1
|
Sheikh M, Saiyyad A, Aliunui A, Jirvankar PS. The evolving landscape of oncolytic virus immunotherapy: combinatorial strategies and novel engineering approaches. Med Oncol 2025; 42:190. [PMID: 40314865 DOI: 10.1007/s12032-025-02746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Oncolytic viruses (OVs) are a promising class of cancer therapy, exploiting their abilities to selectively infect and kill cancer cells while stimulating antitumor immune responses. The current assessment explores the changing horizons of OV immunotherapy, focusing on recent advances in technology plans to improve OV projects and combined approaches to improve curative efficacy. We discuss how OVs induce direct oncolysis and promote the release of tumor-associated antigens, leading to the activation of both innate and adaptive immunity. Special attention shall be given to programs for arm OVs to express curative genes, modify the tumor microenvironment and overcome immunosuppression. Moreover, we assess the synergies of uniting OVs with other immunotherapeutic techniques, such as immune checkpoint inhibitors and cell therapy, to improve tolerant outcomes. The present assessment provides an understanding of the relevant declaration of the OV analysis, highlighting the main obstacles and the future directions for the development of other capable and targeted cancer immunotherapy.
Collapse
Affiliation(s)
- Mujibullah Sheikh
- Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra, 442001, India.
| | - Arshiya Saiyyad
- Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra, 442001, India
| | - Aimé Aliunui
- Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra, 442001, India
| | - Pranita S Jirvankar
- Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra, 442001, India
| |
Collapse
|
2
|
Xu Y, He X, Wang S, Sun B, Jia R, Chai P, Li F, Yang Y, Ge S, Jia R, Yang YG, Fan X. The m 6A reading protein YTHDF3 potentiates tumorigenicity of cancer stem-like cells in ocular melanoma through facilitating CTNNB1 translation. Oncogene 2022; 41:1281-1297. [PMID: 35110680 DOI: 10.1038/s41388-021-02146-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/06/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023]
Abstract
N6-methyladenosine (m6A) is the most universal internal RNA modification on messenger RNAs and regulates the fate and functions of m6A-modified transcripts through m6A-specific binding proteins. Nevertheless, the functional role and potential mechanism of the m6A reading proteins in ocular melanoma tumorigenicity, especially cancer stem-like cell (CSC) properties, remain to be elucidated. Herein, we demonstrated that the m6A reading protein YTHDF3 promotes the translation of the target transcript CTNNB1, contributing to ocular melanoma propagation and migration through m6A methylation. YTHDF3 is highly expressed in ocular melanoma stem-like cells and abundantly enriched in ocular melanoma tissues, which is related to poor clinical prognosis. Moreover, YTHDF3 is required for the maintenance of CSC properties and tumor initiation capacity in ocular melanoma both in vitro and in vivo. Ocular melanoma cells with targeted YTHDF3 knockdown exhibited inhibitory tumor proliferation and migration abilities. Transcriptome-wide mapping of m6A peaks and YTHDF3 binding peaks on mRNAs revealed a key target gene candidate, CTNNB1. Mechanistically, YTHDF3 enhances CTNNB1 translation through recognizing and binding the m6A peaks on CTNNB1 mRNA.
Collapse
Affiliation(s)
- Yangfan Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Xiaoyu He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Shanzheng Wang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
- China National Center for Bioinformation, Beijing, P.R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Baofa Sun
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
- China National Center for Bioinformation, Beijing, P.R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, P.R. China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, P.R. China
| | - Ruobing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Fang Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Ying Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
- China National Center for Bioinformation, Beijing, P.R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, P.R. China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, P.R. China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Yun-Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China.
- China National Center for Bioinformation, Beijing, P.R. China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, P.R. China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, P.R. China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China.
| |
Collapse
|
3
|
Soleimani A, Dadjoo P, Avan A, Soleimanpour S, Rajabian M, Ferns G, Ryzhikov M, Khazaei M, Hassanian SM. Emerging roles of CD133 in the treatment of gastric cancer, a novel stem cell biomarker and beyond. Life Sci 2022; 293:120050. [PMID: 35026215 DOI: 10.1016/j.lfs.2021.120050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/15/2022]
Abstract
Gastric cancer (GC) is an aggressive disease with one of the highest mortality rates in the world. In the early stage, most patients are asymptomatic and early diagnosis is difficult. Recently, cancer stem cells (CSCs) have been highlighted as crucial emerging factors in the initiation or invasiveness of solid tumors. CD133, a CSC marker, is highly expressed in various tumors including gastric cancer. CD133-positive cells showed elevated malignant biological behaviors and CD133 upregulation is related to chemoresistance, cancer relapse, and poor prognosis. CD133 also plays an important role in the progression of tumors and metastasis. This review summarizes the current knowledge of the role of CD133 expression in GC and aims to contribute at identifying promising new strategies for treatment and management of gastric cancer.
Collapse
Affiliation(s)
- Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Dadjoo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Human Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rajabian
- Department of Biology, Payame Noor University, Po Box19395-3697, Tehran, Iran
| | - Gordon Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Mikhail Ryzhikov
- Saint Louis University, School of Medicine, Saint Louis, MO, USA
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Chen G, Wang Y, Zhao X, Xie XZ, Zhao JG, Deng T, Chen ZY, Chen HB, Tong YF, Yang Z, Ding XW, Guo PY, Yu HT, Wu LJ, Zhang SN, Zhu QD, Li JJ, Shan YF, Yu FX, Yu ZP, Xia JL. A positive feedback loop between Periostin and TGFβ1 induces and maintains the stemness of hepatocellular carcinoma cells via AP-2α activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:218. [PMID: 34193219 PMCID: PMC8243733 DOI: 10.1186/s13046-021-02011-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/09/2021] [Indexed: 02/02/2023]
Abstract
Background Liver cancer stem cells (LCSCs) play key roles in the metastasis, recurrence, and chemotherapeutic resistance of hepatocellular carcinoma (HCC). Our previous research showed that the POSTN gene is closely related to the malignant progression and poor prognosis of HCC. This study aimed to elucidate the role of POSTN in generating LCSCs and maintaining their stemness as well as the underlying mechanisms. Methods Human HCC tissues and matched adjacent normal tissues were obtained from 110 patients. Immunohistochemistry, western blotting (WB), and RT-PCR were performed to detect the expression of POSTN and stemness factors. The roles of transforming growth factor (TGF)-β1 and AP-2α in the POSTN-induced stemness transformation of HCC cells were explored in vitro and in vivo using LCSCs obtained by CD133+ cell sorting. Results The high expression of POSTN was correlated with the expression of various stemness factors, particularly CD133, in our HCC patient cohort and in TCGA and ICGC datasets. Knockdown of POSTN expression decreased the abilities of HCC cell lines to form tumours in xenograft mouse models. Knockdown of POSTN expression also suppressed cell viability and clone formation, invasion, and sphere formation abilities in vitro. Knockdown of AP-2α attenuated the generation of CD133+ LCSCs and their malignant behaviours, indicating that AP-2α was a critical factor that mediated the POSTN-induced stemness transformation and maintenance of HCC cells. The role of AP-2α was verified by using a specific αvβ3 antagonist, cilengitide, in vitro and in vivo. Activation of POSTN could release TGFβ1 from the extracellular matrix and initiated POSTN/TGFβ1 positive feedback signalling. Furthermore, we found that the combined use of cilengitide and lenvatinib suppressed the growth of HCC cells with high POSTN expression more effectively than the use of lenvatinib alone in the patient-derived xenograft (PDX) mouse model. Conclusions The POSTN/TGFβ1 positive feedback pathway regulates the expression of stemness factors and the malignant progression of HCC cells by regulating the transcriptional activation of AP-2α. This pathway may serve as a new target for targeted gene therapy in HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02011-8.
Collapse
Affiliation(s)
- Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China. .,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China. .,Liver Cancer Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China.
| | - Yi Wang
- Division of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325005, China
| | - Xin Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xiao-Zai Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Jun-Gang Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Tuo Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Zi-Yan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Han-Bin Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Yi-Fan Tong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Zhen Yang
- Department of Infectious Diseases, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| | - Xi-Wei Ding
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Peng-Yi Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Hai-Tao Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Li-Jun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Si-Na Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Qian-Dong Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Jun-Jian Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Yun-Feng Shan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Fu-Xiang Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Zheng-Ping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325005, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China
| | - Jing-Lin Xia
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China. .,Liver Cancer Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China. .,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Moaven O, Mangieri CW, Stauffer JA, Anastasiadis PZ, Borad MJ. Strategies to Develop Potent Oncolytic Viruses and Enhance Their Therapeutic Efficacy. JCO Precis Oncol 2021; 5:PO.21.00003. [PMID: 34250395 DOI: 10.1200/po.21.00003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 02/04/2023] Open
Abstract
Despite advancements in cancer therapy that have occurred over the past several decades, successful treatment of advanced malignancies remains elusive. Substantial resources and significant efforts have been directed toward the development of novel therapeutic modalities to improve patient outcomes. Oncolytic viruses (OVs) are emerging tools with unique characteristics that have attracted great interest in developing effective anticancer treatment. The original attraction was directed toward selective replication and cell-specific toxicity, two unique features that are either inherent to the virus or could be conferred by genetic engineering. However, recent advancements in the knowledge and understanding of OVs are shifting the therapeutic paradigm toward a greater focus on their immunomodulatory role. Nonetheless, there are still significant obstacles that remain to be overcome to enhance the efficiency of OVs as effective therapeutic modalities and potentially establish them as part of standard treatment regimens. In this review, we discuss advances in the design of OVs, strategies to enhance their therapeutic efficacy, functional translation into the clinical settings, and various obstacles that are still encountered in the efforts to establish them as effective anticancer treatments.
Collapse
Affiliation(s)
- Omeed Moaven
- Section of Surgical Oncology, Department of Surgery, Mayo Clinic Florida, Jacksonville, FL
| | - Christopher W Mangieri
- Section of Surgical Oncology, Department of Surgery, Wake Forest University, Winston-Salem, NC
| | - John A Stauffer
- Section of Surgical Oncology, Department of Surgery, Mayo Clinic Florida, Jacksonville, FL
| | | | - Mitesh J Borad
- Division of Medical Oncology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ
| |
Collapse
|
6
|
Abstract
Cancer stem cells (CSCs) represent a small subpopulation of cells found within tumors that exhibit properties of self-renewal, like normal stem cells. CSCs have been defined as a crucial factor involved in driving cancer relapse, chemoresistance and metastasis. Prominin-1 (CD133) is one of the most well-characterized markers of CSCs in various tumor types, including hepatocellular carcinoma (HCC). CD133+ cells have been demonstrated to be involved in metastasis, tumorigenesis, tumor recurrence, and resistance to treatment in HCC. CD133-related clinical prognosis prediction, and targeted therapy have highlighted the clinical significance of CD133 in HCC. However, there remains controversy over the role of CD133 in experimental and clinical research involving HCC. In this article, we summarize the fundamental cell biology of CD133 in HCC cells and discuss the important characteristics of CD133+ in HCC cells. Furthermore, the prognostic value of CD133, and therapeutic strategies for its targeting in HCC, is also reviewed.
Collapse
Affiliation(s)
- Fengchao Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanzhi Qian
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Kana SI, Essani K. Immuno-Oncolytic Viruses: Emerging Options in the Treatment of Colorectal Cancer. Mol Diagn Ther 2021; 25:301-313. [PMID: 33713031 DOI: 10.1007/s40291-021-00517-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 12/18/2022]
Abstract
Colorectal cancer is the third most common neoplasm in the world and the third leading cause of cancer-related deaths in the USA. A safer and more effective therapeutic intervention against this malignant carcinoma is called for given the limitations and toxicities associated with the currently available treatment modalities. Immuno-oncolytic or oncolytic virotherapy, the use of viruses to selectively or preferentially kill cancer cells, has emerged as a potential anticancer treatment modality. Oncolytic viruses act as double-edged swords against the tumors through the direct cytolysis of cancer cells and the induction of antitumor immunity. A number of such viruses have been tested against colorectal cancer, in both preclinical and clinical settings, and many have produced promising results. Oncolytic virotherapy has also shown synergistic antitumor efficacy in combination with conventional treatment regimens. In this review, we describe the status of this therapeutic approach against colorectal cancer at both preclinical and clinical levels. Successes with and the challenges of using oncolytic viruses, both as monotherapy and in combination therapy, are also highlighted.
Collapse
Affiliation(s)
- Sadia Islam Kana
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008-5410, USA
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008-5410, USA.
| |
Collapse
|
8
|
Jamieson TR, Poutou J, Ilkow CS. Redirecting oncolytic viruses: Engineering opportunists to take control of the tumour microenvironment. Cytokine Growth Factor Rev 2020; 56:102-114. [DOI: 10.1016/j.cytogfr.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
|
9
|
Oswald JT, Patel H, Khan D, Jeorje NN, Golzar H, Oswald EL, Tang S. Drug Delivery Systems Using Surface Markers for Targeting Cancer Stem Cells. Curr Pharm Des 2020; 26:2057-2071. [PMID: 32250211 DOI: 10.2174/1381612826666200406084900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
The innate abilities of cancer stem cells (CSCs), such as multi-drug resistance, drug efflux, quiescence and ionizing radiation tolerance, protect them from most traditional chemotherapeutics. As a result, this small subpopulation of persistent cells leads to more aggressive and chemoresistant cancers, causing tumour relapse and metastasis. This subpopulation is differentiated from the bulk tumour population through a wide variety of surface markers expressed on the cell surface. Recent developments in nanomedicine and targeting delivery methods have given rise to new possibilities for specifically targeting these markers and preferentially eliminating CSCs. Herein, we first summarize the range of surface markers identifying CSC populations in a variety of cancers; then, we discuss recent attempts to actively target CSCs and their niches using liposomal, nanoparticle, carbon nanotube and viral formulations.
Collapse
Affiliation(s)
- James T Oswald
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Haritosh Patel
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Daid Khan
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ninweh N Jeorje
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Hossein Golzar
- Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Erin L Oswald
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Shirley Tang
- Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
10
|
Hosseini M, Farassati FS, Farassati F. Targeting Cancer Stem Cells by Oncolytic Viruses and Nano-Mediated Delivery. Onco Targets Ther 2020; 13:9349-9350. [PMID: 33061422 PMCID: PMC7519821 DOI: 10.2147/ott.s279639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Mahsa Hosseini
- Molecular Medicine Laboratory, Midwest Veterans Biomedical Research Foundation, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA
| | - Fatemeh S Farassati
- Molecular Medicine Laboratory, Midwest Veterans Biomedical Research Foundation, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA
| | - Faris Farassati
- Molecular Medicine Laboratory, Midwest Veterans Biomedical Research Foundation, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA
| |
Collapse
|
11
|
Kojima R, Aubel D, Fussenegger M. Building sophisticated sensors of extracellular cues that enable mammalian cells to work as "doctors" in the body. Cell Mol Life Sci 2020; 77:3567-3581. [PMID: 32185403 PMCID: PMC7452942 DOI: 10.1007/s00018-020-03486-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/27/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022]
Abstract
Mammalian cells are inherently capable of sensing extracellular environmental signals and activating complex biological functions on demand. Advances in synthetic biology have made it possible to install additional capabilities, which can allow cells to sense the presence of custom biological molecules and provide defined outputs on demand. When implanted/infused in patients, such engineered cells can work as intrabody "doctors" that diagnose disease states and produce and deliver therapeutic molecules when and where necessary. The key to construction of such theranostic cells is the development of a range of sensor systems for detecting various extracellular environmental cues that can be rewired to custom outputs. In this review, we introduce the state-of-art engineering principles utilized in the design of sensor systems to detect soluble factors and also to detect specific cell contact, and we discuss their potential role in treating intractable diseases by delivering appropriate therapeutic functions on demand. We also discuss the challenges facing these emerging technologies.
Collapse
Affiliation(s)
- Ryosuke Kojima
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Dominque Aubel
- IUTA Département Génie Biologique, Université Claude Bernard Lyon 1, Boulevard du 11 Novembre 1918, 69622, Villeurbanne Cedex, France
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.
- Faculty of Science, University of Basel, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
12
|
Multidirectional Strategies for Targeted Delivery of Oncolytic Viruses by Tumor Infiltrating Immune Cells. Pharmacol Res 2020; 161:105094. [PMID: 32795509 DOI: 10.1016/j.phrs.2020.105094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Oncolytic virus (OV) immunotherapy has demonstrated to be a promising approach in cancer treatment due to tumor-specific oncolysis. However, their clinical use so far has been largely limited due to the lack of suitable delivery strategies with high efficacy. Direct 'intratumoral' injection is the way to cross the hurdles of systemic toxicity, while providing local effects. Progress in this field has enabled the development of alternative way using 'systemic' oncolytic virotherapy for producing better results. One major potential roadblock to systemic OV delivery is the low virus persistence in the face of hostile immune system. The delivery challenge is even greater when attempting to target the oncolytic viruses into the entire tumor mass, where not all tumor cells are equally exposed to exactly the same microenvironment. The microenvironment of many tumors is known to be massively infiltrated with various types of leucocytes in both primary and metastatic sites. Interestingly, this intratumoral immune cell heterogeneity exhibits a degree of organized distribution inside the tumor bed as evidenced, for example, by the hypoxic tumor microenviroment where predominantly recruits tumor-associated macrophages. Although in vivo OV delivery seems complicated and challenging, recent results are encouraging for decreasing the limitations of systemically administered oncolytic viruses and an improved efficiency of oncolytic viral therapy in targeting cancerous tissues in vitro. Here, we review the latest developments of carrier cell-based oncolytic virus delivery using tumor-infiltrating immune cells with a focus on the main features of each cellular vehicle.
Collapse
|
13
|
Zhang YN, Wang SB, Song SS, Hu PY, Zhou YC, Mou YP, Mou XZ. Recent advances in targeting cancer stem cells using oncolytic viruses. Biotechnol Lett 2020; 42:865-874. [DOI: 10.1007/s10529-020-02857-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/27/2020] [Indexed: 12/22/2022]
|
14
|
Wang Y, Wu G, Fu X, Xu S, Wang T, Zhang Q, Yang Y. Aquaporin 3 maintains the stemness of CD133+ hepatocellular carcinoma cells by activating STAT3. Cell Death Dis 2019; 10:465. [PMID: 31197130 PMCID: PMC6565673 DOI: 10.1038/s41419-019-1712-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023]
Abstract
An increasing interest in liver cancer stemness arises owing to its aggressive behavior and poor prognosis. CD133, a widely known liver cancer stem cell marker, plays critical roles in the maintenance of liver cancer stemness. Thus, exploring the regulatory mechanism of CD133 expression is significant. In the present study, we proved the carcinogenesis roles of aquaporin 3 (AQP3) in hepatocellular carcinoma (HCC) and demonstrated that AQP3 promotes the stem cell-like properties of hepatoma cells by regulating CD133 expression. In addition, AQP3 promoted the stimulation and nuclear translocation of signal transducer and activator of transcription 3 (STAT3) with a subsequent increase in the level of CD133 promoter-acetylated histone H3. This phenomenon accelerated CD133 transcription. Next, whether AQP3 acted as an oncogenic gene in HCC and maintained the stemness of CD133+ hepatoma cells were elucidated; also, a novel mechanism underlying the AQP3/STAT3/CD133 pathway in HCC was deduced.
Collapse
Affiliation(s)
- Yawei Wang
- Department of Geriatric Surgery, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Gang Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang, PR China.
| | - Xueyan Fu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Shaolin Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Tianlong Wang
- Department of Geriatric Surgery, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Qi Zhang
- Department of Geriatric Surgery, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Ye Yang
- Department of Geriatric Surgery, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| |
Collapse
|
15
|
Crupi MJF, Bell JC, Singaravelu R. Concise Review: Targeting Cancer Stem Cells and Their Supporting Niche Using Oncolytic Viruses. Stem Cells 2019; 37:716-723. [PMID: 30875126 DOI: 10.1002/stem.3004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/08/2019] [Accepted: 03/02/2019] [Indexed: 12/22/2022]
Abstract
Cancer stem cells (CSCs) have the capacity to self-renew and differentiate to give rise to heterogenous cancer cell lineages in solid tumors. These CSC populations are associated with metastasis, tumor relapse, and resistance to conventional anticancer therapies. Here, we focus on the use of oncolytic viruses (OVs) to target CSCs as well as the OV-driven interferon production in the tumor microenvironment (TME) that can repress CSC properties. We explore the ability of OVs to deliver combinations of immune-modulating therapeutic transgenes, such as immune checkpoint inhibitor antibodies. In particular, we highlight the advantages of virally encoded bi-specific T cell engagers (BiTEs) to not only target cell-surface markers on CSCs, but also tumor-associated antigens on contributing components of the surrounding TME and other cancer cells. We also highlight the crucial role of combination anticancer treatments, evidenced by synergy of OV-delivered BiTEs and chimeric-antigen receptor T cell therapy. Stem Cells 2019;37:716-723.
Collapse
Affiliation(s)
- Mathieu J F Crupi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - John C Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ragunath Singaravelu
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|