1
|
Fang Z, Raza U, Song J, Lu J, Yao S, Liu X, Zhang W, Li S. Systemic aging fuels heart failure: Molecular mechanisms and therapeutic avenues. ESC Heart Fail 2025; 12:1059-1080. [PMID: 39034866 PMCID: PMC11911610 DOI: 10.1002/ehf2.14947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Systemic aging influences various physiological processes and contributes to structural and functional decline in cardiac tissue. These alterations include an increased incidence of left ventricular hypertrophy, a decline in left ventricular diastolic function, left atrial dilation, atrial fibrillation, myocardial fibrosis and cardiac amyloidosis, elevating susceptibility to chronic heart failure (HF) in the elderly. Age-related cardiac dysfunction stems from prolonged exposure to genomic, epigenetic, oxidative, autophagic, inflammatory and regenerative stresses, along with the accumulation of senescent cells. Concurrently, age-related structural and functional changes in the vascular system, attributed to endothelial dysfunction, arterial stiffness, impaired angiogenesis, oxidative stress and inflammation, impose additional strain on the heart. Dysregulated mechanosignalling and impaired nitric oxide signalling play critical roles in the age-related vascular dysfunction associated with HF. Metabolic aging drives intricate shifts in glucose and lipid metabolism, leading to insulin resistance, mitochondrial dysfunction and lipid accumulation within cardiomyocytes. These alterations contribute to cardiac hypertrophy, fibrosis and impaired contractility, ultimately propelling HF. Systemic low-grade chronic inflammation, in conjunction with the senescence-associated secretory phenotype, aggravates cardiac dysfunction with age by promoting immune cell infiltration into the myocardium, fostering HF. This is further exacerbated by age-related comorbidities like coronary artery disease (CAD), atherosclerosis, hypertension, obesity, diabetes and chronic kidney disease (CKD). CAD and atherosclerosis induce myocardial ischaemia and adverse remodelling, while hypertension contributes to cardiac hypertrophy and fibrosis. Obesity-associated insulin resistance, inflammation and dyslipidaemia create a profibrotic cardiac environment, whereas diabetes-related metabolic disturbances further impair cardiac function. CKD-related fluid overload, electrolyte imbalances and uraemic toxins exacerbate HF through systemic inflammation and neurohormonal renin-angiotensin-aldosterone system (RAAS) activation. Recognizing aging as a modifiable process has opened avenues to target systemic aging in HF through both lifestyle interventions and therapeutics. Exercise, known for its antioxidant effects, can partly reverse pathological cardiac remodelling in the elderly by countering processes linked to age-related chronic HF, such as mitochondrial dysfunction, inflammation, senescence and declining cardiomyocyte regeneration. Dietary interventions such as plant-based and ketogenic diets, caloric restriction and macronutrient supplementation are instrumental in maintaining energy balance, reducing adiposity and addressing micronutrient and macronutrient imbalances associated with age-related HF. Therapeutic advancements targeting systemic aging in HF are underway. Key approaches include senomorphics and senolytics to limit senescence, antioxidants targeting mitochondrial stress, anti-inflammatory drugs like interleukin (IL)-1β inhibitors, metabolic rejuvenators such as nicotinamide riboside, resveratrol and sirtuin (SIRT) activators and autophagy enhancers like metformin and sodium-glucose cotransporter 2 (SGLT2) inhibitors, all of which offer potential for preserving cardiac function and alleviating the age-related HF burden.
Collapse
Affiliation(s)
- Zhuyubing Fang
- Cardiovascular Department of Internal MedicineKaramay Hospital of People's Hospital of Xinjiang Uygur Autonomous RegionKaramayXinjiang Uygur Autonomous RegionChina
| | - Umar Raza
- School of Basic Medical SciencesShenzhen UniversityShenzhenGuangdong ProvinceChina
| | - Jia Song
- Department of Medicine (Cardiovascular Research)Baylor College of MedicineHoustonTexasUSA
| | - Junyan Lu
- Department of CardiologyZengcheng Branch of Nanfang Hospital, Southern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Shun Yao
- Department of NeurosurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| | - Xiaohong Liu
- Cardiovascular Department of Internal MedicineKaramay Hospital of People's Hospital of Xinjiang Uygur Autonomous RegionKaramayXinjiang Uygur Autonomous RegionChina
| | - Wei Zhang
- Outpatient Clinic of SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| | - Shujuan Li
- Department of Pediatric CardiologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| |
Collapse
|
2
|
Grzeczka A, Graczyk S, Kordowitzki P. Pleiotropic Effects of Resveratrol on Aging-Related Cardiovascular Diseases-What Can We Learn from Research in Dogs? Cells 2024; 13:1732. [PMID: 39451250 PMCID: PMC11505706 DOI: 10.3390/cells13201732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Resveratrol (RES) is a polyphenol with natural anti-inflammatory and antioxidant properties. It is found in abundance in plants, i.e., grapes and mulberry fruit. In addition, synthetic forms of RES exist. Since the discovery of its specific biological properties, RES has emerged as a candidate substance not only with modeling effects on the immune response but also as an important factor in preventing the onset and progression of cardiovascular disease (CVD). Previous research provided strong evidence of the effects of RES on platelets, mitochondria, cardiomyocytes, and vascular endothelial function. In addition, RES positively affects the coagulation system and vasodilatory function and improves blood flow. Not only in humans but also in veterinary medicine, cardiovascular diseases have one of the highest incidence rates. Canine and human species co-evolved and share recent evolutionary selection processes, and interestingly, numerous pathologies of companion dogs have a human counterpart. Knowledge of the impact of RES on the cardiovascular system of dogs is becoming clearer in the literature. Dogs have long been recognized as valuable animal models for the study of various human diseases as they share many physiological and genetic similarities with humans. In this review, we aim to shed light on the pleiotropic effects of resveratrol on cardiovascular health in dogs as a translational model for human cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Pawel Kordowitzki
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland; (A.G.)
| |
Collapse
|
3
|
Chang-Chien J, Kuo ML, Tseng YL, Huang HY, Tsai HJ, Yao TC. Differential effects of long- and short-term exposure to PM 2.5 on accelerating telomere shortening: from in vitro to epidemiological studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116650. [PMID: 38964064 DOI: 10.1016/j.ecoenv.2024.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Exposure to air pollutants has been associated with DNA damage and increases the risks of respiratory diseases, such as asthma and COPD; however short- and long-term effects of air pollutants on telomere dysfunction remain unclear. We investigated the impact of short- and long-term exposure to fine particulate matter with an aerodynamic diameter below 2.5 μm (PM2.5) on telomere length in human bronchial epithelial BEAS-2B cells, and assessed the potential correlation between PM2.5 exposure and telomere length in the LIGHTS childhood cohort study. We observed that long-term, but not short-term, PM2.5 exposure was significantly associated with telomere shortening, along with the downregulation of human telomerase reverse transcriptase (hTERT) mRNA and protein levels. Moreover, long-term exposure to PM2.5 induced proinflammatory cytokine secretion, notably interleukin 6 (IL-6) and IL-8, triggered subG1 cell cycle arrest, and ultimately caused cell death. Long-term exposure to PM2.5 upregulated the LC3-II/ LC3-I ratio but led to p62 protein accumulation in BEAS-2B cells, suggesting a blockade of autophagic flux. Moreover, consistent with our in vitro findings, our epidemiological study found significant association between annual average exposure to higher PM2.5 and shortening of leukocyte telomere length in children. However, no significant association between 7-day short-term exposure to PM2.5 and leukocyte telomere length was observed in children. By combining in vitro experimental and epidemiological studies, our findings provide supportive evidence linking potential regulatory mechanisms to population level with respect to long-term PM2.5 exposure to telomere shortening in humans.
Collapse
Affiliation(s)
- Ju Chang-Chien
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ming-Ling Kuo
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan
| | - Yu-Lung Tseng
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsin-Yi Huang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taiwan
| | - Hui-Ju Tsai
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan; College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| | - Tsung-Chieh Yao
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.
| |
Collapse
|
4
|
Kumar N, Sethi G. Telomerase and hallmarks of cancer: An intricate interplay governing cancer cell evolution. Cancer Lett 2023; 578:216459. [PMID: 37863351 DOI: 10.1016/j.canlet.2023.216459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Transformed cells must acquire specific characteristics to be malignant. Weinberg and Hanahan characterize these characteristics as cancer hallmarks. Though these features are independently driven, substantial signaling crosstalk in transformed cells efficiently promotes these feature acquisitions. Telomerase is an enzyme complex that maintains telomere length. However, its main component, Telomere reverse transcriptase (TERT), has been found to interact with various signaling molecules like cMYC, NF-kB, BRG1 and cooperate in transcription and metabolic reprogramming, acting as a strong proponent of malignant features such as cell death resistance, sustained proliferation, angiogenesis activation, and metastasis, among others. It allows cells to avoid replicative senescence and achieve endless replicative potential. This review summarizes both the canonical and noncanonical functions of TERT and discusses how they promote cancer hallmarks. Understanding the role of Telomerase in promoting cancer hallmarks provides vital insight into the underlying mechanism of cancer genesis and progression and telomerase intervention as a possible therapeutic target for cancer treatment. More investigation into the precise molecular mechanisms of telomerase-mediated impacts on cancer hallmarks will contribute to developing more focused and customized cancer treatment methods.
Collapse
Affiliation(s)
- Naveen Kumar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
5
|
Seara FAC, Maciel L, Kasai-Brunswick TH, Nascimento JHM, Campos-de-Carvalho AC. Extracellular Vesicles and Cardiac Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:33-56. [PMID: 37603271 DOI: 10.1007/978-981-99-1443-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Global population aging is a major challenge to health and socioeconomic policies. The prevalence of diseases progressively increases with aging, with cardiovascular disease being the major cause of mortality among elderly people. The allostatic overload imposed by the accumulation of cardiac senescent cells has been suggested to play a pivotal role in the aging-related deterioration of cardiovascular function. Senescent cells exhibit intrinsic disorders and release a senescence-associated secretory phenotype (SASP). Most of these SASP compounds and damaged molecules are released from senescent cells by extracellular vesicles (EVs). Once secreted, these EVs can be readily incorporated by recipient neighboring cells and elicit cellular damage or otherwise can promote extracellular matrix remodeling. This has been associated with the development of cardiac dysfunction, fibrosis, and vascular calcification, among others. The molecular signature of these EVs is highly variable and might provide important information for the development of aging-related biomarkers. Conversely, EVs released by the stem and progenitor cells can exert a rejuvenating effect, raising the possibility of future anti-aging therapies.
Collapse
Affiliation(s)
- Fernando A C Seara
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Physiological Sciences, Institute of Health and Biological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Leonardo Maciel
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Federal University of Rio de Janeiro, Campus Professor Geraldo, Duque de Caxias, Brazil
| | - Tais Hanae Kasai-Brunswick
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose H M Nascimento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Laboratory of Cardiac Electrophysiology, Carlos Chagas Filho Institute of Biophysics, Health Sciences Centre, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Antonio C Campos-de-Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Yuan Y, Liang B, Liu XL, Liu WJ, Huang BH, Yang SB, Gao YZ, Meng JS, Li MJ, Ye T, Wang CZ, Hu XK, Xing DM. Targeting NAD+: is it a common strategy to delay heart aging? Cell Death Dis 2022; 8:230. [PMID: 35474295 PMCID: PMC9042931 DOI: 10.1038/s41420-022-01031-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/17/2022]
Abstract
Heart aging is the main susceptible factor to coronary heart disease and significantly increases the risk of heart failure, especially when the aging heart is suffering from ischemia-reperfusion injury. Numerous studies with NAD+ supplementations have suggested its use in anti-aging treatment. However, systematic reviews regarding the overall role of NAD+ in cardiac aging are scarce. The relationship between NAD+ signaling and heart aging has yet to be clarified. This review comprehensively summarizes the current studies on the role of NAD+ signaling in delaying heart aging from the following aspects: the influence of NAD+ supplementations on the aging heart; the relationship and cross-talks between NAD+ signaling and other cardiac aging-related signaling pathways; Importantly, the therapeutic potential of targeting NAD+ in delaying heart aging will be discussed. In brief, NAD+ plays a vital role in delaying heart aging. However, the abnormalities such as altered glucose and lipid metabolism, oxidative stress, and calcium overload could also interfere with NAD+ function in the heart. Therefore, the specific physiopathology of the aging heart should be considered before applying NAD+ supplementations. We believe that this article will help augment our understanding of heart aging mechanisms. In the meantime, it provides invaluable insights into possible therapeutic strategies for preventing age-related heart diseases in clinical settings.
Collapse
Affiliation(s)
- Yang Yuan
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Bing Liang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Xin-Lin Liu
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Wen-Jing Liu
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Bing-Huan Huang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Shan-Bo Yang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Yuan-Zhen Gao
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Jing-Sen Meng
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Meng-Jiao Li
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Ting Ye
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Chuan-Zhi Wang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Xiao-Kun Hu
- Interventional Medicine Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dong-Ming Xing
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China. .,School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Phillippe M. Telomeres, oxidative stress, and timing for spontaneous term and preterm labor. Am J Obstet Gynecol 2022; 227:148-162. [PMID: 35460626 DOI: 10.1016/j.ajog.2022.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022]
Abstract
Telomeres are nucleoprotein complexes located at the distal ends of chromosomes. In adults, progressive telomere shortening occurs throughout the lifetime and is thought to contribute to progressive aging, physiological senescence, multiorgan dysfunction, and ultimately, death. As discussed in this review, multiple lines of evidence provide support for the biological plausibility that a telomere-based clock mechanism also determines the length of gestation, leading to the onset of labor (parturition). After telomere expansion at the beginning of pregnancy, the telomere lengths in the gestational tissues (ie, the placenta and fetal membranes) progressively shorten throughout the remainder of pregnancy. The rate of telomere shortening can be accelerated by conditions that affect the mother and result in oxidative stress. Preterm births in the United States are associated with multiple risk factors that are linked with increased oxidative stress. Antioxidant vitamins (ie, vitamins E and C) mitigate the effects of oxidative stress and delay or prevent telomere shortening. Clinical trials with vitamins E and C and with multivitamins started during the periconception period have been associated with reduced rates of preterm births. In the United States, African-American women have a 2-3-fold higher rate of preterm birth. African-American women have multiple risk factors for premature birth, all of which are distinct and potentially additive with regard to epigenetic telomere shortening. The "weathering effect" is the hypothesis to explain the increased rates of chronic illness, disabilities, and early death observed in African-Americans. With regard to pregnancy, accelerated weathering with the associated telomere shortening in the gestational tissues would not only explain the preterm birth disparity but could also explain why highly educated, affluent African-American women continue to have an increased rate of preterm birth. These studies suggest that the racial disparities in preterm birth are potentially mediated by telomere shortening produced by lifetime or even generational exposure to the effects of systemic racism and socioeconomic marginalization. In conclusion, this review presents multiple lines of evidence supporting a novel hypothesis regarding the biological clock mechanism that determines the length of pregnancy, and it opens the possibility of new approaches to prevent or reduce the rate of spontaneous preterm birth.
Collapse
|
8
|
Mehdizadeh M, Aguilar M, Thorin E, Ferbeyre G, Nattel S. The role of cellular senescence in cardiac disease: basic biology and clinical relevance. Nat Rev Cardiol 2022; 19:250-264. [PMID: 34667279 DOI: 10.1038/s41569-021-00624-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 12/11/2022]
Abstract
Cellular senescence, classically defined as stable cell cycle arrest, is implicated in biological processes such as embryogenesis, wound healing and ageing. Senescent cells have a complex senescence-associated secretory phenotype (SASP), involving a range of pro-inflammatory factors with important paracrine and autocrine effects on cell and tissue biology. Clinical evidence and experimental studies link cellular senescence, senescent cell accumulation, and the production and release of SASP components with age-related cardiac pathologies such as heart failure, myocardial ischaemia and infarction, and cancer chemotherapy-related cardiotoxicity. However, the precise role of senescent cells in these conditions is unclear and, in some instances, both detrimental and beneficial effects have been reported. The involvement of cellular senescence in other important entities, such as cardiac arrhythmias and remodelling, is poorly understood. In this Review, we summarize the basic biology of cellular senescence and discuss what is known about the role of cellular senescence and the SASP in heart disease. We then consider the various approaches that are being developed to prevent the accumulation of senescent cells and their consequences. Many of these strategies are applicable in vivo and some are being investigated for non-cardiac indications in clinical trials. We end by considering important knowledge gaps, directions for future research and the potential implications for improving the management of patients with heart disease.
Collapse
Affiliation(s)
- Mozhdeh Mehdizadeh
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Martin Aguilar
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Eric Thorin
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.,Department of Surgery, Université de Montréal, Montreal, QC, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry, Université de Montréal and CRCHUM, Montreal, QC, Canada
| | - Stanley Nattel
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada. .,Department of Medicine, Université de Montréal, Montreal, QC, Canada. .,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. .,IHU LIRYC and Fondation Bordeaux, Université Bordeaux, Bordeaux, France.
| |
Collapse
|
9
|
Opportunities and Challenges in Stem Cell Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1341:143-175. [PMID: 33748933 DOI: 10.1007/5584_2021_624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Studying aging, as a physiological process that can cause various pathological phenotypes, has attracted lots of attention due to its increasing burden and prevalence. Therefore, understanding its mechanism to find novel therapeutic alternatives for age-related disorders such as neurodegenerative and cardiovascular diseases is essential. Stem cell senescence plays an important role in aging. In the context of the underlying pathways, mitochondrial dysfunction, epigenetic and genetic alterations, and other mechanisms have been studied and as a consequence, several rejuvenation strategies targeting these mechanisms like pharmaceutical interventions, genetic modification, and cellular reprogramming have been proposed. On the other hand, since stem cells have great potential for disease modeling, they have been useful for representing aging and its associated disorders. Accordingly, the main mechanisms of senescence in stem cells and promising ways of rejuvenation, along with some examples of stem cell models for aging are introduced and discussed. This review aims to prepare a comprehensive summary of the findings by focusing on the most recent ones to shine a light on this area of research.
Collapse
|
10
|
Chen L, Luo G, Liu Y, Lin H, Zheng C, Xie D, Zhu Y, Chen L, Huang X, Hu D, Xie J, Chen Z, Liao W, Bin J, Wang Q, Liao Y. Growth differentiation factor 11 attenuates cardiac ischemia reperfusion injury via enhancing mitochondrial biogenesis and telomerase activity. Cell Death Dis 2021; 12:665. [PMID: 34215721 PMCID: PMC8253774 DOI: 10.1038/s41419-021-03954-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/28/2022]
Abstract
It has been reported that growth differentiation factor 11 (GDF11) protects against myocardial ischemia/reperfusion (IR) injury, but the underlying mechanisms have not been fully clarified. Considering that GDF11 plays a role in the aging/rejuvenation process and that aging is associated with telomere shortening and cardiac dysfunction, we hypothesized that GDF11 might protect against IR injury by activating telomerase. Human plasma GDF11 levels were significantly lower in acute coronary syndrome patients than in chronic coronary syndrome patients. IR mice with myocardial overexpression GDF11 (oe-GDF11) exhibited a significantly smaller myocardial infarct size, less cardiac remodeling and dysfunction, fewer apoptotic cardiomyocytes, higher telomerase activity, longer telomeres, and higher ATP generation than IR mice treated with an adenovirus carrying a negative control plasmid. Furthermore, mitochondrial biogenesis-related proteins and some antiapoptotic proteins were significantly upregulated by oe-GDF11. These cardioprotective effects of oe-GDF11 were significantly antagonized by BIBR1532, a specific telomerase inhibitor. Similar effects of oe-GDF11 on apoptosis and mitochondrial energy biogenesis were observed in cultured neonatal rat cardiomyocytes, whereas GDF11 silencing elicited the opposite effects to oe-GDF11 in mice. We concluded that telomerase activation by GDF11 contributes to the alleviation of myocardial IR injury through enhancing mitochondrial biogenesis and suppressing cardiomyocyte apoptosis.
Collapse
MESH Headings
- Aminobenzoates/pharmacology
- Animals
- Apoptosis
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/metabolism
- Case-Control Studies
- Cells, Cultured
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Growth Differentiation Factors/genetics
- Growth Differentiation Factors/metabolism
- Humans
- Male
- Mice, Inbred C57BL
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/genetics
- Mitochondria, Heart/pathology
- Myocardial Infarction/enzymology
- Myocardial Infarction/genetics
- Myocardial Infarction/pathology
- Myocardial Infarction/prevention & control
- Myocardial Reperfusion Injury/enzymology
- Myocardial Reperfusion Injury/genetics
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Naphthalenes/pharmacology
- Organelle Biogenesis
- Rats
- Signal Transduction
- Telomerase/antagonists & inhibitors
- Telomerase/metabolism
- Mice
Collapse
Affiliation(s)
- Lin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guangjin Luo
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yameng Liu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dongxiao Xie
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lu Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoxia Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Donghong Hu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiahe Xie
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhenhuan Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiancheng Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Atkinson SP. A Preview of Selected Articles. Stem Cells Transl Med 2020; 9:543-546. [PMID: 32329241 PMCID: PMC7180293 DOI: 10.1002/sctm.20-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 11/11/2022] Open
|
12
|
Fazzini F, Lamina C, Raschenberger J, Schultheiss UT, Kotsis F, Schönherr S, Weissensteiner H, Forer L, Steinbrenner I, Meiselbach H, Bärthlein B, Wanner C, Eckardt KU, Köttgen A, Kronenberg F. Results from the German Chronic Kidney Disease (GCKD) study support association of relative telomere length with mortality in a large cohort of patients with moderate chronic kidney disease. Kidney Int 2020; 98:488-497. [PMID: 32641227 DOI: 10.1016/j.kint.2020.02.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 02/08/2023]
Abstract
Telomere length is known to be inversely associated with aging and has been proposed as a marker for aging-related diseases. Telomere attrition can be accelerated by oxidative stress and inflammation, both commonly present in patients with chronic kidney disease. Here, we investigated whether relative telomere length is associated with mortality in a large cohort of patients with chronic kidney disease stage G3 and A1-3 or G1-2 with overt proteinuria (A3) at enrollment. Relative telomere length was quantified in peripheral blood by a quantitative PCR method in 4,955 patients from the GCKD study, an ongoing prospective observational cohort. Complete four-year follow-up was available from 4,926 patients in whom we recorded 354 deaths. Relative telomere length was a strong and independent predictor of all-cause mortality. Each decrease of 0.1 relative telomere length unit was highly associated with a 14% increased risk of death (hazard ratio1.14 [95% confidence interval 1.06-1.22]) in a model adjusted for age, sex, baseline eGFR, urine albumin/creatinine ratio, diabetes mellitus, prevalent cardiovascular disease, LDL-cholesterol, HDL-cholesterol, smoking, body mass index, systolic and diastolic blood pressure, C-reactive protein and serum albumin. This translated to a 75% higher risk for those in the lowest compared to the highest quartile of relative telomere length. The association was mainly driven by 117 cardiovascular deaths (1.20 [1.05-1.35]) as well as 67 deaths due to infections (1.27 [1.07-1.50]). Thus, our findings support an association of shorter telomere length with all-cause mortality, cardiovascular mortality and death due to infections in patients with moderate chronic kidney disease.
Collapse
Affiliation(s)
- Federica Fazzini
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Raschenberger
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ulla T Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; Renal Division, Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Fruzsina Kotsis
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; Renal Division, Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Inga Steinbrenner
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Heike Meiselbach
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Barbara Bärthlein
- Medical Centre for Information and Communication Technology (MIK), University Hospital Erlangen, Erlangen, Germany
| | - Christoph Wanner
- Division of Nephrology, Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
13
|
Abstract
During aging, deterioration in cardiac structure and function leads to increased susceptibility to heart failure. The need for interventions to combat this age-related cardiac decline is becoming increasingly urgent as the elderly population continues to grow. Our understanding of cardiac aging, and aging in general, is limited. However, recent studies of age-related decline and its prevention through interventions like exercise have revealed novel pathological and cardioprotective pathways. In this review, we summarize recent findings concerning the molecular mechanisms of age-related heart failure and highlight exercise as a valuable experimental platform for the discovery of much-needed novel therapeutic targets in this chronic disease.
Collapse
Affiliation(s)
- Haobo Li
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.)
| | - Margaret H Hastings
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.)
| | - James Rhee
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.).,Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston (J.R.)
| | - Lena E Trager
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.)
| | - Jason D Roh
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.)
| | - Anthony Rosenzweig
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.)
| |
Collapse
|
14
|
Choi SH, Cho KJ, Yun SH, Jin B, Lee HY, Ro SW, Kim DY, Ahn SH, Han KH, Park JY. HKR3 regulates cell cycle through the inhibition of hTERT in hepatocellular carcinoma cell lines. J Cancer 2020; 11:2442-2452. [PMID: 32201515 PMCID: PMC7066026 DOI: 10.7150/jca.39380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma is a malignant disease with improved hepatic regeneration and survival, and is activated by human telomere transferase (hTERT). hTERT is expressed during early fetal development and switched off in most adult tissues, but it becomes reactivated in HCC. The exact mechanism regulating these expression changes remains unknown during HCC progress. We evaluated the relationship between hTERT expression and human kruppel-related 3 (HKR3) and cell cycle-related factors in HCC cell lines. Following transfection for hTERT knockdown and HKR3 overexpression, proteomic and transcriptomic analyses related to hTERT were performed using liquid chromatography/mass spectrometry (LC/MS) and RNA sequencing (RNAseq) in HCC cell lines. The expression levels of hTERT, HKR3, and cell cycle-related factors were measured using western blotting, and tumor growth were evaluated via cell proliferation and cell cycle assays. Transcriptomic and proteomic analyses showed that HKR3, hTERT and cyclin-dependent kinase inhibitor 2A (CDKN2A) were correlated. Up-regulation of HKR3 expression decreased hTERT and cyclin activation and suppressed the G1/S phase of the cell cycle through CDKN2A activation. Our results suggest that HKR3 induced regulation of cell cycle through hTERT inhibition and CDKN2A activation. Our results will facilitate further exploration of the pathways regulating human telomerase activity in HCC cell lines.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Joo Cho
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- BK21 plus project for medical science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Ho Yun
- Division of Bioconvergence Analysis, Drug & Disease Target Team, Korea Basic Science Institute (KBSI), Cheongju, Republic of Korea
| | - Bora Jin
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- BK21 plus project for medical science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ha Young Lee
- Division of Bioconvergence Analysis, Drug & Disease Target Team, Korea Basic Science Institute (KBSI), Cheongju, Republic of Korea
- Bio-Analysis Science, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Simon W Ro
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Do Young Kim
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Ahn
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- BK21 plus project for medical science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwang-hyub Han
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Bioconvergence Analysis, Drug & Disease Target Team, Korea Basic Science Institute (KBSI), Cheongju, Republic of Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Yong Park
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- BK21 plus project for medical science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Abstract
Cardiac ageing manifests as a decline in function leading to heart failure. At the cellular level, ageing entails decreased replicative capacity and dysregulation of cellular processes in myocardial and nonmyocyte cells. Various extrinsic parameters, such as lifestyle and environment, integrate important signalling pathways, such as those involving inflammation and oxidative stress, with intrinsic molecular mechanisms underlying resistance versus progression to cellular senescence. Mitigation of cardiac functional decline in an ageing organism requires the activation of enhanced maintenance and reparative capacity, thereby overcoming inherent endogenous limitations to retaining a youthful phenotype. Deciphering the molecular mechanisms underlying dysregulation of cellular function and renewal reveals potential interventional targets to attenuate degenerative processes at the cellular and systemic levels to improve quality of life for our ageing population. In this Review, we discuss the roles of extrinsic and intrinsic factors in cardiac ageing. Animal models of cardiac ageing are summarized, followed by an overview of the current and possible future treatments to mitigate the deleterious effects of cardiac ageing.
Collapse
|
16
|
Abstract
Replicative capacity of somatic cells is limited. It indicates that aging also develops at the cellular level, and this is described as "cellular senescence". Senescent cells become flattened, enlarged, and irreversibly lose capacity for proliferation. Lack of specific and conclusive markers for cellular senescence makes it difficult to comprehensively define and understand this biological process especially in vivo. Molecules including p53, p21, p16Ink4a, p38MAPK, and γH2AX, telomere attrition, enhanced signals for SA-β-gal, etc. are widely used to detect senescent cells, but these are indirect indicators of cellular senescence, and biological markers reflecting direct evidence need to be established. Genetic profiles are altered in senescent cells, letting these cells secrete pro-inflammatory molecules. Aging or age-related disorders including heart failure and atherosclerotic diseases link with an accumulation of cells undergoing cellular senescence in cardiovascular systems including heart and vessels. Senescent cells become pathogenic in most cases by mediating chronic sterile inflammation and tissue remodeling. A recent conceptual as well as technical breakthrough in this research area is "senolysis", meaning the specific elimination of senescent cells. Genetic as well as pharmacological models with senolysis contributed to reverse aging phenotypes and ameliorated pathologies in age-related disorders without enhancing the risk of tumorigenesis, and opened a new avenue for aging research. Several compounds are identified as senolytics, and some are already tested in clinical settings. It was recently reported that senolysis reverses aging phenotype in cardiovascular disorders. Generating therapies targeting suppression or elimination of senescent cells would inhibit the progression of undesirable aspects of aging, and become promising therapies for cardiac diseases.
Collapse
Affiliation(s)
- Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
17
|
Abstract
Telomeres are specialised structures at the end of linear chromosomes. They consist of tandem repeats of the hexanucleotide sequence TTAGGG, as well as a protein complex called shelterin. Together, they form a protective loop structure against chromosome fusion and degradation. Shortening or damage to telomeres and opening of the loop induce an uncapped state that triggers a DNA damage response resulting in senescence or apoptosis.Average telomere length, usually measured in human blood lymphocytes, was thought to be a biomarker for ageing, survival and mortality. However, it becomes obvious that regulation of telomere length is very complex and involves multiple processes. For example, the "end replication problem" during DNA replication as well as oxidative stress are responsible for the shortening of telomeres. In contrast, telomerase activity can potentially counteract telomere shortening when it is able to access and interact with telomeres. However, while highly active during development and in cancer cells, the enzyme is down-regulated in most human somatic cells with a few exceptions such as human lymphocytes. In addition, telomeres can be transcribed, and the transcription products called TERRA are involved in telomere length regulation.Thus, telomere length and their integrity are regulated at many different levels, and we only start to understand this process under conditions of increased oxidative stress, inflammation and during diseases as well as the ageing process.This chapter aims to describe our current state of knowledge on telomeres and telomerase and their regulation in order to better understand their role for the ageing process.
Collapse
|
18
|
Phillippe M, Sawyer MR, Edelson PK. The telomere gestational clock: increasing short telomeres at term in the mouse. Am J Obstet Gynecol 2019; 220:496.e1-496.e8. [PMID: 30690015 DOI: 10.1016/j.ajog.2019.01.218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The biologic mechanism(s) regulating the length of gestation are currently poorly understood. After peaking at the blastocyst stage, the average telomere lengths have been reported to shorten during the remainder of gestation in the placenta and fetal membranes in both human and mouse pregnancies, thereby providing a potential countdown biologic clock. These previous studies have reported changes in the average telomere lengths, whereas it has now been shown that the shortest telomeres, not the average telomere lengths, are the mediators of telomere dysfunction which limits cellular survival and results in aging. OBJECTIVE These studies sought to assess for the first time a significant increase in short telomeres in the fetal membrane and placental tissue near the end of pregnancy in the mouse. STUDY DESIGN Placental and fetal membrane tissues were harvested from timed-pregnant CD-1 mice on gestational days 14-18 prior to the onset of parturition. Telomere lengths were determined for 30 DNA samples (5 each for gestational days 14, 16, and 18 from placentas and fetal membranes) using a commercial high-throughput quantitative fluorescence in situ hybridization technique. Quantitative measurements of representative short telomeres (ie, 3 kb and 5 kb telomere fragments) were performed for 29-30 DNA samples (4-7 each for gestational days 14, 15, 16, 17, and 18 from placentas, fetal membranes, and maternal liver) using a real-time quantitative polymerase chain reaction modification of the classic telomere restriction fragment technique. RESULTS The median telomere lengths of fetal membrane tissue decreased from gestational days 14-18 (18,705-16,364 kb) and were significantly shorter than telomeres in placental tissue (P < .05). Representative histograms for the distribution of telomere lengths in mouse fetal membranes (as shown in the Figure) confirm a curve skewed to the left (toward shorter telomere lengths).The relative quantity of the representative short telomeres (ie, 3 kb and 5 kb fragments) increased significantly as gestation progressed in both placenta and fetal membrane tissue. In gestational day 18 fetal membranes, the relative quantity of 3 kb and 5 kb telomeres increased 5.5-fold and 9.3-fold compared with gestational day 14 tissues (P < .05). In placental tissue the relative quantity of 3 kb and 5 kb telomeres increased 9.3-fold and 7.8-fold compared with gestational day 14 tissues (P < .05). Studies performed using adult liver tissue demonstrated little variation of the representative short telomeres and no significant difference between the nonpregnant and pregnant samples. CONCLUSION These mouse studies have demonstrated that the distribution of telomere lengths in fetal membrane and placental tissues are skewed toward shorter lengths and that the quantity of representative short telomeres increase significantly prior to parturition. The telomere gestational clock is a novel hypothesis supported by several preliminary mouse studies and interesting associations in human pregnancies between maternal conditions and telomere lengths. (eg, stress, education, pollution, neighborhood quality, and race). As such, the current hypothesis generating study provides a foundation for future research regarding the potential role for a telomere-based biologic clock that determines gestational length in human and other mammalian pregnancies.
Collapse
|