor Receptor (EGFR) is frequently found to be mutated in non-small cell lung cancer. Oncogenic EGFR has been successfully targeted by tyrosine kinase inhibitors, but acquired drug resistance eventually overcomes the efficacy of these treatments. Attempts to surmount this therapeutic challenge are hindered by a poor understanding of how and why cancer mutations specifically amplify ligand-independent EGFR auto-phosphorylation signals to enhance cell survival and how this amplification is related to ligand-dependent cell proliferation. Here we show that drug-resistant EGFR mutations manipulate the assembly of ligand-free, kinase-active oligomers to promote and stabilize the assembly of oligomer-obligate active dimer sub-units and circumvent the need for ligand binding. We reveal the structure and assembly mechanisms of these ligand-free, kinase-active oligomers, uncovering oncogenic functions for hitherto orphan transmembrane and kinase interfaces, and for the ectodomain tethered conformation of EGFR. Importantly, we find that the active dimer sub-units within ligand-free oligomers are the high affinity binding sites competent to bind physiological ligand concentrations and thus drive tumor growth, revealing a link with tumor proliferation. Our findings provide a framework for future drug discovery directed at tackling oncogenic EGFR mutations by disabling oligomer-assembling interactions.
Collapse
Affiliation(s)
- R Sumanth Iyer
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
- Immunocore Limited, 92 Park Drive, Milton Park, Abingdon, UK
| | - Sarah R Needham
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Ioannis Galdadas
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- ISPSO, University of Geneva, Geneva, Switzerland
| | - Benjamin M Davis
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Selene K Roberts
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Rico C H Man
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Guy's Campus, King's College London, London, UK
| | | | - David T Clarke
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Gilbert O Fruhwirth
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Guy's Campus, King's College London, London, UK
| | - Peter J Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, UK
- School of Cancer and Pharmaceutical Sciences, Guy's Campus, King's College London, London, UK
| | - Daniel J Rolfe
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK.
| | - Francesco L Gervasio
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
- ISPSO, University of Geneva, Geneva, Switzerland.
- Chemistry Department, University College London, London, UK.
- Swiss Institute of Bioinformatics, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
4
|
Yi Q, Feng J, Liao Y, Sun W. Circular RNAs in chemotherapy resistance of lung cancer and their potential therapeutic application. IUBMB Life 2023; 75:225-237. [PMID: 35594011 DOI: 10.1002/iub.2624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022]
Abstract
Lung cancer is one of the high malignancy-related incidence and mortality worldwide, accounting for about 13% of total cancer diagnoses. Currently, the use of anti-cancer agents is still the main therapeutic method for lung cancer. However, cancer cells will gradually show resistance to these drugs with the progress of treatment. And the molecular mechanisms underlying chemotherapy agents resistance remain unclear. circRNAs are newly identified noncoding RNAs molecules with covalently closed circular structures. Previous studies have shown that circRNAs are associated with tumorigenesis and progression of various cancers, including lung cancer. Recently, growing reports have suggested that circRNAs could contribute to drug resistance of lung cancer cell through different mechanisms. Therefore, in this review, we summarized the functions and underlying mechanisms of circRNAs in regulating chemoresistance of lung cancer and discussed their potential applications for diagnosis, prognosis, and treatment of lung cancer.
Collapse
Affiliation(s)
- Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Weichao Sun
- The Central Laboratory, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, China
- Department of Orthopedics, Shenzhen Second People's Hospital (First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Ruzzi F, Angelicola S, Landuzzi L, Nironi E, Semprini MS, Scalambra L, Altimari A, Gruppioni E, Fiorentino M, Giunchi F, Ferracin M, Astolfi A, Indio V, Ardizzoni A, Gelsomino F, Nanni P, Lollini PL, Palladini A. ADK-VR2, a cell line derived from a treatment-naïve patient with SDC4-ROS1 fusion-positive primarily crizotinib-resistant NSCLC: a novel preclinical model for new drug development of ROS1-rearranged NSCLC. Transl Lung Cancer Res 2022; 11:2216-2229. [PMID: 36519016 PMCID: PMC9742620 DOI: 10.21037/tlcr-22-163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/12/2022] [Indexed: 08/27/2023]
Abstract
BACKGROUND ROS1 fusions are driver molecular alterations in 1-2% of non-small cell lung cancers (NSCLCs). Several tyrosine kinase inhibitors (TKIs) have shown high efficacy in patients whose tumors harbour a ROS1 fusion. However, the limited availability of preclinical models of ROS1-positive NSCLC hinders the discovery of new drugs and the understanding of the mechanisms underlying drug resistance and strategies to overcome it. METHODS The ADK-VR2 cell line was derived from the pleural effusion of a treatment-naïve NSCLC patient bearing SDC4-ROS1 gene fusion. The sensitivity of ADK-VR2 and its crizotinib-resistant clone ADK-VR2 AG143 (selected in 3D culture in the presence of crizotinib) to different TKIs was tested in vitro, in both 2D and 3D conditions. Tumorigenic and metastatic ability was assessed in highly immunodeficient mice. In addition, crizotinib efficacy on ADK-VR2 was evaluated in vivo. RESULTS 2D-growth of ADK-VR2 cells was partially inhibited by crizotinib. On the contrary, the treatment with other TKIs, such as lorlatinib, entrectinib and DS-6051b, did not result in cell growth inhibition. TKIs showed dramatically different efficacy on ADK-VR2 cells, depending on the cell culture conditions. In 3D culture, ADK-VR2 growth was indeed almost totally inhibited by lorlatinib and DS-6051b. The clone ADK-VR2 AG143 showed higher resistance to crizotinib treatment in vitro, compared to its parental cell line, in both 2D and 3D cultures. Similarly to ADK-VR2, ADK-VR2 AG143 growth was strongly inhibited by lorlatinib in 3D conditions. Nevertheless, ADK-VR2 AG143 sphere formation was less affected by TKIs treatment, compared to the parental cell line. In vivo experiments highlighted the high tumorigenic and metastatic ability of ADK-VR2 cell line, which, once injected in immunodeficient mice, gave rise to both spontaneous and experimental lung metastases while the crizotinib-resistant clone ADK-VR2 AG143 showed a slower growth in vivo. In addition, ADK-VR2 tumor growth was significantly reduced but not eradicated by crizotinib treatment. CONCLUSIONS The ADK-VR2 cell line is a promising NSCLC preclinical model for the study of novel targeted therapies against ROS1 fusions and the mechanisms of resistance to TKI therapies.
Collapse
Affiliation(s)
- Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Stefania Angelicola
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elena Nironi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Sofia Semprini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Laura Scalambra
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Annalisa Altimari
- Divisione di Anatomia Patologica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisa Gruppioni
- Divisione di Anatomia Patologica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michelangelo Fiorentino
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Francesca Giunchi
- Divisione di Anatomia Patologica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Annalisa Astolfi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Valentina Indio
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Ardizzoni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Gelsomino
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrizia Nanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Alma Mater Institute on Healthy Planet, University of Bologna, Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Alma Mater Institute on Healthy Planet, University of Bologna, Bologna, Italy
| | - Arianna Palladini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
P21-activated kinase 2-mediated β-catenin signaling promotes cancer stemness and osimertinib resistance in EGFR-mutant non-small-cell lung cancer. Oncogene 2022; 41:4318-4329. [DOI: 10.1038/s41388-022-02438-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022]
|
7
|
Shi K, Wang G, Pei J, Zhang J, Wang J, Ouyang L, Wang Y, Li W. Emerging strategies to overcome resistance to third-generation EGFR inhibitors. J Hematol Oncol 2022; 15:94. [PMID: 35840984 PMCID: PMC9287895 DOI: 10.1186/s13045-022-01311-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/28/2022] [Indexed: 02/08/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), the receptor for members of the epidermal growth factor family, regulates cell proliferation and signal transduction; moreover, EGFR is related to the inhibition of tumor cell proliferation, angiogenesis, invasion, metastasis, and apoptosis. Therefore, EGFR has become an important target for the treatment of cancer, including non-small cell lung cancer, head and neck cancer, breast cancer, glioma, cervical cancer, and bladder cancer. First- to third-generation EGFR inhibitors have shown considerable efficacy and have significantly improved disease prognosis. However, most patients develop drug resistance after treatment. The challenge of overcoming intrinsic and acquired resistance in primary and recurrent cancer mediated by EGFR mutations is thus driving the search for alternative strategies in the design of new therapeutic agents. In view of resistance to third-generation inhibitors, understanding the intricate mechanisms of resistance will offer insight for the development of more advanced targeted therapies. In this review, we discuss the molecular mechanisms of resistance to third-generation EGFR inhibitors and review recent strategies for overcoming resistance, new challenges, and future development directions.
Collapse
Affiliation(s)
- Kunyu Shi
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.,Tianfu Jincheng Laboratory, Chengdu, 610041, China
| | - Guan Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junping Pei
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.,Tianfu Jincheng Laboratory, Chengdu, 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Liang Ouyang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| |
Collapse
|
8
|
Lin EH, Hsu JW, Lee TF, Hsu CF, Lin TH, Jan YH, Chang HY, Cheng CM, Hsu HJ, Chen WW, Chen BH, Tsai HF, Li JJ, Huang CY, Chuang SH, Chang JM, Hsiao M, Wu CW. Targeting cancer stemness mediated by BMI1 and MCL1 for non-small cell lung cancer treatment. J Cell Mol Med 2022; 26:4305-4321. [PMID: 35794816 PMCID: PMC9401641 DOI: 10.1111/jcmm.17453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐associated death, with a global 5‐year survival rate <20%. Early metastasis and recurrence remain major challenges for lung cancer treatment. The stemness property of cancer cells has been suggested to play a key role in cancer plasticity, metastasis and drug‐resistance, and is a potential target for drug development. In this study, we found that in non‐small cell lung cancer (NSCLC), BMI1 and MCL1 play crucial roles of cancer stemness including invasion, chemo‐resistance and tumour initiation. JNK signalling serves as a link between oncogenic pathway or genotoxicity to cancer stemness. The activation of JNK, either by mutant EGFR or chemotherapy agent, stabilized BMI1 and MCL1 proteins through suppressing the expression of E3‐ubiquitin ligase HUWE1. In lung cancer patient samples, high level of BMI1 is correlated with poor survival, and the expression of BMI1 is positively correlated with MCL1. A novel small‐molecule, BI‐44, was developed, which effectively suppressed BMI1/MCL1 expressions and inhibited tumour formation and progression in preclinical models. Targeting cancer stemness mediated by BMI1/MCL1 with BI‐44 provides the basis for a new therapeutic approach in NSCLC treatment.
Collapse
Affiliation(s)
- Erh-Hsuan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jhen-Wei Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Fang Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chiung-Fang Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tsung-Hsien Lin
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hua Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Yi Chang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Ming Cheng
- Department of Pharmacology, Development Center for Biotechnology, Institute for Drug Evaluation Platform, Taipei, Taiwan
| | - Hui-Jan Hsu
- Department of Medicinal Chemistry, Development Center for Biotechnology, Institute of Pharmaceutics, Taipei, Taiwan
| | - Wei-Wei Chen
- Department of Pharmacology, Development Center for Biotechnology, Institute for Drug Evaluation Platform, Taipei, Taiwan
| | - Bo-Hung Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Jung-Jung Li
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Ying Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Hsien Chuang
- Department of Medicinal Chemistry, Development Center for Biotechnology, Institute of Pharmaceutics, Taipei, Taiwan
| | - Jia-Ming Chang
- Department of Pharmacology, Development Center for Biotechnology, Institute for Drug Evaluation Platform, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Wen Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
9
|
Wang Z, Zhang L, Xu W, Li J, Liu Y, Zeng X, Zhong M, Zhu Y. The Multi-Omics Analysis of Key Genes Regulating EGFR-TKI Resistance, Immune Infiltration, SCLC Transformation in EGFR-Mutant NSCLC. J Inflamm Res 2022; 15:649-667. [PMID: 35140497 PMCID: PMC8818984 DOI: 10.2147/jir.s341001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Background Lung cancer is a high-risk malignancy worldwide. The harboring of epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) makes EGFR-tyrosine kinase inhibitor (EGFR-TKI) an attractive therapeutic option. However, patients usually suffer the primary and secondary resistance to EGFR-TKI. And the molecular alteration is still not fully clear and needs further study. Methods The GEO database was utilized to find the differentially expressed genes (DEGs) in NSCLC profiles resistant to the 1st or 2nd generation EGFR-TKI. We analyzed the expression and pathway enrichment of hub genes, and the prognosis of EGFR mutant/wild-type lung adenocarcinoma (LUAD). Moreover, small cell lung cancer (SCLC) and TKI-resistant profiles were used to find common DEGs, and construct miRNA regulatory network. Analysis was performed of hub genes' related immune infiltration, drug sensitivity, and methylation. Further, we analyzed hub gene expression in EGFR-mutant LUAD and paracancerous tissue by qRT-PCR. Results A total of 107 DEGs were found related to TKI resistance. Eleven hub genes were obtained after visualization, of which 5 hub genes were co-expressed in SCLC with common miRNAs. Lower expression of SPP1 (hub gene) was associated with better survival in NSCLC. The immune infiltration analysis showed more CD4+ T cells in the resistant group with high expression of SPP1. SPP1 and CD44 promoters’ methylations were independent prognostic factors of LUAD. And the expression level of SPP1 related to the sensitivity of EGFR-TKIs in multiple cancer cell lines. qRT-PCR validated the higher expression of SPP1 in EGFR-mutant LUAD than in normal tissue. Conclusion Our study suggested that the upregulation of SPP1 might induce resistance to the 1st and 2nd generation EGFR-TKI, and influence tumor immune infiltration, resulting in poor survival. ZEB1, SPP1, MUC1, CD44, and ESRP1 might be molecular drivers of SCLC transformation of TKI resistance.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People’s Republic of China
| | - Lingling Zhang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People’s Republic of China
| | - Wenwen Xu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People’s Republic of China
| | - Jie Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People’s Republic of China
| | - Yi Liu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People’s Republic of China
| | - Xiaozhu Zeng
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People’s Republic of China
| | - Maoxi Zhong
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People’s Republic of China
| | - Yuxi Zhu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People’s Republic of China
- Department of Oncology, Jinshan Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People’s Republic of China
- Correspondence: Yuxi Zhu, Tel +86-23-88955813, Fax +862368811487, Email
| |
Collapse
|
10
|
Treatment-driven tumour heterogeneity and drug resistance: lessons from solid tumours. Cancer Treat Rev 2022; 104:102340. [DOI: 10.1016/j.ctrv.2022.102340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
11
|
Fabro F, Lamfers MLM, Leenstra S. Advancements, Challenges, and Future Directions in Tackling Glioblastoma Resistance to Small Kinase Inhibitors. Cancers (Basel) 2022; 14:600. [PMID: 35158868 PMCID: PMC8833415 DOI: 10.3390/cancers14030600] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Despite clinical intervention, glioblastoma (GBM) remains the deadliest brain tumor in adults. Its incurability is partly related to the establishment of drug resistance, both to standard and novel treatments. In fact, even though small kinase inhibitors have changed the standard clinical practice for several solid cancers, in GBM, they did not fulfill this promise. Drug resistance is thought to arise from the heterogeneity of GBM, which leads the development of several different mechanisms. A better understanding of the evolution and characteristics of drug resistance is of utmost importance to improve the current clinical practice. Therefore, the development of clinically relevant preclinical in vitro models which allow careful dissection of these processes is crucial to gain insights that can be translated to improved therapeutic approaches. In this review, we first discuss the heterogeneity of GBM, which is reflected in the development of several resistance mechanisms. In particular, we address the potential role of drug resistance mechanisms in the failure of small kinase inhibitors in clinical trials. Finally, we discuss strategies to overcome therapy resistance, particularly focusing on the importance of developing in vitro models, and the possible approaches that could be applied to the clinic to manage drug resistance.
Collapse
Affiliation(s)
| | | | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (F.F.); (M.L.M.L.)
| |
Collapse
|
12
|
Non-small cell lung cancer: Emerging molecular targeted and immunotherapeutic agents. Biochim Biophys Acta Rev Cancer 2021; 1876:188636. [PMID: 34655692 DOI: 10.1016/j.bbcan.2021.188636] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/09/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) represents the most common and fatal type of primary lung malignancies. NSCLC is often diagnosed at later stages and requires systemic therapies. Despite recent advances in surgery, chemotherapy, and targeted molecular therapies the outcomes of NSCLC remain disproportionately poor. Immunotherapy is a rapidly developing area in NSCLC management and presents opportunities for potential improvements in clinical outcomes. Indeed, different immunotherapeutics have been approved for clinical use in various settings for NSCLC. Their promise is especially poignant in light of improved survival and quality of life outcomes. Herein, we comprehensively review emerging NSCLC therapeutics. We discuss the limitations of such strategies and summarize the present status of various immunotherapeutic agents in key patient populations. We also examine the data from ongoing studies in immunotherapy and consider future areas of study, including novel inhibition targets, therapeutic vaccination, tumor genome modification, and improvements to drug delivery systems.
Collapse
|
13
|
Attili I, Del Re M, Guerini-Rocco E, Crucitta S, Pisapia P, Pepe F, Barberis M, Troncone G, Danesi R, de Marinis F, Malapelle U, Passaro A. The role of molecular heterogeneity targeting resistance mechanisms to lung cancer therapies. Expert Rev Mol Diagn 2021; 21:757-766. [PMID: 34278933 DOI: 10.1080/14737159.2021.1943365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The treatment scenario of lung cancer is rapidly evolving through time. In parallel, growing evidence is accumulating on different mechanisms of treatment resistance. Inter- and intra-tumor heterogeneity define the spatial and temporal tumor clonal evolution, that is at the basis of tumor progression and resistance to anticancer treatments.Areas covered: This review summarizes the available evidence on molecular heterogeneity in lung cancer, from diagnosis to the occurrence of treatment resistance. The application of novel molecular diagnostic methods to detect molecular heterogeneity, and the implications of understanding heterogeneity for drug development strategies are discussed, with focus on clinical relevance and impact on patients' survival.Expert opinion: The current knowledge of molecular heterogeneity allows to identify different molecular subgroups of patients within the same conventional tumor type. Deeper understanding of heterogeneity determinants and the possibility to comprehensively investigate tumor molecular patterns will lead to the development of personalized treatment approaches, with the final goal to overcome resistance and prolong survival in lung cancer patients.
Collapse
Affiliation(s)
- Ilaria Attili
- Division of Thoracic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Guerini-Rocco
- Division of Pathology and Laboratory Medicine,IEO, European Institute of Oncology, IRCCS, Milano, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Massimo Barberis
- Division of Pathology and Laboratory Medicine,IEO, European Institute of Oncology, IRCCS, Milano, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo de Marinis
- Division of Thoracic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| |
Collapse
|
14
|
Onuma S, Manabe A, Yoshino Y, Matsunaga T, Asai T, Ikari A. Upregulation of Chemoresistance by Mg 2+ Deficiency through Elevation of ATP Binding Cassette Subfamily B Member 1 Expression in Human Lung Adenocarcinoma A549 Cells. Cells 2021; 10:cells10051179. [PMID: 34066059 PMCID: PMC8150369 DOI: 10.3390/cells10051179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Several anticancer drugs including cisplatin (CDDP) induce hypomagnesemia. However, it remains fully uncertain whether Mg2+ deficiency affects chemosensitivity of cancer cells. Here, we investigated the effect of low Mg2+ concentration (LM) on proliferation and chemosensitivity using human lung adenocarcinoma A549 cells. Cell proliferation was reduced by continuous culture with LM accompanied with the elevation of G1 phase proportion. The amounts of reactive oxygen species (ROS) and stress makers such as phosphorylated-ataxia telangiectasia mutated and phosphorylated-p53 were increased by LM. Cell injury was dose-dependently increased by anticancer drugs such as CDDP and doxorubicin (DXR), which were suppressed by LM. Similar results were obtained by roscovitine, a cell cycle inhibitor. These results suggest that LM induces chemoresistance mediated by ROS production and G1 arrest. The mRNA and protein levels of ATP binding cassette subfamily B member 1 (ABCB1) were increased by LM and roscovitine. The LM-induced elevation of ABCB1 and nuclear p38 expression was suppressed by SB203580, a p38 MAPK inhibitor. PSC833, an ABCB1 inhibitor, and SB203580 rescued the sensitivity to anticancer drugs. In addition, cancer stemness properties were suppressed by SB203580. We suggest that Mg2+ deficiency reduces the chemotherapy sensitivity of A549 cells, although it suppresses cell proliferation.
Collapse
Affiliation(s)
- Saki Onuma
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.O.); (A.M.); (Y.Y.)
| | - Aya Manabe
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.O.); (A.M.); (Y.Y.)
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.O.); (A.M.); (Y.Y.)
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan;
| | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.O.); (A.M.); (Y.Y.)
- Correspondence: ; Tel./Fax: +81-58-230-8124
| |
Collapse
|
15
|
Passaro A, Attili I, Rappa A, Vacirca D, Ranghiero A, Fumagalli C, Guarize J, Spaggiari L, de Marinis F, Barberis M, Guerini-Rocco E. Genomic Characterization of Concurrent Alterations in Non-Small Cell Lung Cancer (NSCLC) Harboring Actionable Mutations. Cancers (Basel) 2021; 13:2172. [PMID: 33946519 PMCID: PMC8124171 DOI: 10.3390/cancers13092172] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023] Open
Abstract
An increasing number of driver genomic alterations with potential targeted treatments have been identified in non-small cell lung cancer (NSCLC). Much less is known about the incidence and different distribution of concurrent alterations, as identified by comprehensive genomic profiling in oncogene-addicted NSCLCs. Genomic data from advanced NSCLC consecutively analyzed using a broad next-generation sequencing panel were retrospectively collected. Tumors harboring at least one main actionable gene alteration were categorized according to the presence/absence of concurrent genomic aberrations, to evaluate different patterns among the main oncogene-addicted NSCLCs. Three-hundred-nine actionable gene alterations were identified in 284 advanced NSCLC patients during the study period. Twenty-five tumor samples (8%) displayed concurrent alterations in actionable genes. Co-occurrences involving any pathogenic variant or copy number variation (CNV) were identified in 82.8% of cases. Overall, statistically significant differences in the number of concurrent alterations, and the distribution of TP53, STK11, cyclines and receptor tyrosin kinase (RTK) aberrations were observed across the eight actionable gene groups. NGS analyses of oncogene-addicted NSCLCs showed a different distribution and pattern of co-alteration profiles. Further investigations are needed to evaluate the prognostic and treatment-related impact of these concurrent alterations, hooked to the main gene aberrations.
Collapse
Affiliation(s)
- Antonio Passaro
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (I.A.); (F.d.M.)
| | - Ilaria Attili
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (I.A.); (F.d.M.)
| | - Alessandra Rappa
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (A.R.); (D.V.); (A.R.); (C.F.); (M.B.); (E.G.-R.)
| | - Davide Vacirca
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (A.R.); (D.V.); (A.R.); (C.F.); (M.B.); (E.G.-R.)
| | - Alberto Ranghiero
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (A.R.); (D.V.); (A.R.); (C.F.); (M.B.); (E.G.-R.)
| | - Caterina Fumagalli
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (A.R.); (D.V.); (A.R.); (C.F.); (M.B.); (E.G.-R.)
| | - Juliana Guarize
- Department of Thoracic Surgery, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (J.G.); (L.S.)
| | - Lorenzo Spaggiari
- Department of Thoracic Surgery, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (J.G.); (L.S.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Filippo de Marinis
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (I.A.); (F.d.M.)
| | - Massimo Barberis
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (A.R.); (D.V.); (A.R.); (C.F.); (M.B.); (E.G.-R.)
| | - Elena Guerini-Rocco
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (A.R.); (D.V.); (A.R.); (C.F.); (M.B.); (E.G.-R.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
16
|
Overcoming therapy resistance in EGFR-mutant lung cancer. NATURE CANCER 2021; 2:377-391. [PMID: 35122001 DOI: 10.1038/s43018-021-00195-8] [Citation(s) in RCA: 299] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/11/2021] [Indexed: 02/01/2023]
Abstract
Tyrosine kinase inhibitors (TKIs) have dramatically changed the clinical prospects of patients with non-small cell lung cancer harboring epidermal growth factor receptor (EGFR)-activating mutations. Despite prolonged disease control and high tumor response rates, all patients eventually progress on EGFR TKI treatment. Here, we review the mechanisms of acquired EGFR TKI resistance, the methods for monitoring its appearance, as well as current and future efforts to define treatment strategies to overcome resistance.
Collapse
|
17
|
Cancer Stem Cells-Key Players in Tumor Relapse. Cancers (Basel) 2021; 13:cancers13030376. [PMID: 33498502 PMCID: PMC7864187 DOI: 10.3390/cancers13030376] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor relapse and treatment failure are unfortunately common events for cancer patients, thus often rendering cancer an uncurable disease. Cancer stem cells (CSCs) are a subset of cancer cells endowed with tumor-initiating and self-renewal capacity, as well as with high adaptive abilities. Altogether, these features contribute to CSC survival after one or multiple therapeutic approaches, thus leading to treatment failure and tumor progression/relapse. Thus, elucidating the molecular mechanisms associated with stemness-driven resistance is crucial for the development of more effective drugs and durable responses. This review will highlight the mechanisms exploited by CSCs to overcome different therapeutic strategies, from chemo- and radiotherapies to targeted therapies and immunotherapies, shedding light on their plasticity as an insidious trait responsible for their adaptation/escape. Finally, novel CSC-specific approaches will be described, providing evidence of their preclinical and clinical applications.
Collapse
|
18
|
Chowdhury S, Ghosh S. Cancer Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Passaro A, Malapelle U, Del Re M, Attili I, Russo A, Guerini-Rocco E, Fumagalli C, Pisapia P, Pepe F, De Luca C, Cucchiara F, Troncone G, Danesi R, Spaggiari L, De Marinis F, Rolfo C. Understanding EGFR heterogeneity in lung cancer. ESMO Open 2020; 5:e000919. [PMID: 33067323 PMCID: PMC7569934 DOI: 10.1136/esmoopen-2020-000919] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/26/2022] Open
Abstract
The advances in understanding the inherited biological mechanisms of non-small cell lung cancer harbouring epidermal growth factor receptor (EGFR) mutations led to a significant improvement in the outcomes of patients treated with EGFR tyrosine kinase inhibitors. Despite these clinically impressive results, clinical results are not always uniform, suggesting the need for deepening the molecular heterogeneity of this molecularly defined subgroup of patients beyond the clinical and biological surface.The availability of tissue and blood-based tumour genotyping allows us to improve the understanding of molecular and genetic intratumor heterogeneity, driving the measurement of clonal evaluation in patients with lung cancer carrying EGFR mutations. Genetic diversification, clonal expansion and selection are highly variable patterns of genetic diversity, resulting in different biological entities, also a prerequisite for Darwinian selection and therapeutic failure.Such emerging pieces of evidence on the genetic diversity, including adaptive and immunomodulated aspects, provide further evidence for the role of the tumour microenvironment (TME) in drug-resistance and immune-mediated mechanisms. Matching in daily clinical practice, the detailed genomic profile of lung cancer disease and tracking the clonal evolution could be the way to individualise the further target treatments in EGFR-positive disease. Characterising the tumour and immune microenvironment during the time of the cancer evaluation could be the way forward for the qualitative leap needed from bench to bedside. Such a daring approach, aiming at personalising treatment selection in order to exploit the TME properties and weaken tumour adaptivity, should be integrated into clinical trial design to optimise patient outcome.
Collapse
Affiliation(s)
- Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Napoli, Campania, Italy
| | - Marzia Del Re
- Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Ilaria Attili
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandro Russo
- Medical Oncology Unit, A.O. Papardo & Department of Human Pathology, University of Messina, Messina, Italy
| | - Elena Guerini-Rocco
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Division of Pathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Caterina Fumagalli
- Division of Pathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Napoli, Campania, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Napoli, Campania, Italy
| | - Caterina De Luca
- Department of Public Health, University of Naples Federico II, Napoli, Campania, Italy
| | - Federico Cucchiara
- Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Napoli, Campania, Italy
| | - Romano Danesi
- Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Lorenzo Spaggiari
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Division of Thoracic Surgery,European Insitute of Oncology IRCCS, Milan, Italy
| | - Filippo De Marinis
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Christian Rolfo
- Thoracic Oncology Department and Early Phase Clinical Trials Section, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
20
|
Tripathi SK, Pandey K, Rengasamy KRR, Biswal BK. Recent updates on the resistance mechanisms to epidermal growth factor receptor tyrosine kinase inhibitors and resistance reversion strategies in lung cancer. Med Res Rev 2020; 40:2132-2176. [PMID: 32596830 DOI: 10.1002/med.21700] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have led to a substantial improvement in the prognosis of lung cancer patients by explicitly targeting the activating mutations within the EGFR. Initially, patients harboring tumors with EGFR mutations show progression-free survival and improvement in the response rates toward all-generation EGFR-TKIs; however, these agents fail to deliver the intended results in the long-term due to drug resistance. Therefore, it is necessary to recognize specific cardinal mechanisms that regulate the resistance phenomenon. Understanding the intricate mechanisms underlying EGFR-TKIs resistance in lung cancer could provide cognizance for more advanced targeted therapeutics. The present review features insights into current updates on the discrete mechanisms, including secondary or tertiary mutations, parallel and downstream signaling pathways, acquiring an epithelial-to-mesenchymal transition (EMT) signature, microRNAs (miRNAs), and epigenetic alterations, which lead to intrinsic and acquired resistance against EGFR-TKIs in lung cancer. In addition, this paper also reviews current possible strategies to overcome this issue using combination treatment of recently developed MET inhibitors, allosteric inhibitors or immunotherapies, transformation of EMT, targeting miRNAs, and epigenetic alterations in intrinsic and acquired EGFR-TKIs resistant lung cancer. In conclusion, multiple factors are responsible for intrinsic and acquired resistance to EGFR-TKIs and understanding of the detailed molecular mechanisms, and recent advancements in pharmacological studies are needed to develop new strategies to overcome intrinsic and acquired EGFR-TKIs resistance in lung cancer.
Collapse
Affiliation(s)
- Surya K Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, India
| | - Kamal Pandey
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, India
| | - Kannan R R Rengasamy
- Department of Bioresources and Food Science, Konkuk University, Seoul, South Korea
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
21
|
Kamies R, Martinez-Jimenez CP. Advances of single-cell genomics and epigenomics in human disease: where are we now? Mamm Genome 2020; 31:170-180. [PMID: 32270277 PMCID: PMC7368869 DOI: 10.1007/s00335-020-09834-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
Abstract
Cellular heterogeneity is revolutionizing the way to study, monitor and dissect complex diseases. This has been possible with the technological and computational advances associated to single-cell genomics and epigenomics. Deeper understanding of cell-to-cell variation and its impact on tissue function will open new avenues for early disease detection, accurate diagnosis and personalized treatments, all together leading to the next generation of health care. This review focuses on the recent discoveries that single-cell genomics and epigenomics have facilitated in the context of human health. It highlights the potential of single-cell omics to further advance the development of personalized treatments and precision medicine in cancer, diabetes and chronic age-related diseases. The promise of single-cell technologies to generate new insights about the differences in function between individual cells is just emerging, and it is paving the way for identifying biomarkers and novel therapeutic targets to tackle age, complex diseases and understand the effect of life style interventions and environmental factors.
Collapse
Affiliation(s)
- Rizqah Kamies
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | |
Collapse
|
22
|
Label-free platform on pH-responsive chitosan: Adhesive heterogeneity for cancer stem-like cell isolation from A549 cells via integrin β4. Carbohydr Polym 2020; 239:116168. [PMID: 32414450 DOI: 10.1016/j.carbpol.2020.116168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/25/2022]
Abstract
Great efforts have been paid to develop methodologies for cancer stem-like cell (CSLC) isolation in anti-cancer research. The major obstacle lies in the lack of generic biomarkers for different cancer types and the requirement of complicated immuno-labeling procedures. The purpose of this study is to establish a label-free platform for CSLC isolation using pH-responsive chitosan. Based on the adhesive heterogeneity, 15.7 ± 1.9 % of human non-small cell lung cancer (NSCLC) cell line A549 detached from the chitosan substrate following medium pH elevation from 6.99 to 7.65 within 1 h. As a result, this subpopulation of cells with low adhesiveness exhibited superior CSLC hallmarks, including self-renewal, invasive and metastatic potential, therapeutic-resistance, colony formation in vitro, as well as nude mice xenograft in vivo for tumorigenesis, in comparison with their high-adhesive counterpart. Furthermore, integrin β4 is decisive in controlling CSLC detachment of NSCLC. Conclusively, this pH-dependent isolation provides new insights into biomaterial-based CSLC isolation.
Collapse
|
23
|
Hsu HS, Liu CC, Lin JH, Hsu TW, Hsu JW, Li AFY, Hung SC. Involvement of collagen XVII in pluripotency gene expression and metabolic reprogramming of lung cancer stem cells. J Biomed Sci 2020; 27:5. [PMID: 31928533 PMCID: PMC6956558 DOI: 10.1186/s12929-019-0593-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent advancements in cancer biology field suggest that glucose metabolism is a potential target for cancer treatment. However, little if anything is known about the metabolic profile of cancer stem cells (CSCs) and the related underlying mechanisms. METHODS The metabolic phenotype in lung CSC was first investigated. The role of collagen XVII, a putative stem cell or CSC candidate marker, in regulating metabolic reprogramming in lung CSC was subsequently studied. Through screening the genes involved in glycolysis, we identified the downstream targets of collagen XVII that were involved in metabolic reprogramming of lung CSCs. Collagen XVII and its downstream targets were then used to predict the prognosis of lung cancer patients. RESULTS We showed that an aberrant upregulation of glycolysis and oxidative phosphorylation in lung CSCs is associated with the maintenance of CSC-like features, since blocking glycolysis and oxidative phosphorylation reduces sphere formation, chemoresistance, and tumorigenicity. We also showed that the Oct4-hexokinase 2 (HK2) pathway activated by collagen XVII-laminin-332 through FAK-PI3K/AKT-GSB3β/β-catenin activation induced the upregulation of glycolysis and maintenance of CSC-like features. Finally, we showed that collagen XVII, Oct4, and HK2 could be valuable markers to predict the prognosis of lung cancer patients. CONCULSIONS These data suggest the Oct4-HK2 pathway regulated by collagen XVII plays an important role in metabolic reprogramming and maintenance of CSC-like features in lung CSCs, which may aid in the development of new strategies in cancer treatment.
Collapse
Affiliation(s)
- Han-Shui Hsu
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Chi Liu
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Traumatology, Emergency Department, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jiun-Han Lin
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tien-Wei Hsu
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jyuan-Wei Hsu
- Division of Traumatology, Emergency Department, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Anna Fen-Yau Li
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Chieh Hung
- Drug Development Center, Institute of New Drug Development, Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.
- Integrative Stem Cell Center, Department of Orthopaedics, China Medical University Hospital, Taichung, 404, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 105, Taiwan.
| |
Collapse
|
24
|
Si J, Ma Y, Bi JW, Xiong Y, Lv C, Li S, Wu N, Yang Y. Shisa3 brakes resistance to EGFR-TKIs in lung adenocarcinoma by suppressing cancer stem cell properties. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:481. [PMID: 31801598 PMCID: PMC6894286 DOI: 10.1186/s13046-019-1486-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022]
Abstract
Background Although EGFR tyrosine kinase inhibitors (EGFR-TKIs) are beneficial to lung adenocarcinoma patients with sensitive EGFR mutations, resistance to these inhibitors induces a cancer stem cell (CSC) phenotype. Here, we clarify the function and molecular mechanism of shisa3 as a suppressor that can reverse EGFR-TKI resistance and inhibit CSC properties. Methods The suppresser genes involved in EGFR-TKI resistance were identified and validated by transcriptome sequencing, quantitative real-time PCR (qRT-PCR) and immunohistochemistry. Biological function analyses, cell half maximal inhibitory concentration (IC50), self-renewal, and migration and invasion capacities, were detected by CCK8, sphere formation and Transwell assays. Tumorigenesis and therapeutic effects were investigated in nonobese diabetic/severe combined immunodeficiency (nod-scid) mice. The underlying mechanisms were explored by Western blot and immunoprecipitation analyses. Results We found that low expression of shisa3 was related to EGFR-TKI resistance in lung adenocarcinoma patients. Ectopic overexpression of shisa3 inhibited CSC properties and the cell cycle in the lung adenocarcinoma cells resistant to gefitinib/osimertinib. In contrast, suppression of shisa3 promoted CSC phenotypes and the cell cycle in the cells sensitive to EGFR-TKIs. For TKI-resistant PC9/ER tumors in nod-scid mice, overexpressed shisa3 had a significant inhibitory effect. In addition, we verified that shisa3 inhibited EGFR-TKI resistance by interacting with FGFR1/3 to regulate AKT/mTOR signaling. Furthermore, combinational administration of inhibitors of FGFR/AKT/mTOR and cell cycle signaling could overcome EGFR-TKI resistance associated with shisa3-mediated CSC capacities in vivo. Conclusion Taken together, shisa3 was identified as a brake to EGFR-TKI resistance and CSC characteristics, probably through the FGFR/AKT/mTOR and cell cycle pathways, indicating that shisa3 and concomitant inhibition of its regulated signaling may be a promising therapeutic strategy for reversing EGFR-TKI resistance.
Collapse
Affiliation(s)
- Jiahui Si
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, People's Republic of China
| | - Yuanyuan Ma
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, People's Republic of China
| | - Ji Wang Bi
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, People's Republic of China
| | - Ying Xiong
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, People's Republic of China
| | - Chao Lv
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, People's Republic of China
| | - Shaolei Li
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, People's Republic of China
| | - Nan Wu
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, People's Republic of China.
| | - Yue Yang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, People's Republic of China.
| |
Collapse
|
25
|
Liu Q, Bai W, Huang F, Tang J, Lin X. Downregulation of microRNA-196a inhibits stem cell self-renewal ability and stemness in non-small-cell lung cancer through upregulating GPX3 expression. Int J Biochem Cell Biol 2019; 115:105571. [PMID: 31352088 DOI: 10.1016/j.biocel.2019.105571] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 02/08/2023]
Abstract
Studies have reported a high expression profile of microRNA-196a (miR-196a) in many cancers, which potently plays important roles in carcinogenesis. However, the involvement of miR-196a in affecting non-small cell lung cancer (NSCLC) carcinogenesis still remains uncertain. NSCLC-related differentially expressed genes were retrieved for this study according to the microarray-based analysis, which demonstrated that miR-196a may be involved in NSCLC progression via regulation of the Jun N-terminal kinase (JNK) pathway by targeting glutathione peroxidase 3 (GPX3). Hence, this study aimed to explore the relationship among miR-196a, GPX3, and the JNK pathway and to investigate its functional regulations in NSCLC. Initially, highly-expressed miR-196a and lowly-expressed GPX3 were determined in NSCLC tissues and cells. Next, the NSCLC cells were manipulated with a series of mimic, inhibitor or shRNA to investigate the impact of miR-196a and GPX3 on CSC viability, proliferation, self-renewal ability and stemness. The in vivo effect of miR-196a was measured in nude mice xenografted with NSCLC cells. The results demonstrated that downregulation of miR-196a and restoration of GPX3 inhibited CSC viability, proliferation, self-renewal ability, stemness and tumorigenicity. Meanwhile, the underlying relationship among miR-196a, GPX3 and JNK pathway was explored by treatment with the JNK pathway inhibitor (SP600125), or sh-GPX3. Downregulated miR-196a and upregulated GPX3 could elevate the GPX3 protein expression and reduce the extent of JNK and c-Jun phosphorylation. Taken together, miR-196a promotes the development of NSCLC via activation of the JNK pathway through down-regulation of GPX3 and serve as a potential therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Qin Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Wei Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Fang Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Jian Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Xiang Lin
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
26
|
Sheng S, Margarida Bernardo M, Dzinic SH, Chen K, Heath EI, Sakr WA. Tackling tumor heterogeneity and phenotypic plasticity in cancer precision medicine: our experience and a literature review. Cancer Metastasis Rev 2019; 37:655-663. [PMID: 30484007 DOI: 10.1007/s10555-018-9767-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The predominant cause of cancer mortality is metastasis. The major impediment to cancer cure is the intrinsic or acquired resistance to currently available therapies. Cancer is heterogeneous at the genetic, epigenetic, and metabolic levels. And, while a molecular-targeted drug may be pathway-precise, it can still fail to achieve wholesome cancer-precise toxicity. In the current review, we discuss the strategic differences between targeting the strengths of cancer cells in phenotypic plasticity and heterogeneity and targeting shared vulnerabilities of cancer cells such as the compromised integrity of membranous organelles. To better recapitulate subpopulations of cancer cells in different phenotypic and functional states, we developed a schematic combination of 2-dimensional culture (2D), 3-dimmensional culture in collagen I (3D), and mammosphere culture for stem cells (mammosphere), designated as Scheme 2D/3D/mammosphere. We investigated how the tumor suppressor maspin may limit carcinoma cell plasticity and affect their context-dependent response to drugs of different mechanisms including docetaxel, histone deacetylase (HDAC) inhibitor MS-275, and ionophore antibiotic salinomycin. We showed that tumor cell phenotypic plasticity is not an exclusive attribute to cancer stem cells. Nonetheless, three subpopulations of prostate cancer cells, enriched through Scheme 2D/3D/mammosphere, show qualitatively different drug responses. Interestingly, salinomycin was the only drug that effectively killed all three cancer cell subpopulations, irrespective of their capacity of stemness. Further, Scheme 2D/3D/mammosphere may be a useful model to accelerate the screening for curative cancer drugs while avoiding costly characterization of compounds that may have only selective toxicity to some, but not all, cancer cell subpopulations.
Collapse
Affiliation(s)
- Shijie Sheng
- Department of Pathology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA.
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Tumor Biology and Microenvironment Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - M Margarida Bernardo
- Department of Pathology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA
- Tumor Biology and Microenvironment Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Sijana H Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Tumor Biology and Microenvironment Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kang Chen
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Elisabeth I Heath
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Wael A Sakr
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Tumor Biology and Microenvironment Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
27
|
Zhang M, Tan S, Yu D, Zhao Z, Zhang B, Zhang P, Lv C, Zhou Q, Cao Z. Triptonide inhibits lung cancer cell tumorigenicity by selectively attenuating the Shh-Gli1 signaling pathway. Toxicol Appl Pharmacol 2019; 365:1-8. [PMID: 30610878 DOI: 10.1016/j.taap.2019.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/20/2018] [Accepted: 01/01/2019] [Indexed: 12/16/2022]
Abstract
Lung cancer is a leading lethal disease with a 5-year survival rate of only 16%. Inadequate potent anti-cancer drugs appear to be a bottleneck in the treatment of lung cancer; hence, how to develop effective anti-lung cancer therapeutics is an urgent problem. In this study, we aim to explore a novel compound with potent anti-lung cancer effect and study its anti-cancer mechanisms. We found that triptonide at very low concentrations of 5-10 nM caused a marked suppression of cell proliferation and colony formation of lung cancer cells. More interestingly, triptonide also robustly inhibited the lung cancer cell formation of tumor spheres, and reduced the stemness and tumorigenicity of the sphere-forming cells. In vivo studies showed that administration of triptonide significantly inhibited the tumor growth with low toxicity. Molecular mechanistic studies revealed that triptonide significantly decreased expression of the Gli1 at both mRNA and protein levels by repressing Gli1 gene promoter activity. Additionally, triptonide reduced the levels of cancer stem cell key signaling protein sonic hedgehog (Shh), but increased the amount of Ptch1, a protein binding to SMO to diminish the Shh signal transduction, thus inhibition of the Shh-Gli1 signaling pathway. Together, our findings show that triptonide effectively inhibits lung cancer cell growth, stemness, and tumorigenicity, and support the notion that triptonide is a new Shh-Gli1 signaling inhibitor and a novel anti-lung cancer drug candidate for further developing effective lung cancer therapeutics.
Collapse
Affiliation(s)
- Mengli Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China
| | - Shijie Tan
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China
| | - Di Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China
| | - Bin Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China
| | - Pan Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China
| | - Chunping Lv
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China.
| | - Zhifei Cao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
28
|
Notch3 Targeting: A Novel Weapon against Ovarian Cancer Stem Cells. Stem Cells Int 2019; 2019:6264931. [PMID: 30723507 PMCID: PMC6339748 DOI: 10.1155/2019/6264931] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/09/2018] [Indexed: 12/14/2022] Open
Abstract
Notch signaling is frequently activated in ovarian cancer (OC) and contributes to the proliferation and survival of cultured OC cells as well as to tumor formation and angiogenesis in xenograft models. Several studies demonstrate that Notch3 expression renders cancer cells more resistant to carboplatin, contributing to chemoresistance and poor survival of OC-bearing patients. This suggests that Notch3 can represent both a biomarker and a target for therapeutic interventions in OC patients. Although it is still unclear how chemoresistance arises, different lines of evidence support a critical role of cancer stem cells (CSCs), suggesting that CSC targeting by innovative therapeutic approaches might represent a promising tool to efficiently reduce OC recurrence. To date, CSC-directed therapies in OC tumors are mainly targeted to the inhibition of CSC-related signaling pathways, including Notch. As it is increasingly evident the involvement of Notch signaling, and in particular of Notch3, in regulating stem-like cell maintenance and expansion in several tumors, here we provide an overview of the current knowledge of Notch3 role in CSC-mediated OC chemoresistance, finally exploring the potential design of innovative Notch3 inhibition-based therapies for OC treatment, aimed at eradicating tumor through the suppression of CSCs.
Collapse
|
29
|
Tulchinsky E, Demidov O, Kriajevska M, Barlev NA, Imyanitov E. EMT: A mechanism for escape from EGFR-targeted therapy in lung cancer. Biochim Biophys Acta Rev Cancer 2018; 1871:29-39. [PMID: 30419315 DOI: 10.1016/j.bbcan.2018.10.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/07/2018] [Accepted: 10/21/2018] [Indexed: 02/08/2023]
Abstract
Epithelial mesenchymal transition (EMT) is a reversible developmental genetic programme of transdifferentiation of polarised epithelial cells to mesenchymal cells. In cancer, EMT is an important factor of tumour cell plasticity and has received increasing attention for its role in the resistance to conventional and targeted therapies. In this paper we provide an overview of EMT in human malignancies, and discuss contribution of EMT to the development of the resistance to Epidermal Growth Factor Receptor (EGFR)-targeted therapies in non-small cell lung cancer (NSCLC). Patients with the tumours bearing specific mutations in EGFR have a good clinical response to selective EGFR inhibitors, but the resistance inevitably develops. Several mechanisms responsible for the resistance include secondary mutations in the EGFR gene, genetic or non-mutational activation of alternative survival pathways, transdifferentiation of NSCLC to the small cell lung cancer histotype, or formation of resistant tumours with mesenchymal characteristics. Mechanistically, application of an EGFR inhibitor does not kill all cancer cells; some cells survive the exposure to a drug, and undergo genetic evolution towards resistance. Here, we present a theory that these quiescent or slow-proliferating drug-tolerant cell populations, or so-called "persisters", are generated via EMT pathways. We review the EMT-activated mechanisms of cell survival in NSCLC, which include activation of ABC transporters and EMT-associated receptor tyrosine kinase AXL, immune evasion, and epigenetic reprogramming. We propose that therapeutic inhibition of these pathways would eliminate pools of persister cells and prevent or delay cancer recurrence when applied in combination with the agents targeting EGFR.
Collapse
Affiliation(s)
- Eugene Tulchinsky
- Leicester Cancer Research Centre, Leicester University, UK; Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, region, 117303, Russia.
| | - Oleg Demidov
- Instutute of Cytology, Russian Academy of Sciences, Saint-Petersburg 194064, Russia
| | | | - Nickolai A Barlev
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, region, 117303, Russia; Instutute of Cytology, Russian Academy of Sciences, Saint-Petersburg 194064, Russia
| | | |
Collapse
|