1
|
DeMaria WG, Figueroa-Milla AE, Kaija A, Harrington AE, Tero B, Ryzhova L, Liaw L, Rolle MW. Endothelial Cells Increase Mesenchymal Stem Cell Differentiation in Scaffold-Free 3D Vascular Tissue. Tissue Eng Part A 2024. [PMID: 39109944 DOI: 10.1089/ten.tea.2024.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
In this study, we present a versatile, scaffold-free approach to create ring-shaped engineered vascular tissue segments using human mesenchymal stem cell-derived smooth muscle cells (hMSC-SMCs) and endothelial cells (ECs). We hypothesized that incorporation of ECs would increase hMSC-SMC differentiation without compromising tissue ring strength or fusion to form tissue tubes. Undifferentiated hMSCs and ECs were co-seeded into custom ring-shaped agarose wells using four different concentrations of ECs: 0%, 10%, 20%, and 30%. Co-seeded EC and hMSC rings were cultured in SMC differentiation medium for a total of 22 days. Tissue rings were then harvested for histology, Western blotting, wire myography, and uniaxial tensile testing to examine their structural and functional properties. Differentiated hMSC tissue rings comprising 20% and 30% ECs exhibited significantly greater SMC contractile protein expression, endothelin-1 (ET-1)-meditated contraction, and force at failure compared with the 0% EC rings. On average, the 0%, 10%, 20%, and 30% EC rings exhibited a contractile force of 0.745 ± 0.117, 0.830 ± 0.358, 1.31 ± 0.353, and 1.67 ± 0.351 mN (mean ± standard deviation [SD]) in response to ET-1, respectively. Additionally, the mean maximum force at failure for the 0%, 10%, 20%, and 30% EC rings was 88.5 ± 36. , 121 ± 59.1, 147 ± 43.1, and 206 ± 0.8 mN (mean ± SD), respectively. Based on these results, 30% EC rings were fused together to form tissue-engineered blood vessels (TEBVs) and compared with 0% EC TEBV controls. The addition of 30% ECs in TEBVs did not affect ring fusion but did result in significantly greater SMC protein expression (calponin and smoothelin). In summary, co-seeding hMSCs with ECs to form tissue rings resulted in greater contraction, strength, and hMSC-SMC differentiation compared with hMSCs alone and indicates a method to create a functional 3D human vascular cell coculture model.
Collapse
Affiliation(s)
- William G DeMaria
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Andre E Figueroa-Milla
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Abigail Kaija
- MaineHealth Institute for Research, Scarborough, Maine, USA
| | | | - Benjamin Tero
- MaineHealth Institute for Research, Scarborough, Maine, USA
- The Roux Institute, Northeastern University, Portland, Maine, USA
| | - Larisa Ryzhova
- MaineHealth Institute for Research, Scarborough, Maine, USA
| | - Lucy Liaw
- MaineHealth Institute for Research, Scarborough, Maine, USA
| | - Marsha W Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- The Roux Institute, Northeastern University, Portland, Maine, USA
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Hardin LT, Abid N, Vang D, Han X, Thor D, Ojcius DM, Xiao N. miRNAs mediate the impact of smoking on dental pulp stem cells via the p53 pathway. Toxicol Sci 2024; 200:47-56. [PMID: 38636493 DOI: 10.1093/toxsci/kfae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Cigarette smoke changes the genomic and epigenomic imprint of cells. In this study, we investigated the biological consequences of extended cigarette smoke exposure on dental pulp stem cells (DPSCs) and the potential roles of miRNAs. DPSCs were treated with various doses of cigarette smoke condensate (CSC) for up to 6 weeks. Cell proliferation, survival, migration, and differentiation were evaluated. Cytokine and miRNA expression were profiled. The results showed that extended exposure to CSC significantly impaired the regenerative capacity of the DPSCs. Bioinformatic analysis showed that the cell cycle pathway, cancer pathways (small cell lung cancer, pancreatic, colorectal, and prostate cancer), and pathways for TNF, TGF-β, p53, PI3K-Akt, mTOR, and ErbB signal transduction, were associated with altered miRNA profiles. In particular, 3 miRNAs has-miR-26a-5p, has-miR-26b-5p, and has-miR-29b-3p fine-tune the p53 and cell cycle signaling pathways to regulate DPSC cellular activities. The work indicated that miRNAs are promising targets to modulate stem cell regeneration and understanding miRNA-targeted genes and their associated pathways in smoking individuals have significant implications for disease control and prevention.
Collapse
Affiliation(s)
- Leyla Tahrani Hardin
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| | - Nabil Abid
- Department of Molecular and Cellular Biology, High Institute of Biotechnology of Monastir, University of Monastir, Monastir, 5000, Tunisia
- Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, 5000, Tunisia
| | - David Vang
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| | - Xiaoyuan Han
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| | - Der Thor
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| | - David M Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| | - Nan Xiao
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| |
Collapse
|
3
|
Li J, Fan H, Liu W, Zhang J, Xiao Y, Peng Y, Yang W, Liu W, He Y, Qin L, Ma X, Li J. Mesenchymal stem cells promote ovarian reconstruction in mice. Stem Cell Res Ther 2024; 15:115. [PMID: 38650029 PMCID: PMC11036642 DOI: 10.1186/s13287-024-03718-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Studies have shown that chemotherapy and radiotherapy can cause premature ovarian failure and loss of fertility in female cancer patients. Ovarian cortex cryopreservation is a good choice to preserve female fertility before cancer treatment. Following the remission of the disease, the thawed ovarian tissue can be transplanted back and restore fertility of the patient. However, there is a risk to reintroduce cancer cells in the body and leads to the recurrence of cancer. Given the low success rate of current in vitro culture techniques for obtaining mature oocytes from primordial follicles, an artificial ovary with primordial follicles may be a good way to solve this problem. METHODS In the study, we established an artificial ovary model based on the participation of mesenchymal stem cells (MSCs) to evaluate the effect of MSCs on follicular development and oocyte maturation. P2.5 mouse ovaries were digested into single cell suspensions and mixed with bone marrow derived mesenchymal stem cells (BM-MSCs) at a 1:1 ratio. The reconstituted ovarian model was then generated by using phytohemagglutinin. The phenotype and mechanism studies were explored by follicle counting, immunohistochemistry, immunofluorescence, in vitro maturation (IVM), in vitro fertilization (IVF), real-time quantitative polymerase chain reaction (RT-PCR), and Terminal-deoxynucleotidyl transferase mediated nick end labeling(TUNEL) assay. RESULTS Our study found that the addition of BM-MSCs to the reconstituted ovary can enhance the survival of oocytes and promote the growth and development of follicles. After transplanting the reconstituted ovaries under kidney capsules of the recipient mice, we observed normal folliculogenesis and oocyte maturation. Interestingly, we found that BM-MSCs did not contribute to the formation of follicles in ovarian aggregation, nor did they undergo proliferation during follicle growth. Instead, the cells were found to be located around growing follicles in the reconstituted ovary. When theca cells were labeled with CYP17a1, we found some overlapped staining with green fluorescent protein(GFP)-labeled BM-MSCs. The results suggest that BM-MSCs may participate in directing the differentiation of theca layer in the reconstituted ovary. CONCLUSIONS The presence of BM-MSCs in the artificial ovary was found to promote the survival of ovarian cells, as well as facilitate follicle formation and development. Since the cells didn't proliferate in the reconstituted ovary, this discovery suggests a potential new and safe method for the application of MSCs in clinical fertility preservation by enhancing the success rate of cryo-thawed ovarian tissues after transplantation.
Collapse
Affiliation(s)
- Jiazhao Li
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
- Scientific Research Department, Wannan Medical College, 241002, Wuhu, China
| | - Haonan Fan
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
| | - Wei Liu
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
| | - Jing Zhang
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
| | - Yue Xiao
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Yue Peng
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
- Pathology Department, Nanjing Kingmed Medical Laboratory Co.,Ltd., 210032, Nanjing, China
| | - Weijie Yang
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Wenwen Liu
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 21003, Nanjing, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center of Clinical Reproductive Medicine, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.
| | - Xiang Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center of Clinical Reproductive Medicine, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.
- Prenatal Diagnosis Department, First Affiliated Hospital, Nanjing Medical University, 210029, Nanjing, China.
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China.
| |
Collapse
|
4
|
Lei Y, Al Delbany D, Krivec N, Regin M, Couvreu de Deckersberg E, Janssens C, Ghosh M, Sermon K, Spits C. SALL3 mediates the loss of neuroectodermal differentiation potential in human embryonic stem cells with chromosome 18q loss. Stem Cell Reports 2024; 19:562-578. [PMID: 38552632 PMCID: PMC11096619 DOI: 10.1016/j.stemcr.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/12/2024] Open
Abstract
Human pluripotent stem cell (hPSC) cultures are prone to genetic drift, because cells that have acquired specific genetic abnormalities experience a selective advantage in vitro. These abnormalities are highly recurrent in hPSC lines worldwide, but their functional consequences in differentiating cells are scarcely described. In this work, we show that the loss of chromosome 18q impairs neuroectoderm commitment and that downregulation of SALL3, a gene located in the common 18q loss region, is responsible for this failed neuroectodermal differentiation. Knockdown of SALL3 in control lines impaired differentiation in a manner similar to the loss of 18q, and transgenic overexpression of SALL3 in hESCs with 18q loss rescued the differentiation capacity of the cells. Finally, we show that loss of 18q and downregulation of SALL3 leads to changes in the expression of genes involved in pathways regulating pluripotency and differentiation, suggesting that these cells are in an altered state of pluripotency.
Collapse
Affiliation(s)
- Yingnan Lei
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Diana Al Delbany
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Nuša Krivec
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Marius Regin
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Edouard Couvreu de Deckersberg
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Charlotte Janssens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Manjusha Ghosh
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
5
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
6
|
Ma J, Wang W, Zhang W, Xu D, Ding J, Wang F, Peng X, Wang D, Li Y. The recent advances in cell delivery approaches, biochemical and engineering procedures of cell therapy applied to coronary heart disease. Biomed Pharmacother 2023; 169:115870. [PMID: 37952359 DOI: 10.1016/j.biopha.2023.115870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
Cell therapy is an important topic in the field of regeneration medicine that is gaining attention within the scientific community. However, its potential for treatment in coronary heart disease (CHD) has yet to be established. Several various strategies, types of cells, routes of distribution, and supporting procedures have been tried and refined to trigger heart rejuvenation in CHD. However, only a few of them result in a real considerable promise for clinical usage. In this review, we give an update on techniques and clinical studies of cell treatment as used to cure CHD that are now ongoing or have been completed in the previous five years. We also highlight the emerging efficacy of stem cell treatment for CHD. We specifically examine and comment on current breakthroughs in cell treatment applied to CHD, including the most effective types of cells, transport modalities, engineering, and biochemical approaches used in this context. We believe the current review will be helpful for the researcher to distill this information and design future studies to overcome the challenges faced by this revolutionary approach for CHD.
Collapse
Affiliation(s)
- Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 13000, China
| | - Wenhai Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Wenbin Zhang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Dexin Xu
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Jian Ding
- Department of Electrodiagnosis, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Fang Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Xia Peng
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Dahai Wang
- Department of Rehabilitation, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Yanwei Li
- Department of General Practice and Family Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
7
|
Corcoran E, Olayinka A, di Luca M, Gusti Y, Hakimjavadi R, O'Connor B, Redmond EM, Cahill PA. N-Glycans on the extracellular domain of the Notch1 receptor control Jagged-1 induced Notch signalling and myogenic differentiation of S100β resident vascular stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567576. [PMID: 38014317 PMCID: PMC10680845 DOI: 10.1101/2023.11.17.567576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Notch signalling, critical for development and postnatal homeostasis of the vascular system, is highly regulated by several mechanisms including glycosylation. While the importance of O-linked glycosylation is widely accepted, the structure and function of N-glycans has yet to be defined. Here, we take advantage of lectin binding assays in combination with pharmacological, molecular, and site-directed mutagenetic approaches to study N-glycosylation of the Notch1 receptor. We find that several key oligosaccharides containing bisecting or core fucosylated structures decorate the receptor, control expression and receptor trafficking, and dictate Jagged-1 activation of Notch target genes and myogenic differentiation of multipotent S100β vascular stem cells. N-glycans at asparagine (N) 1241 and 1587 protect the receptor from accelerated degradation, while the oligosaccharide at N888 directly affects signal transduction. Conversely, N-linked glycans at N959, N1179, N1489 do not impact canonical signalling but inhibit differentiation. Our work highlights a novel functional role for N-glycans in controlling Notch1 signalling and differentiation of vascular stem cells.
Collapse
Affiliation(s)
- Eoin Corcoran
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Abidemi Olayinka
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Mariana di Luca
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Yusof Gusti
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Roya Hakimjavadi
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Brendan O'Connor
- School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Eileen M Redmond
- Department of Surgery, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Paul A Cahill
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| |
Collapse
|
8
|
Huang D, Liang J, Yang J, Yang C, Wang X, Dai T, Steinberg T, Li C, Wang F. Current Status of Tissue Regenerative Engineering for the Treatment of Uterine Infertility. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:558-573. [PMID: 37335062 DOI: 10.1089/ten.teb.2022.0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
With the recent developments in tissue engineering, scientists have attempted to establish seed cells from different sources, create cell sheets through various technologies, implant them on scaffolds with various spatial structures, or load scaffolds with cytokines. These research results are very optimistic, bringing hope to the treatment of patients with uterine infertility. In this article, we reviewed articles related to the treatment of uterine infertility from the aspects of experimental treatment strategy, seed cells, scaffold application, and repair criteria so as to provide a basis for future research.
Collapse
Affiliation(s)
- Di Huang
- Shandong First Medical University, Jinan, China
| | - Junhui Liang
- Departments of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Yang
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Chunrun Yang
- Departments of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Ultrasonography, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tianyu Dai
- Shandong First Medical University, Jinan, China
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Wang
- Departments of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
9
|
Pineda-Castillo SA, Acar H, Detamore MS, Holzapfel GA, Lee CH. Modulation of Smooth Muscle Cell Phenotype for Translation of Tissue-Engineered Vascular Grafts. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:574-588. [PMID: 37166394 PMCID: PMC10618830 DOI: 10.1089/ten.teb.2023.0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Translation of small-diameter tissue-engineered vascular grafts (TEVGs) for the treatment of coronary artery disease (CAD) remains an unfulfilled promise. This is largely due to the limited integration of TEVGs into the native vascular wall-a process hampered by the insufficient smooth muscle cell (SMC) infiltration and extracellular matrix deposition, and low vasoactivity. These processes can be promoted through the judicious modulation of the SMC toward a synthetic phenotype to promote remodeling and vascular integration; however, the expression of synthetic markers is often accompanied by a decrease in the expression of contractile proteins. Therefore, techniques that can precisely modulate the SMC phenotypical behavior could have the potential to advance the translation of TEVGs. In this review, we describe the phenotypic diversity of SMCs and the different environmental cues that allow the modulation of SMC gene expression. Furthermore, we describe the emerging biomaterial approaches to modulate the SMC phenotype in TEVG design and discuss the limitations of current techniques. In addition, we found that current studies in tissue engineering limit the analysis of the SMC phenotype to a few markers, which are often the characteristic of early differentiation only. This limited scope has reduced the potential of tissue engineering to modulate the SMC toward specific behaviors and applications. Therefore, we recommend using the techniques presented in this review, in addition to modern single-cell proteomics analysis techniques to comprehensively characterize the phenotypic modulation of SMCs. Expanding the holistic potential of SMC modulation presents a great opportunity to advance the translation of living conduits for CAD therapeutics.
Collapse
Affiliation(s)
- Sergio A. Pineda-Castillo
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
| | - Handan Acar
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, Oklahoma, USA
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, Oklahoma, USA
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
10
|
Zhang Y, Zhong J, Lin S, Hu M, Liu J, Kang J, Qi Y, Basabrain MS, Zou T, Zhang C. Direct contact with endothelial cells drives dental pulp stem cells toward smooth muscle cells differentiation via TGF-β1 secretion. Int Endod J 2023; 56:1092-1107. [PMID: 37294792 DOI: 10.1111/iej.13943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
AIM Prevascularization is vital to accelerate functional blood circulation establishment in transplanted engineered tissue constructs. Mesenchymal stem cells (MSCs) or mural cells could promote the survival of implanted endothelial cells (ECs) and enhance the stabilization of newly formed blood vessels. However, the dynamic cell-cell interactions between MSCs, mural cells and ECs in the angiogenic processes remain unclear. This study aimed to explore the interactions of human umbilical vein ECs (HUVECs) and dental pulp stem cells (DPSCs) in an in vitro cell coculture model. METHODOLOGY Human umbilical vascular ECs and DPSCs were directly cocultured or indirectly cocultured with transwell inserts in endothelial basal media-2 (EBM-2) supplemented with 5% FBS for 6 days. Expression of SMC-specific markers in DPSCs monoculture and HUVEC+DPSC cocultures was assessed by western blot and immunofluorescence. Activin A and transforming growth factor-beta 1 (TGF-β1) in conditioned media (CM) of HUVECs monoculture (E-CM), DPSCs monoculture (D-CM) and HUVEC+DPSC cocultures (E+D-CM) were analysed by enzyme-linked immunosorbent assay. TGF-β RI kinase inhibitor VI, SB431542, was used to block TGF-β1/ALK5 signalling in DPSCs. RESULTS The expression of SMC-specific markers, α-SMA, SM22α and Calponin, were markedly increased in HUVEC+DPSC direct cocultures compared to that in DPSCs monoculture, while no differences were demonstrated between HUVEC+DPSC indirect cocultures and DPSCs monoculture. E+D-CM significantly upregulated the expression of SMC-specific markers in DPSCs compared to E-CM and D-CM. Activin A and TGF-β1 were considerably higher in E+D-CM than that in D-CM, with upregulated Smad2 phosphorylation in HUVEC+DPSC cocultures. Treatment with activin A did not change the expression of SMC-specific markers in DPSCs, while treatment with TGF-β1 significantly enhanced these markers' expression in DPSCs. In addition, blocking TGF-β1/ALK5 signalling inhibited the expression of α-SMA, SM22α and Calponin in DPSCs. CONCLUSIONS TGF-β1 was responsible for DPSC differentiation into SMCs in HUVEC+DPSC cocultures, and TGF-β1/ALK5 signalling pathway played a vital role in this process.
Collapse
Affiliation(s)
- Yuchen Zhang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jialin Zhong
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shulan Lin
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Mingxin Hu
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Junqing Liu
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jun Kang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yubingqing Qi
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Mohammed S Basabrain
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ting Zou
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Kamentseva RS, Kharchenko MV, Gabdrahmanova GV, Kotov MA, Kosheverova VV, Kornilova ES. EGF, TGF- α and Amphiregulin Differently Regulate Endometrium-Derived Mesenchymal Stromal/Stem Cells. Int J Mol Sci 2023; 24:13408. [PMID: 37686213 PMCID: PMC10487484 DOI: 10.3390/ijms241713408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
The prototypical receptor tyrosine kinase epidermal growth factor receptor (EGFR) is regulated by a set of its ligands, which determines the specificity of signaling and intracellular fate of the receptor. The EGFR signaling system is well characterized in immortalized cell lines such as HeLa derived from tumor tissues, but much less is known about EGFR function in untransformed multipotent stromal/stem cells (MSCs). We compared the effect of epidermal growth factor (EGF), transforming growth factor-α (TGF-α) and amphiregulin (AREG) on physiological responses in endometrial MSCs (enMSC) and HeLa cells. In addition, using Western blotting and confocal microscopy, we studied the internalization and degradation of EGFR stimulated by the three ligands in these cell lines. We demonstrated that unlike HeLa, EGF and TGF-α, but not AREG, stimulated enMSC proliferation and prevented decidual differentiation in an EGFR-dependent manner. In HeLa cells, EGF targeted EGFR for degradation, while TGF-α stimulated its recycling. Surprisingly, in enMSC, both ligands caused EGFR degradation. In both cell lines, AREG-EGFR internalization was not registered. In HeLa cells, EGFR was degraded within 2 h, restoring its level in 24 h, while in enMSC, degradation took more than 4-8 h, and the low EGFR level persisted for several days. This indicates that EGFR homeostasis in MSCs may differ significantly from that in immortalized cell lines.
Collapse
Affiliation(s)
- Rimma Sergeevna Kamentseva
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (M.V.K.); (V.V.K.); (E.S.K.)
| | - Marianna Viktorovna Kharchenko
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (M.V.K.); (V.V.K.); (E.S.K.)
| | - Gulnara Vladikovna Gabdrahmanova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (M.V.K.); (V.V.K.); (E.S.K.)
| | - Michael Alexandrovich Kotov
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (M.V.K.); (V.V.K.); (E.S.K.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Hlopina St. 11, St. Petersburg 195251, Russia
| | - Vera Vladislavovna Kosheverova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (M.V.K.); (V.V.K.); (E.S.K.)
| | - Elena Sergeevna Kornilova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (M.V.K.); (V.V.K.); (E.S.K.)
- Faculty of Biology, St. Petersburg State University, 7-9 Universitetskaya Embankment, St. Petersburg 199034, Russia
| |
Collapse
|
12
|
Größbacher G, Bartolf-Kopp M, Gergely C, Bernal PN, Florczak S, de Ruijter M, Rodriguez NG, Groll J, Malda J, Jungst T, Levato R. Volumetric Printing Across Melt Electrowritten Scaffolds Fabricates Multi-Material Living Constructs with Tunable Architecture and Mechanics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300756. [PMID: 37099802 DOI: 10.1002/adma.202300756] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Major challenges in biofabrication revolve around capturing the complex, hierarchical composition of native tissues. However, individual 3D printing techniques have limited capacity to produce composite biomaterials with multi-scale resolution. Volumetric bioprinting recently emerged as a paradigm-shift in biofabrication. This ultrafast, light-based technique sculpts cell-laden hydrogel bioresins into 3D structures in a layerless fashion, providing enhanced design freedom over conventional bioprinting. However, it yields prints with low mechanical stability, since soft, cell-friendly hydrogels are used. Herein, the possibility to converge volumetric bioprinting with melt electrowriting, which excels at patterning microfibers, is shown for the fabrication of tubular hydrogel-based composites with enhanced mechanical behavior. Despite including non-transparent melt electrowritten scaffolds in the volumetric printing process, high-resolution bioprinted structures are successfully achieved. Tensile, burst, and bending mechanical properties of printed tubes are tuned altering the electrowritten mesh design, resulting in complex, multi-material tubular constructs with customizable, anisotropic geometries that better mimic intricate biological tubular structures. As a proof-of-concept, engineered tubular structures are obtained by building trilayered cell-laden vessels, and features (valves, branches, fenestrations) that can be rapidly printed using this hybrid approach. This multi-technology convergence offers a new toolbox for manufacturing hierarchical and mechanically tunable multi-material living structures.
Collapse
Affiliation(s)
- Gabriel Größbacher
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Michael Bartolf-Kopp
- Department of Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication (IFB), KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Csaba Gergely
- Department of Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication (IFB), KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Paulina Núñez Bernal
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Sammy Florczak
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Mylène de Ruijter
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Núria Ginés Rodriguez
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication (IFB), KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CT, The Netherlands
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication (IFB), KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CT, The Netherlands
| |
Collapse
|
13
|
Shan S, Li Q, Criswell T, Atala A, Zhang Y. Stem cell therapy combined with controlled release of growth factors for the treatment of sphincter dysfunction. Cell Biosci 2023; 13:56. [PMID: 36927578 PMCID: PMC10018873 DOI: 10.1186/s13578-023-01009-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Sphincter dysfunction often occurs at the end of tubule organs such as the urethra, anus, or gastroesophageal sphincters. It is the primary consequence of neuromuscular impairment caused by trauma, inflammation, and aging. Despite intensive efforts to recover sphincter function, pharmacological treatments have not achieved significant improvement. Cell- or growth factor-based therapy is a promising approach for neuromuscular regeneration and the recovery of sphincter function. However, a decrease in cell retention and viability, or the short half-life and rapid degradation of growth factors after implantation, remain obstacles to the translation of these therapies to the clinic. Natural biomaterials provide unique tools for controlled growth factor delivery, which leads to better outcomes for sphincter function recovery in vivo when stem cells and growth factors are co-administrated, in comparison to the delivery of single therapies. In this review, we discuss the role of stem cells combined with the controlled release of growth factors, the methods used for delivery, their potential therapeutic role in neuromuscular repair, and the outcomes of preclinical studies using combination therapy, with the hope of providing new therapeutic strategies to treat incontinence or sphincter dysfunction of the urethra, anus, or gastroesophageal tissues, respectively.
Collapse
Affiliation(s)
- Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
14
|
Sivaraman S, Ravishankar P, Rao RR. Differentiation and Engineering of Human Stem Cells for Smooth Muscle Generation. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:1-9. [PMID: 35491587 DOI: 10.1089/ten.teb.2022.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cardiovascular diseases are responsible for 31% of global deaths and are considered the main cause of death and disability worldwide. Stem cells from various sources have become attractive options for a range of cell-based therapies for smooth muscle tissue regeneration. However, for efficient myogenic differentiation, the stem cell characteristics, cell culture conditions, and their respective microenvironments need to be carefully assessed. This review covers the various approaches involved in the regeneration of vascular smooth muscles by conditioning human stem cells. This article delves into the different sources of stem cells used in the generation of myogenic tissues, the role of soluble growth factors, use of scaffolding techniques, biomolecular cues, relevance of mechanical stimulation, and key transcription factors involved, aimed at inducing myogenic differentiation. Impact statement The review article's main goal is to discuss the recent advances in the field of smooth muscle tissue regeneration. We look at various cell sources, growth factors, scaffolds, mechanical stimuli, and factors involved in smooth muscle formation. These stem cell-based approaches for vascular muscle formation will provide various options for cell-based therapies with long-term beneficial effects on patients.
Collapse
Affiliation(s)
- Srikanth Sivaraman
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Prashanth Ravishankar
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Raj R Rao
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
15
|
Esophageal wound healing by aligned smooth muscle cell-laden nanofibrous patch. Mater Today Bio 2023; 19:100564. [PMID: 36747583 PMCID: PMC9898453 DOI: 10.1016/j.mtbio.2023.100564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
The esophagus exhibits peristalsis via contraction of circularly and longitudinally aligned smooth muscles, and esophageal replacement is required if there is a critical-sized wound. In this study, we proposed to reconstruct esophageal tissues using cell electrospinning (CE), an advanced technique for encapsulating living cells into fibers that allows control of the direction of fiber deposition. After treatment with transforming growth factor-β, mesenchymal stem cell-derived smooth muscle cells (SMCs) were utilized for cell electrospinning or three-dimensional bioprinting to compare the effects of aligned micropatterns on cell morphology. CE resulted in SMCs with uniaxially arranged and elongated cell morphology with upregulated expression levels of SMC-specific markers, including connexin 43, smooth muscle protein 22 alpha (SM22α), desmin, and smoothelin. When SMC-laden nanofibrous patches were transplanted into a rat esophageal defect model, the SMC patch promoted regeneration of esophageal wounds with an increased number of newly formed blood vessels and enhanced the SMC-specific markers of SM22α and vimentin. Taken together, CE with its advantages, such as guidance of highly elongated, aligned cell morphology and accelerated SMC differentiation, can be an efficient strategy to reconstruct smooth muscle tissues and treat esophageal perforation.
Collapse
|
16
|
Azizidoost S, Farzaneh M. MicroRNAs as a Novel Player for Differentiation of Mesenchymal Stem Cells into Cardiomyocytes. Curr Stem Cell Res Ther 2023; 18:27-34. [PMID: 35466882 DOI: 10.2174/1574888x17666220422094150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
Cardiovascular disease (CVD) is defined as a class of disorders affecting the heart and blood vessels. Cardiomyocytes and endothelial cells play important roles in cardiac regeneration and heart repair. However, the proliferating capacity of cardiomyocytes is limited. To overcome this issue, mesenchymal stem cells (MSCs) have emerged as an alternative strategy for CVD therapy. MSCs can proliferate and differentiate (or trans-differentiate) into cardiomyocytes. Several in vitro and in vivo differentiation protocols have been used to obtain MSCs-derived cardiomyocytes. It was recently investigated that microRNAs (miRNAs) by targeting several signaling pathways, including STAT3, Wnt/β-catenin, Notch, and TBX5, play a crucial role in regulating cardiomyocytes' differentiation of MSCs. In this review, we focused on the role of miRNAs in the differentiation of MSCs into cardiomyocytes.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
17
|
Hsieh CC, Yen BL, Chang CC, Hsu PJ, Lee YW, Yen ML, Yet SF, Chen L. Wnt antagonism without TGFβ induces rapid MSC chondrogenesis via increasing AJ interactions and restricting lineage commitment. iScience 2022; 26:105713. [PMID: 36582823 PMCID: PMC9792887 DOI: 10.1016/j.isci.2022.105713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) remain one of the best cell sources for cartilage, a tissue without regenerative capacity. However, MSC chondrogenesis is commonly induced through TGFβ, a pleomorphic growth factor without specificity for this lineage. Using tissue- and induced pluripotent stem cell-derived MSCs, we demonstrate an efficient and precise approach to induce chondrogenesis through Wnt/β-catenin antagonism alone without TGFβ. Compared to TGFβ, Wnt/β-catenin antagonism more rapidly induced MSC chondrogenesis without eliciting off-target lineage specification toward smooth muscle or hypertrophy; this was mediated through increasing N-cadherin levels and β-catenin interactions-key components of the adherens junctions (AJ)-and increasing cytoskeleton-mediated condensation. Validation with transcriptomic analysis of human chondrocytes compared to MSCs and osteoblasts showed significant downregulation of Wnt/β-catenin and TGFβ signaling along with upregulation of α-catenin as an upstream regulator. Our findings underscore the importance of understanding developmental pathways and structural modifications in achieving efficient MSC chondrogenesis for translational application.
Collapse
Affiliation(s)
- Chen-Chan Hsieh
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
| | - B. Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
- Corresponding author
| | - Chia-Chi Chang
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
| | - Yu-Wei Lee
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics/Gynecology, National Taiwan University (NTU) Hospital and College of Medicine, NTU, Taipei, Taiwan
| | - Shaw-Fang Yet
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
18
|
Ryu JR, Ahuja S, Arnold CR, Potts KG, Mishra A, Yang Q, Sargurupremraj M, Mahoney DJ, Seshadri S, Debette S, Childs SJ. Stroke-associated intergenic variants modulate a human FOXF2 transcriptional enhancer. Proc Natl Acad Sci U S A 2022; 119:e2121333119. [PMID: 35994645 PMCID: PMC9436329 DOI: 10.1073/pnas.2121333119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
SNPs associated with human stroke risk have been identified in the intergenic region between Forkhead family transcription factors FOXF2 and FOXQ1, but we lack a mechanism for the association. FoxF2 is expressed in vascular mural pericytes and is important for maintaining pericyte number and stabilizing small vessels in zebrafish. The stroke-associated SNPs are located in a previously unknown transcriptional enhancer for FOXF2, functional in human cells and zebrafish. We identify critical enhancer regions for FOXF2 gene expression, including binding sites occupied by transcription factors ETS1, RBPJ, and CTCF. rs74564934, a stroke-associated SNP adjacent to the ETS1 binding site, decreases enhancer function, as does mutation of RPBJ sites. rs74564934 is significantly associated with the increased risk of any stroke, ischemic stroke, small vessel stroke, and elevated white matter hyperintensity burden in humans. Foxf2 has a conserved function cross-species and is expressed in vascular mural pericytes of the vessel wall. Thus, stroke-associated SNPs modulate enhancer activity and expression of a regulator of vascular stabilization, FOXF2, thereby modulating stroke risk.
Collapse
Affiliation(s)
- Jae-Ryeon Ryu
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Suchit Ahuja
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Corey R. Arnold
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Kyle G. Potts
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary AB T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Aniket Mishra
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, 33000 Bordeaux, France
| | - Qiong Yang
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118
| | - Muralidharan Sargurupremraj
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX 78229
- Boston University and the NHLBI’s Framingham Heart Study, Boston, MA 02215
| | - Douglas J. Mahoney
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary AB T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX 78229
- Boston University and the NHLBI’s Framingham Heart Study, Boston, MA 02215
| | - Stéphanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, 33000 Bordeaux, France
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- Department of Neurology, CHU de Bordeaux, 33000 Bordeaux, France
| | - Sarah J. Childs
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary AB T2N 4N1, Canada
| |
Collapse
|
19
|
Xia HF, Lai WQ, Chen GH, Li Y, Xie QH, Jia YL, Chen G, Zhao YF. A histological study of vascular wall resident stem cells in venous malformations. Cell Tissue Res 2022; 390:229-243. [PMID: 35916917 DOI: 10.1007/s00441-022-03672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/13/2022] [Indexed: 11/25/2022]
Abstract
Vascular wall resident stem cells (VW-SCs) play a key role in vascular formation and remodeling under both physiological and pathological situations. They not only serve as a reservoir to supply all types of vascular cells needed, but also regulate vascular homeostasis by paracrine effects. Venous malformations (VMs) are common congenital vascular malformations which are just characterized by the deficient quantity and abnormal function of vascular cells. However, the existence and role of VW-SCs in VMs is still unclear at present. In this study, the level and distribution of VW-SCs in 22 specimens of VMs were measured by immunochemistry, double-labeling immunofluorescence, and qPCR, followed by the Spearman rank correlation test. We found that both the protein and mRNA expression levels of CD34, vWF, VEGFR2, CD44, CD90, and CD105 were significantly downregulated in VMs compared with that in normal venules. VW-SCs were sporadically distributed or even absent within and outside the endothelium of VMs. The expression of the VW-SC-related markers was positively correlated with the density of both endothelial cells and perivascular cells. All those results and established evidence indicated that VW-SCs were more sporadically distributed with fewer amounts in VMs, which possibly contributing to the deficiency of vascular cells in VMs.
Collapse
Affiliation(s)
- Hou-Fu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wen-Qiang Lai
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gao-Hong Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Ye Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qi-Hui Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yu-Lin Jia
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China. .,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Yi-Fang Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China. .,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
20
|
Deletion of hypoxia-inducible factor prolyl 4-hydroxylase 2 in FoxD1-lineage mesenchymal cells leads to congenital truncal alopecia. J Biol Chem 2022; 298:101787. [PMID: 35247391 PMCID: PMC8988008 DOI: 10.1016/j.jbc.2022.101787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/22/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) induce numerous genes regulating oxygen homeostasis. As oxygen sensors of the cells, the HIF prolyl 4-hydroxylases (HIF-P4Hs) regulate the stability of HIFs in an oxygen-dependent manner. During hair follicle (HF) morphogenesis and cycling, the location of dermal papilla (DP) alternates between the dermis and hypodermis and results in varying oxygen levels for the DP cells. These cells are known to express hypoxia-inducible genes, but the role of the hypoxia response pathway in HF development and homeostasis has not been studied. Using conditional gene targeting and analysis of hair morphogenesis, we show here that lack of Hif-p4h-2 in Forkhead box D1 (FoxD1)-lineage mesodermal cells interferes with the normal HF development in mice. FoxD1-lineage cells were found to be mainly mesenchymal cells located in the dermis of truncal skin, including those cells composing the DP of HFs. We found that upon Hif-p4h-2 inactivation, HF development was disturbed during the first catagen leading to formation of epithelial-lined HF cysts filled by unorganized keratins, which eventually manifested as truncal alopecia. Furthermore, the depletion of Hif-p4h-2 led to HIF stabilization and dysregulation of multiple genes involved in keratin formation, HF differentiation, and HIF, transforming growth factor β (TGF-β), and Notch signaling. We hypothesize that the failure of HF cycling is likely to be mechanistically caused by disruption of the interplay of the HIF, TGF-β, and Notch pathways. In summary, we show here for the first time that HIF-P4H-2 function in FoxD1-lineage cells is essential for the normal development and homeostasis of HFs.
Collapse
|
21
|
Peng C, Shao X, Tian X, Li Y, Liu D, Yan C, Han Y. CREG ameliorates embryonic stem cell differentiation into smooth muscle cells by modulation of TGF-β expression. Differentiation 2022; 125:9-17. [DOI: 10.1016/j.diff.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022]
|
22
|
Dreval K, Lake RJ, Fan HY. Analyzing the Interaction of RBPJ with Mitotic Chromatin and Its Impact on Transcription Reactivation upon Mitotic Exit. Methods Mol Biol 2022; 2472:95-108. [PMID: 35674895 DOI: 10.1007/978-1-0716-2201-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The sequence-specific transcription factor RBPJ, also known as CSL (CBF1, Su(H), Lag1), is an evolutionarily conserved protein that mediates Notch signaling to guide cell fates. When cells enter mitosis, DNA is condensed and most transcription factors dissociate from chromatin; however, a few, select transcription factors, termed bookmarking factors, remain associated. These mitotic chromatin-bound factors are believed to play important roles in maintaining cell fates through cell division. RBPJ is one such factor that remains mitotic chromatin associated and therefore could function as a bookmarking factor. Here, we describe how to obtain highly purified mitotic cells from the mouse embryonal carcinoma cell line F9, perform chromatin immunoprecipitation with mitotic cells, and measure the first run of RNA synthesis upon mitotic exit. These methods serve as basis to understand the roles of mitotic bookmarking by RBPJ in propagating Notch signals through cell division.
Collapse
Affiliation(s)
- Kostiantyn Dreval
- The Program in Cellular and Molecular Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Robert J Lake
- The Program in Cellular and Molecular Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Hua-Ying Fan
- The Program in Cellular and Molecular Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA.
| |
Collapse
|
23
|
Immobilization of Jagged1 Enhances Vascular Smooth Muscle Cells Maturation by Activating the Notch Pathway. Cells 2021; 10:cells10082089. [PMID: 34440858 PMCID: PMC8391929 DOI: 10.3390/cells10082089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
In Notch signaling, the Jagged1-Notch3 ligand-receptor pairing is implicated for regulating the phenotype maturity of vascular smooth muscle cells. However, less is known about the role of Jagged1 presentation strategy in this regulation. In this study, we used bead-immobilized Jagged1 to direct phenotype control of primary human coronary artery smooth muscle cells (HCASMC), and to differentiate embryonic multipotent mesenchymal progenitor (10T1/2) cell towards a vascular lineage. This Jagged1 presentation strategy was sufficient to activate the Notch transcription factor HES1 and induce early-stage contractile markers, including smooth muscle α-actin and calponin in HCASMCs. Bead-bound Jagged1 was unable to regulate the late-stage markers myosin heavy chain and smoothelin; however, serum starvation and TGFβ1 were used to achieve a fully contractile smooth muscle cell. When progenitor 10T1/2 cells were used for Notch3 signaling, pre-differentiation with TGFβ1 was required for a robust Jagged1 specific response, suggesting a SMC lineage commitment was necessary to direct SMC differentiation and maturity. The presence of a magnetic tension force to the ligand-receptor complex was evaluated for signaling efficacy. Magnetic pulling forces downregulated HES1 and smooth muscle α-actin in both HCASMCs and progenitor 10T1/2 cells. Taken together, this study demonstrated that (i) bead-bound Jagged1 was sufficient to activate Notch3 and promote SMC differentiation/maturation and (ii) magnetic pulling forces did not activate Notch3, suggesting the bead alone was able to provide necessary clustering or traction forces for Notch activation. Notch is highly context-dependent; therefore, these findings provide insights to improve biomaterial-driven Jagged1 control of SMC behavior.
Collapse
|
24
|
Dierick F, Solinc J, Bignard J, Soubrier F, Nadaud S. Progenitor/Stem Cells in Vascular Remodeling during Pulmonary Arterial Hypertension. Cells 2021; 10:cells10061338. [PMID: 34071347 PMCID: PMC8226806 DOI: 10.3390/cells10061338] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by an important occlusive vascular remodeling with the production of new endothelial cells, smooth muscle cells, myofibroblasts, and fibroblasts. Identifying the cellular processes leading to vascular proliferation and dysfunction is a major goal in order to decipher the mechanisms leading to PAH development. In addition to in situ proliferation of vascular cells, studies from the past 20 years have unveiled the role of circulating and resident vascular in pulmonary vascular remodeling. This review aims at summarizing the current knowledge on the different progenitor and stem cells that have been shown to participate in pulmonary vascular lesions and on the pathways regulating their recruitment during PAH. Finally, this review also addresses the therapeutic potential of circulating endothelial progenitor cells and mesenchymal stem cells.
Collapse
Affiliation(s)
- France Dierick
- Lady Davis Institute for Medical Research, McGill University, Montréal, QC H3T 1E2, Canada;
| | - Julien Solinc
- UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, INSERM, Sorbonne Université, 75013 Paris, France; (J.S.); (J.B.); (F.S.)
| | - Juliette Bignard
- UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, INSERM, Sorbonne Université, 75013 Paris, France; (J.S.); (J.B.); (F.S.)
| | - Florent Soubrier
- UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, INSERM, Sorbonne Université, 75013 Paris, France; (J.S.); (J.B.); (F.S.)
| | - Sophie Nadaud
- UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, INSERM, Sorbonne Université, 75013 Paris, France; (J.S.); (J.B.); (F.S.)
- Correspondence:
| |
Collapse
|
25
|
Zhang Y, Liu J, Zou T, Qi Y, Yi B, Dissanayaka WL, Zhang C. DPSCs treated by TGF-β1 regulate angiogenic sprouting of three-dimensionally co-cultured HUVECs and DPSCs through VEGF-Ang-Tie2 signaling. Stem Cell Res Ther 2021; 12:281. [PMID: 33971955 PMCID: PMC8112067 DOI: 10.1186/s13287-021-02349-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background Maintaining the stability and maturation of blood vessels is of paramount importance for the vessels to carry out their physiological function. Smooth muscle cells (SMCs), pericytes, and mesenchymal stem cells (MSCs) are involved in the maturation process of the newly formed vessels. The aim of this study was to investigate whether transforming growth factor beta 1 (TGF-β1) treatment could enhance pericyte-like properties of dental pulp stem cells (DPSCs) and how TGF-β1-treated DPSCs for 7 days (T-DPSCs) stabilize the newly formed blood vessels. Methods We utilized TGF-β1 to treat DPSCs for 1, 3, 5, and 7 days. Western blotting and immunofluorescence were used to analyze the expression of SMC markers. Functional contraction assay was conducted to assess the contractility of T-DPSCs. The effects of T-DPSC-conditioned media (T-DPSC-CM) on human umbilical vein endothelial cell (HUVEC) proliferation and migration were examined by MTT, wound healing, and trans-well migration assay. Most importantly, in vitro 3D co-culture spheroidal sprouting assay was used to investigate the regulating role of vascular endothelial growth factor (VEGF)-angiopoietin (Ang)-Tie2 signaling on angiogenic sprouting in 3D co-cultured spheroids of HUVECs and T-DPSCs. Angiopoietin 2 (Ang2) and VEGF were used to treat the co-cultured spheroids to explore their roles in angiogenic sprouting. Inhibitors for Tie2 and VEGFR2 were used to block Ang1/Tie2 and VFGF/VEGFR2 signaling. Results Western blotting and immunofluorescence showed that the expression of SMC-specific markers (α-SMA and SM22α) were significantly increased after treatment with TGF-β1. Contractility of T-DPSCs was greater compared with that of DPSCs. T-DPSC-CM inhibited HUVEC migration. In vitro sprouting assay demonstrated that T-DPSCs enclosed HUVECs, resembling pericyte-like cells. Compared to co-culture with DPSCs, a smaller number of HUVEC sprouting was observed when co-cultured with T-DPSCs. VEGF and Ang2 co-stimulation significantly enhanced sprouting in HUVEC and T-DPSC co-culture spheroids, whereas VEGF or Ang2 alone exerted insignificant effects on HUVEC sprouting. Blocking Tie2 signaling reversed the sprouting inhibition by T-DPSCs, while blocking VEGF receptor (VEGFR) signaling boosted the sprouting inhibition by T-DPSCs. Conclusions This study revealed that TGF-β1 can induce DPSC differentiation into functional pericyte-like cells. T-DPSCs maintain vessel stability through Ang1/Tie2 and VEGF/VEGFR2 signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02349-y.
Collapse
Affiliation(s)
- Yuchen Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Junqing Liu
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ting Zou
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yubingqing Qi
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Baicheng Yi
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
26
|
Condorelli AG, El Hachem M, Zambruno G, Nystrom A, Candi E, Castiglia D. Notch-ing up knowledge on molecular mechanisms of skin fibrosis: focus on the multifaceted Notch signalling pathway. J Biomed Sci 2021; 28:36. [PMID: 33966637 PMCID: PMC8106838 DOI: 10.1186/s12929-021-00732-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Fibrosis can be defined as an excessive and deregulated deposition of extracellular matrix proteins, causing loss of physiological architecture and dysfunction of different tissues and organs. In the skin, fibrosis represents the hallmark of several acquired (e.g. systemic sclerosis and hypertrophic scars) and inherited (i.e. dystrophic epidermolysis bullosa) diseases. A complex series of interactions among a variety of cellular types and a wide range of molecular players drive the fibrogenic process, often in a context-dependent manner. However, the pathogenetic mechanisms leading to skin fibrosis are not completely elucidated. In this scenario, an increasing body of evidence has recently disclosed the involvement of Notch signalling cascade in fibrosis of the skin and other organs. Despite its apparent simplicity, Notch represents one of the most multifaceted, strictly regulated and intricate pathways with still unknown features both in health and disease conditions. Starting from the most recent advances in Notch activation and regulation, this review focuses on the pro-fibrotic function of Notch pathway in fibroproliferative skin disorders describing molecular networks, interplay with other pro-fibrotic molecules and pathways, including the transforming growth factor-β1, and therapeutic strategies under development.
Collapse
Affiliation(s)
- Angelo Giuseppe Condorelli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant' Onofrio 4, 00165, Rome, Italy.
| | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant' Onofrio 4, 00165, Rome, Italy
| | - Giovanna Zambruno
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant' Onofrio 4, 00165, Rome, Italy
| | - Alexander Nystrom
- Department of Dermatology, Medical Faculty, Medical Center, University of Freiburg, Freiburg, Germany
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy.,IDI-IRCCS, via Monti di Creta 104, 00167, Rome, Italy
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, via Monti di Creta 104, 00167, Rome, Italy
| |
Collapse
|
27
|
Zheng L, Wang B, Sun Y, Dai B, Fu Y, Zhang Y, Wang Y, Yang Z, Sun Z, Zhuang S, Zhang D. An Oxygen-Concentration-Controllable Multiorgan Microfluidic Platform for Studying Hypoxia-Induced Lung Cancer-Liver Metastasis and Screening Drugs. ACS Sens 2021; 6:823-832. [PMID: 33657793 DOI: 10.1021/acssensors.0c01846] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Various cancer metastasis models based on organ-on-a-chip platforms have been established to study molecular mechanisms and screen drugs. However, current platforms can neither reveal hypoxia-induced cancer metastasis mechanisms nor allow drug screening under a hypoxia environment on a multiorgan level. We have developed a three-dimensional-culture multiorgan microfluidic (3D-CMOM) platform in which the dissolved oxygen concentration can be precisely controlled. An organ-level lung cancer and liver linkage model was established under normoxic/hypoxic conditions. A transcriptomics analysis of the hypoxia-induced lung cancer cells (A549 cells) on the platform indicated that the hypoxia-inducible factor 1α (HIF-1α) pathway could elevate epithelial-mesenchymal transition (EMT) transcription factors (Snail 1 and Snail 2), which could promote cancer metastasis. Then, protein detection demonstrated that HIF-1α and EMT transcription factor expression levels were positively correlated with the secretion of cancer metastasis damage factors alpha-fetoprotein (AFP), alkaline phosphatase (ALP), and gamma-glutamyl transpeptidase (γ-GT) from liver cells. Furthermore, the cancer treatment effects of HIF-1α inhibitors (tirapazamine, SYP-5, and IDF-11774) were evaluated using the platform. The treatment effect of SYP-5 was enhanced under the hypoxic conditions with fewer side effects, similar to the findings of TPZ. We can envision its wide application in future investigations of cancer metastasis and screening of drugs under hypoxic conditions with the potential to replace animal experiments.
Collapse
Affiliation(s)
- Lulu Zheng
- University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Bo Wang
- University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yunfan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Bo Dai
- University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yongfeng Fu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Yule Zhang
- University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yuwen Wang
- University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhijin Yang
- University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhen Sun
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 300, Jungong Road, Shanghai 200090, China
| | - Songlin Zhuang
- University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Dawei Zhang
- University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
28
|
Augustine R, Dan P, Hasan A, Khalaf IM, Prasad P, Ghosal K, Gentile C, McClements L, Maureira P. Stem cell-based approaches in cardiac tissue engineering: controlling the microenvironment for autologous cells. Biomed Pharmacother 2021; 138:111425. [PMID: 33756154 DOI: 10.1016/j.biopha.2021.111425] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is one of the leading causes of mortality worldwide. Cardiac tissue engineering strategies focusing on biomaterial scaffolds incorporating cells and growth factors are emerging as highly promising for cardiac repair and regeneration. The use of stem cells within cardiac microengineered tissue constructs present an inherent ability to differentiate into cell types of the human heart. Stem cells derived from various tissues including bone marrow, dental pulp, adipose tissue and umbilical cord can be used for this purpose. Approaches ranging from stem cell injections, stem cell spheroids, cell encapsulation in a suitable hydrogel, use of prefabricated scaffold and bioprinting technology are at the forefront in the field of cardiac tissue engineering. The stem cell microenvironment plays a key role in the maintenance of stemness and/or differentiation into cardiac specific lineages. This review provides a detailed overview of the recent advances in microengineering of autologous stem cell-based tissue engineering platforms for the repair of damaged cardiac tissue. A particular emphasis is given to the roles played by the extracellular matrix (ECM) in regulating the physiological response of stem cells within cardiac tissue engineering platforms.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| | - Pan Dan
- Department of Cardiovascular and Transplantation Surgery, Regional Central Hospital of Nancy, Lorraine University, Nancy 54500, France; Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| | | | - Parvathy Prasad
- International and Inter University Center for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Kajal Ghosal
- Dr. B. C. Roy College of Pharmacy and AHS, Durgapur 713206, India
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW 2007, Australia; School of Medicine, Faculty of Medicine and Health, University of Sydney, NSW 2000, Australia; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Pablo Maureira
- Department of Cardiovascular and Transplantation Surgery, Regional Central Hospital of Nancy, Lorraine University, Nancy 54500, France
| |
Collapse
|
29
|
Su J, Guo L, Wu C. A mechanoresponsive PINCH-1-Notch2 interaction regulates smooth muscle differentiation of human placental mesenchymal stem cells. Stem Cells 2021; 39:650-668. [PMID: 33529444 DOI: 10.1002/stem.3347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/06/2021] [Indexed: 01/05/2023]
Abstract
Extracellular matrix (ECM) stiffness plays an important role in the decision making process of smooth muscle differentiation of mesenchymal stem cells (MSCs) but the underlying mechanisms are incompletely understood. Here we show that a signaling axis consisting of PINCH-1 and Notch2 is critically involved in mediating the effect of ECM stiffness on smooth muscle differentiation of MSCs. Notch2 level is markedly increased in ECM stiffness-induced smooth muscle differentiation of human placental MSCs. Knockdown of Notch2 from human placental MSCs effectively inhibits ECM stiffness-induced smooth muscle differentiation, whereas overexpression of North intracellular domain (NICD2) is sufficient to drive human placental MSC differentiation toward smooth muscle cells. At the molecular level, Notch2 directly interacts with PINCH-1. The interaction of Notch2 with PINCH-1 is significantly increased in response to ECM stiffness favoring smooth muscle differentiation. Furthermore, depletion of PINCH-1 from human placental MSCs reduces Notch2 level and consequently suppresses ECM stiffness-induced smooth muscle differentiation. Re-expression of PINCH-1, but not that of a Notch2-binding defective PINCH-1 mutant, in PINCH-1 knockdown human placental MSCs restores smooth muscle differentiation. Finally, overexpression of NICD2 is sufficient to override PINCH-1 deficiency-induced defect in smooth muscle differentiation. Our results identify an ECM stiffness-responsive PINCH-1-Notch2 interaction that is critically involved in ECM stiffness-induced smooth muscle differentiation of human placental MSCs.
Collapse
Affiliation(s)
- Jie Su
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Ling Guo
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, People's Republic of China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Chuanyue Wu
- Department of Pathology and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
30
|
Matsuo T, Tashiro H, Sumiyoshi R, Saito S, Shirasaki R, Shirafuji N. Functional expression cloning of molecules inducing CD34 expression in bone marrow-derived stromal myofibroblasts. Biochem Biophys Res Commun 2020; 533:1283-1289. [PMID: 33066959 DOI: 10.1016/j.bbrc.2020.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 01/01/2023]
Abstract
We have previously shown a fraction of stromal fibroblasts/myofibroblasts (Fibs) from leukemic bone marrow cells expresses leukemia-specific transcripts along with hematopoietic and Fib-related markers. Normal bone marrow-derived Fibs (nFibs) do not express CD34 or CD45; however, nFibs may express hematopoietic markers with some specific stimulations. CD34 expression was detected in nFib cultures following the addition of a culture supernatant of blood mononuclear cells stimulated with phytohemagglutinin (PHA)-P. To identify the molecules responsible for inducing CD34 expression in nFibs, cDNA clones were isolated using functional expression cloning with a library constructed from PHA-P-stimulated human blood mononuclear cells. Positive clones inducing CD34 transcription in nFibs were selected. We confirmed that an isolated positive cDNA clone encoded human interleukin (IL)-1 beta (β). CD34 expression was observed in the nFib cultures with recombinant human (rh) IL-1β protein. And CD34 transcription was suppressed when a rhIL-1β neutralizing antibody was added to the IL-1β-stimulated nFib cultures. nFibs expressed gp130 and IL-6 receptors, and CD45 expression was detected in nFibs cultured with rhIL-1β and rhIL-6. Chronic myelogenous leukemia (CML) cells reportedly respond well to IL-1β. When CML-derived Fibs were cultured with rhIL-1β and rhIL-6, CD45-positive cells increased in number. Cell fate may be influenced by an external specific stimulation without gene introduction.
Collapse
Affiliation(s)
- Takuji Matsuo
- Department of Hematology/Oncology, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Haruko Tashiro
- Department of Hematology/Oncology, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Ritsu Sumiyoshi
- Department of Hematology/Oncology, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Sumiko Saito
- Department of Hematology/Oncology, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Ryosuke Shirasaki
- Department of Hematology/Oncology, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Naoki Shirafuji
- Department of Hematology/Oncology, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8606, Japan.
| |
Collapse
|
31
|
Parthiban SP, He W, Monteiro N, Athirasala A, França CM, Bertassoni LE. Engineering pericyte-supported microvascular capillaries in cell-laden hydrogels using stem cells from the bone marrow, dental pulp and dental apical papilla. Sci Rep 2020; 10:21579. [PMID: 33299005 PMCID: PMC7726569 DOI: 10.1038/s41598-020-78176-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
Engineered tissue constructs require the fabrication of highly perfusable and mature vascular networks for effective repair and regeneration. In tissue engineering, stem cells are widely employed to create mature vascularized tissues in vitro. Pericytes are key to the maturity of these vascular networks, and therefore the ability of stem cells to differentiate into pericyte-like lineages should be understood. To date, there is limited information regarding the ability of stem cells from the different tissue sources to differentiate into pericytes and form microvascular capillaries in vitro. Therefore, here we tested the ability of the stem cells derived from bone marrow (BMSC), dental pulp (DPSC) and dental apical papilla (SCAP) to engineer pericyte-supported vascular capillaries when encapsulated along with human umbilical vein endothelial cells (HUVECs) in gelatin methacrylate (GelMA) hydrogel. Our results show that the pericyte differentiation capacity of BMSC was greater with high expression of α-SMA and NG2 positive cells. DPSC had α-SMA positive cells but showed very few NG2 positive cells. Further, SCAP cells were positive for α-SMA while they completely lacked NG2 positive cells. We found the pericyte differentiation ability of these stem cells to be different, and this significantly affected the vasculogenic ability and quality of the vessel networks. In summary, we conclude that, among stem cells from different craniofacial regions, BMSCs appear more suitable for engineering of mature vascularized networks than DPSCs or SCAPs.
Collapse
Affiliation(s)
- S Prakash Parthiban
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Wenting He
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Nelson Monteiro
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Avathamsa Athirasala
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Cristiane Miranda França
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA.
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA.
- Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Center for Regenerative Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
32
|
Gurung S, Ulrich D, Sturm M, Rosamilia A, Werkmeister JA, Gargett CE. Comparing the Effect of TGF-β Receptor Inhibition on Human Perivascular Mesenchymal Stromal Cells Derived from Endometrium, Bone Marrow and Adipose Tissues. J Pers Med 2020; 10:jpm10040261. [PMID: 33271899 PMCID: PMC7712261 DOI: 10.3390/jpm10040261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Rare perivascular mesenchymal stromal cells (MSCs) with therapeutic properties have been identified in many tissues. Their rarity necessitates extensive in vitro expansion, resulting in spontaneous differentiation, cellular senescence and apoptosis, producing therapeutic products with variable quality and decreased potency. We previously demonstrated that A83-01, a transforming growth factor beta (TGF-β) receptor inhibitor, maintained clonogenicity and promoted the potency of culture-expanded premenopausal endometrial MSCs using functional assays and whole-transcriptome sequencing. Here, we compared the effects of A83-01 on MSCs derived from postmenopausal endometrium, menstrual blood, placenta decidua-basalis, bone marrow and adipose tissue. Sushi-domain-containing-2 (SUSD2+) and CD34+CD31−CD45− MSCs were isolated. Expanded MSCs were cultured with or without A83-01 for 7 days and assessed for MSC properties. SUSD2 identified perivascular cells in the placental decidua-basalis, and their maternal origin was validated. A83-01 promoted MSC proliferation from all sources except bone marrow and only increased SUSD2 expression and prevented apoptosis in MSCs from endometrial-derived tissues. A83-01 only improved the cloning efficiency of postmenopausal endometrial MSCs (eMSCs), and expanded adipose tissue MSCs (adMSCs) underwent significant senescence, which was mitigated by A83-01. MSCs derived from bone marrow (bmMSCs) were highly apoptotic, but A83-01 was without effect. A83-01 maintained the function and phenotype in MSCs cultured from endometrial, but not other, tissues. Our results also demonstrated that cellular SUSD2 expression directly correlates with the functional phenotype.
Collapse
Affiliation(s)
- Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (D.U.); (J.A.W.); (C.E.G.)
- Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia;
- Correspondence: ; Tel.: +61-03-8572-2813
| | - Daniela Ulrich
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (D.U.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz, 8036 Graz, Austria
| | - Marian Sturm
- Cell & Tissue Therapies WA, Royal Perth Hospital, Perth, WA 6000, Australia;
- Centre for Cell Therapy and Regenerative Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Anna Rosamilia
- Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia;
- Monash Health, Clayton, VIC 3168, Australia
| | - Jerome A. Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (D.U.); (J.A.W.); (C.E.G.)
- Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia;
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (D.U.); (J.A.W.); (C.E.G.)
- Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia;
| |
Collapse
|
33
|
Zhao Q, Dacre M, Nguyen T, Pjanic M, Liu B, Iyer D, Cheng P, Wirka R, Kim JB, Fraser HB, Quertermous T. Molecular mechanisms of coronary disease revealed using quantitative trait loci for TCF21 binding, chromatin accessibility, and chromosomal looping. Genome Biol 2020; 21:135. [PMID: 32513244 PMCID: PMC7278146 DOI: 10.1186/s13059-020-02049-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/20/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND To investigate the epigenetic and transcriptional mechanisms of coronary artery disease (CAD) risk, as well as the functional regulation of chromatin structure and function, we create a catalog of genetic variants associated with three stages of transcriptional cis-regulation in primary human coronary artery vascular smooth muscle cells (HCASMCs). RESULTS We use a pooling approach with HCASMC lines to map regulatory variants that mediate binding of the CAD-associated transcription factor TCF21 with ChIPseq studies (bQTLs), variants that regulate chromatin accessibility with ATACseq studies (caQTLs), and chromosomal looping with Hi-C methods (clQTLs). We examine the overlap of these QTLs and their relationship to smooth muscle-specific genes and transcription factors. Further, we use multiple analyses to show that these QTLs are highly associated with CAD GWAS loci and correlate to lead SNPs where they show allelic effects. By utilizing genome editing, we verify that identified functional variants can regulate both chromatin accessibility and chromosomal looping, providing new insights into functional mechanisms regulating chromatin state and chromosomal structure. Finally, we directly link the disease-associated TGFB1-SMAD3 pathway to the CAD-associated FN1 gene through a response QTL that modulates both chromatin accessibility and chromosomal looping. CONCLUSIONS Together, these studies represent the most thorough mapping of multiple QTL types in a highly disease-relevant primary cultured cell type and provide novel insights into their functional overlap and mechanisms that underlie these genomic features and their relationship to disease risk.
Collapse
Affiliation(s)
- Quanyi Zhao
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Dr. Falk CVRC, Stanford, CA, 94305, USA
| | - Michael Dacre
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Trieu Nguyen
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Dr. Falk CVRC, Stanford, CA, 94305, USA
| | - Milos Pjanic
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Dr. Falk CVRC, Stanford, CA, 94305, USA
| | - Boxiang Liu
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Dr. Falk CVRC, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Dharini Iyer
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Dr. Falk CVRC, Stanford, CA, 94305, USA
| | - Paul Cheng
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Dr. Falk CVRC, Stanford, CA, 94305, USA
| | - Robert Wirka
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Dr. Falk CVRC, Stanford, CA, 94305, USA
| | - Juyong Brian Kim
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Dr. Falk CVRC, Stanford, CA, 94305, USA
| | - Hunter B Fraser
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, 300 Pasteur Dr. Falk CVRC, Stanford, CA, 94305, USA.
| |
Collapse
|
34
|
Westin CB, Nagahara MH, Decarli MC, Kelly DJ, Moraes ÂM. Development and characterization of carbohydrate-based thermosensitive hydrogels for cartilage tissue engineering. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
MYOCD and SMAD3/SMAD4 form a positive feedback loop and drive TGF-β-induced epithelial-mesenchymal transition in non-small cell lung cancer. Oncogene 2020; 39:2890-2904. [PMID: 32029901 DOI: 10.1038/s41388-020-1189-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 11/08/2022]
Abstract
Myocardin (MYOCD) promotes Smad3-mediated transforming growth factor-β (TGF-β) signaling in mouse fibroblast cells. Our previous studies show that TGF-β/SMADs signaling activation enhances epithelial-mesenchymal transition (EMT) in human non-small cell lung cancer (NSCLC) cells. However, whether and how MYOCD contributes to TGF-β-induced EMT of NSCLC cells are poorly elucidated. Here, we found that TGF-β-induced EMT was accompanied by increased MYOCD expression. Interestingly, MYOCD overexpression augmented EMT and invasion of NSCLC cells induced by TGF-β, whereas knockdown of MYOCD expression attenuated these effects. Overexpression and knockdown of MYOCD resulted in the upregulation and downregulation of TGF-β-induced Snail mRNA, respectively. Moreover, MYOCD overexpression promoted TGF-β-stimulated NSCLC cell metastasis in vivo. MYOCD was highly expressed and positively correlated with Snail in metastatic NSCLC tissues. Mechanistically, MYOCD directly interacted with SMAD3 and sustained the formation of TGF-β-induced nuclear SMAD3/SMAD4 complex, facilitating TGF-β/SMAD3-induced transactivation of Snail. Importantly, MYOCD was transcriptionally activated by TGF-β-induced SMAD3/SMAD4 complex and CRISPR/Cas9-mediated silencing of SMAD3/SMAD4 led to a reduction in MYOCD mRNA expression. Taken together, our findings indicate that MYOCD promotes TGF-β-induced EMT and metastasis of NSCLC and identify a positive feedback loop between MYOCD and SMAD3/SMAD4 driving TGF-β-induced EMT.
Collapse
|
36
|
Mangum KD, Freeman EJ, Magin JC, Taylor JM, Mack CP. Transcriptional and posttranscriptional regulation of the SMC-selective blood pressure-associated gene, ARHGAP42. Am J Physiol Heart Circ Physiol 2020; 318:H413-H424. [PMID: 31886719 PMCID: PMC7052622 DOI: 10.1152/ajpheart.00143.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022]
Abstract
We previously showed that ARHGAP42 is a smooth muscle cell (SMC)-selective, RhoA-specific GTPase activating protein that regulates blood pressure and that a minor allele single nucleotide variation within a DNAse hypersensitive regulatory element in intron1 (Int1DHS) increased ARHGAP42 expression by promoting serum response factor binding. The goal of the current study was to identify additional transcriptional and posttranscriptional mechanisms that control ARHGAP42 expression. Using deletion/mutation, gel shift, and chromatin immunoprecipitation experiments, we showed that recombination signal binding protein for immunoglobulin κ-J region (RBPJ) and TEA domain family member 1 (TEAD1) binding to a conserved core region was required for full IntDHS transcriptional activity. Importantly, overexpression of the notch intracellular domain (NICD) or plating SMCs on recombinant jagged-1 increased IntDHS activity and endogenous ARHGAP42 expression while siRNA-mediated knockdown of TEAD1 inhibited ARHGAP42 mRNA levels. Re-chromatin immunoprecipitation experiments indicated that RBPJ and TEAD1 were bound to the Int1DHS enhancer at the same time, and coimmunoprecipitation assays indicated that these factors interacted physically. Our results also suggest TEAD1 and RBPJ bound cooperatively to the Int1DHS and that the presence of TEAD1 promoted the recruitment of NICD by RBPJ. Finally, we showed that ARHGAP42 expression was inhibited by micro-RNA 505 (miR505) which interacted with the ARHGAP42 3'-untranslated region (UTR) to facilitate its degradation and by AK124326, a long noncoding RNA that overlaps with the ARHGAP42 transcription start site on the opposite DNA strand. Since siRNA-mediated depletion of AK124326 was associated with increased H3K9 acetylation and RNA Pol-II binding at the ARHGAP42 gene, it is likely that AK124326 inhibits ARHGAP42 transcription.NEW & NOTEWORTHY First, RBPJ and TEAD1 converge at an intronic enhancer to regulate ARHGAP42 expression in SMCs. Second, TEAD1 and RBPJ interact physically and bind cooperatively to the ARHGAP42 enhancer. Third, miR505 interacts with the ARHGAP42 3'-UTR to facilitate its degradation. Finally, LncRNA, AK124326, inhibits ARHGAP42 transcription.
Collapse
Affiliation(s)
- Kevin D Mangum
- Department of Pathology and the McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Emily J Freeman
- Department of Pathology and the McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Justin C Magin
- Department of Pathology and the McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Joan M Taylor
- Department of Pathology and the McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Christopher P Mack
- Department of Pathology and the McAllister Heart Institute, University of North Carolina at Chapel Hill
| |
Collapse
|
37
|
Romano GDS, Ibelli AMG, Lorenzetti WR, Weber T, Peixoto JDO, Cantão ME, Mores MAZ, Morés N, Pedrosa VB, Coutinho LL, Ledur MC. Inguinal Ring RNA Sequencing Reveals Downregulation of Muscular Genes Related to Scrotal Hernia in Pigs. Genes (Basel) 2020; 11:genes11020117. [PMID: 31973088 PMCID: PMC7073996 DOI: 10.3390/genes11020117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 01/04/2023] Open
Abstract
Scrotal hernias (SH) are common congenital defects in commercial pigs, characterized by the presence of abdominal contents in the scrotal sac, leading to considerable production and animal welfare losses. Since the etiology of SH remains obscure, we aimed to identify the biological and genetic mechanisms involved in its occurrence through the whole transcriptome analysis of SH affected and unaffected pigs’ inguinal rings. From the 22,452 genes annotated in the pig reference genome, 13,498 were expressed in the inguinal canal tissue. Of those, 703 genes were differentially expressed (DE, FDR < 0.05) between the two groups analyzed being, respectively, 209 genes upregulated and 494 downregulated in the SH-affected group. Thirty-seven significantly overrepresented GO terms related to SH were enriched, and the most relevant biological processes were muscular system, cell differentiation, sarcome reorganization, and myofibril assembly. The calcium signaling, hypertrophic cardiomyopathy, dilated cardiomyopathy, and cardiac muscle contraction were the major pathways possibly involved in the occurrence of the scrotal hernias. The expression profile of the DE genes was associated with the reduction of smooth muscle differentiation, followed by low calcium content in the cell, which could lead to a decreased apoptosis ratio and diminished muscle contraction of the inguinal canal region. We have demonstrated that genes involved with musculature are closely linked to the physiological imbalance predisposing to scrotal hernia. According to our study, the genes MYBPC1, BOK, SLC25A4, SLC8A3, DES, TPM2, MAP1CL3C, and FGF1 were considered strong candidates for future evaluation.
Collapse
Affiliation(s)
- Gabrieli de Souza Romano
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Bahia, Av. Adhemar de Barros, 500-Ondina, Salvador 40170-110, Bahia, Brazil;
| | - Adriana Mercia Guaratini Ibelli
- Embrapa Suínos e Aves, Concórdia, Rodovia BR-153, Km 110, Distrito de Tamanduá, 321, Santa Catarina 89715-899, Brazil; (A.M.G.I.); (J.d.O.P.); (M.E.C.); (M.A.Z.M.); (N.M.)
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838-Vila Carli, Guarapuava 85040-167, Paraná, Brazil
| | - William Raphael Lorenzetti
- Programa de Pós-Graduação em Zootecnia, UDESC-Oeste, Rua Beloni Trombeta Zanin 680E-Bairro Santo Antônio, Chapecó 89815-630, SC, Brazil;
| | - Tomás Weber
- BRF SA, Curitiba, PR. Present address: Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Rodovia RS-135, KM 25-Distrito Eng. Luiz, Sertão 99170-000, RS, Brazil;
| | - Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Concórdia, Rodovia BR-153, Km 110, Distrito de Tamanduá, 321, Santa Catarina 89715-899, Brazil; (A.M.G.I.); (J.d.O.P.); (M.E.C.); (M.A.Z.M.); (N.M.)
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838-Vila Carli, Guarapuava 85040-167, Paraná, Brazil
| | - Mauricio Egídio Cantão
- Embrapa Suínos e Aves, Concórdia, Rodovia BR-153, Km 110, Distrito de Tamanduá, 321, Santa Catarina 89715-899, Brazil; (A.M.G.I.); (J.d.O.P.); (M.E.C.); (M.A.Z.M.); (N.M.)
| | - Marcos Antônio Zanella Mores
- Embrapa Suínos e Aves, Concórdia, Rodovia BR-153, Km 110, Distrito de Tamanduá, 321, Santa Catarina 89715-899, Brazil; (A.M.G.I.); (J.d.O.P.); (M.E.C.); (M.A.Z.M.); (N.M.)
| | - Nelson Morés
- Embrapa Suínos e Aves, Concórdia, Rodovia BR-153, Km 110, Distrito de Tamanduá, 321, Santa Catarina 89715-899, Brazil; (A.M.G.I.); (J.d.O.P.); (M.E.C.); (M.A.Z.M.); (N.M.)
| | - Victor Breno Pedrosa
- Departamento de Zootecnia, Setor de Ciências Agrárias e Tecnologia, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748-Uvaranas, Ponta Grossa 84030-900, Paraná, Brazil;
| | - Luiz Lehmann Coutinho
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, ESALQ/USP, Av. Pádua Dias, 11, Piracicaba 13418-900, São Paulo, Brazil;
| | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Concórdia, Rodovia BR-153, Km 110, Distrito de Tamanduá, 321, Santa Catarina 89715-899, Brazil; (A.M.G.I.); (J.d.O.P.); (M.E.C.); (M.A.Z.M.); (N.M.)
- Programa de Pós-Graduação em Zootecnia, UDESC-Oeste, Rua Beloni Trombeta Zanin 680E-Bairro Santo Antônio, Chapecó 89815-630, SC, Brazil;
- Correspondence: or ; Tel.: +55-49-3441-0411
| |
Collapse
|
38
|
Afra S, Matin MM. Potential of mesenchymal stem cells for bioengineered blood vessels in comparison with other eligible cell sources. Cell Tissue Res 2020; 380:1-13. [PMID: 31897835 DOI: 10.1007/s00441-019-03161-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
Application of stem cells in tissue engineering has proved to be effective in many cases due to great proliferation and differentiation potentials as well as possible paracrine effects of these cells. Human mesenchymal stem cells (MSCs) are recognized as a valuable source for vascular tissue engineering, which requires endothelial and perivascular cells. The goal of this review is to survey the potential of MSCs for engineering functional blood vessels in comparison with other cell types including bone marrow mononuclear cells, endothelial precursor cells, differentiated adult autologous smooth muscle cells, autologous endothelial cells, embryonic stem cells, and induced pluripotent stem cells. In conclusion, MSCs represent a preference in making autologous tissue-engineered vascular grafts (TEVGs) as well as off-the-shelf TEVGs for emergency vascular surgery cases.
Collapse
Affiliation(s)
- Simindokht Afra
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
39
|
Xu J, Liu J, Gan Y, Dai K, Zhao J, Huang M, Huang Y, Zhuang Y, Zhang X. High-Dose TGF-β1 Impairs Mesenchymal Stem Cell-Mediated Bone Regeneration via Bmp2 Inhibition. J Bone Miner Res 2020; 35:167-180. [PMID: 31487395 DOI: 10.1002/jbmr.3871] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/03/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) is a key factor in bone reconstruction. However, its pathophysiological role in non-union and bone repair remains unclear. Here we demonstrated that TGF-β1 was highly expressed in both C57BL/6 mice where new bone formation was impaired after autologous bone marrow mesenchymal stem cell (BMMSC) implantation in non-union patients. High doses of TGF-β1 inhibited BMMSC osteogenesis and attenuated bone regeneration in vivo. Furthermore, different TGF-β1 levels exhibited opposite effects on osteogenic differentiation and bone healing. Mechanistically, low TGF-β1 doses activated smad3, promoted their binding to bone morphogenetic protein 2 (Bmp2) promoter, and upregulated Bmp2 expression in BMMSCs. By contrast, Bmp2 transcription was inhibited by changing smad3 binding sites on its promoter at high TGF-β1 levels. In addition, high TGF-β1 doses increased tomoregulin-1 (Tmeff1) levels, resulting in the repression of Bmp2 and bone formation in mice. Treatment with the TGF-β1 inhibitor SB431542 significantly rescued BMMSC osteogenesis and accelerated bone regeneration. Our study suggests that high-dose TGF-β1 dampens BMMSC-mediated bone regeneration by activating canonical TGF-β/smad3 signaling and inhibiting Bmp2 via direct and indirect mechanisms. These data collectively show a previously unrecognized mechanism of TGF-β1 in bone repair, and TGF-β1 is an effective therapeutic target for treating bone regeneration disability. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jiajia Xu
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Shanghai, China.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jinlong Liu
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaokai Gan
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kerong Dai
- The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyu Zhao
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingjian Huang
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Huang
- The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Shanghai, China
| | - Yifu Zhuang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
40
|
Ni H, Zhao Y, Ji Y, Shen J, Xiang M, Xie Y. Adipose-derived stem cells contribute to cardiovascular remodeling. Aging (Albany NY) 2019; 11:11756-11769. [PMID: 31800397 PMCID: PMC6932876 DOI: 10.18632/aging.102491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/17/2019] [Indexed: 02/06/2023]
Abstract
Obesity is an independent risk factor for cardiovascular disease. Adipose tissue was initially thought to be involved in metabolism through paracrine. Recent researches discovered mesenchymal stem cells inside adipose tissue which could differentiate into vascular lineages in vitro and in vivo, participating vascular remodeling. However, there were few researches focusing on distinct characteristics and functions of adipose-derived stem cells (ADSCs) from different regions. This is the first comprehensive review demonstrating the variances of ADSCs from the perspective of their origins.
Collapse
Affiliation(s)
- Hui Ni
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiming Zhao
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongli Ji
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Shen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
41
|
Jahanbani Y, Davaran S, Ghahremani-Nasab M, Aghebati-Maleki L, Yousefi M. Scaffold-based tissue engineering approaches in treating infertility. Life Sci 2019; 240:117066. [PMID: 31738881 DOI: 10.1016/j.lfs.2019.117066] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/03/2019] [Accepted: 11/12/2019] [Indexed: 01/21/2023]
Abstract
Tissue engineering and the use of scaffolds have shown high therapeutic potentialities about male and female infertility. Nowadays, many couples are suffering from infertility problems. There are different causes for infertility including chemotherapy (for male and female), uterine injuries, and intrauterine adhesions. Extra-cellular matrix in tissue engineering provides a supportive medium for blood or lymphatic vessels making it a suitable substrate for cell implantation and growth. Dominant successes in this branch have been in use of patient-derived primary cells, these cells loaded in scaffolds and used to generate tissue for re-implantation. However, this method has limitations, because of the invasive nature of cell collection, also the cells patient-derived may be not healthy and become the source of disease. Therefore, use of stem cells, including embryonic stem (ES) cells, bone marrow mesenchymal stem cells (BM-MSCs) and umbilical cord-derived mesenchymal stem cells (UC-MSCs) have been considered. Cell/scaffold systems have a substantial role in fertility organs or agents repair or regeneration. This review summarizes the novel scaffold-based tissue engineering approaches to treat infertility.
Collapse
Affiliation(s)
- Yalda Jahanbani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudabe Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
42
|
Abdelrazik H, Giordano E, Barbanti Brodano G, Griffoni C, De Falco E, Pelagalli A. Substantial Overview on Mesenchymal Stem Cell Biological and Physical Properties as an Opportunity in Translational Medicine. Int J Mol Sci 2019; 20:5386. [PMID: 31671788 PMCID: PMC6862078 DOI: 10.3390/ijms20215386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSC) have piqued worldwide interest for their extensive potential to treat a large array of clinical indications, their unique and controversial immunogenic and immune modulatory properties allowing ample discussions and debates for their possible applications. Emerging data demonstrating that the interaction of biomaterials and physical cues with MSC can guide their differentiation into specific cell lineages also provide new interesting insights for further MSC manipulation in different clinical applications. Moreover, recent discoveries of some regulatory molecules and signaling pathways in MSC niche that may regulate cell fate to distinct lineage herald breakthroughs in regenerative medicine. Although the advancement and success in the MSC field had led to an enormous increase in the amount of ongoing clinical trials, we still lack defined clinical therapeutic protocols. This review will explore the exciting opportunities offered by human and animal MSC, describing relevant biological properties of these cells in the light of the novel emerging evidence mentioned above while addressing the limitations and challenges MSC are still facing.
Collapse
Affiliation(s)
- Heba Abdelrazik
- Department of Clinical Pathology, Cairo University, Cairo 1137, Egypt.
- Department of Diagnosis, central laboratory department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16131 Genoa, Italy.
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, 47522 Cesena, Italy.
| | - Giovanni Barbanti Brodano
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Cristiana Griffoni
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- Mediterranea Cardiocentro, 80122 Napoli, Italy.
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy.
- Institute of Biostructures and Bioimages (IBB), National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
43
|
Dituri F, Cossu C, Mancarella S, Giannelli G. The Interactivity between TGFβ and BMP Signaling in Organogenesis, Fibrosis, and Cancer. Cells 2019; 8:E1130. [PMID: 31547567 PMCID: PMC6829314 DOI: 10.3390/cells8101130] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
The Transforming Growth Factor beta (TGFβ) and Bone Morphogenic Protein (BMP) pathways intersect at multiple signaling hubs and cooperatively or counteractively participate to bring about cellular processes which are critical not only for tissue morphogenesis and organogenesis during development, but also for adult tissue homeostasis. The proper functioning of the TGFβ/BMP pathway depends on its communication with other signaling pathways and any deregulation leads to developmental defects or diseases, including fibrosis and cancer. In this review we explore the cellular and physio-pathological contexts in which the synergism or antagonism between the TGFβ and BMP pathways are crucial determinants for the normal developmental processes, as well as the progression of fibrosis and malignancies.
Collapse
Affiliation(s)
- Francesco Dituri
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Carla Cossu
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Serena Mancarella
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| |
Collapse
|
44
|
Denes BJ, Bolton C, Illsley CS, Kok WL, Walker JV, Poetsch A, Tredwin C, Kiliaridis S, Hu B. Notch Coordinates Periodontal Ligament Maturation through Regulating Lamin A. J Dent Res 2019; 98:1357-1366. [PMID: 31461625 DOI: 10.1177/0022034519871448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tooth eruption is a continuous biological process with dynamic changes at cellular and tissue levels, particularly within the periodontal ligament (PDL). Occlusion completion is a significant physiological landmark of dentition establishment. However, the importance of the involvement of molecular networks engaging in occlusion establishment on the final PDL maturation is still largely unknown. In this study, using rat and mouse molar teeth and a human PDL cell line for RNAseq and proteomic analysis, we systematically screened the key molecular links in regulating PDL maturation before and after occlusion establishment. We discovered Notch, a key molecular pathway in regulating stem cell fate and differentiation, is a major player in the event. Intercepting the Notch pathway by deleting its key canonical transcriptional factor, RBP-Jkappa, using a conditional knockout strategy in the mice delayed PDL maturation. We also identified that Lamin A, a cell nuclear lamina member, is a unique marker of PDL maturation, and its expression is under the control of Notch signaling. Our study therefore provides a deep insight of how PDL maturation is regulated at the molecular level, and we expect the outcomes to be applied for a better understanding of the molecular regulation networks in physiological conditions such as tooth eruption and movement and also for periodontal diseases.
Collapse
Affiliation(s)
- B J Denes
- Department of Orthodontics, University Clinic of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - C Bolton
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - C S Illsley
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - W L Kok
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - J V Walker
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - A Poetsch
- School of Biomedicine, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - C Tredwin
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - S Kiliaridis
- Department of Orthodontics, University Clinic of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - B Hu
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| |
Collapse
|
45
|
Rozenberg JM, Taylor JM, Mack CP. RBPJ binds to consensus and methylated cis elements within phased nucleosomes and controls gene expression in human aortic smooth muscle cells in cooperation with SRF. Nucleic Acids Res 2019; 46:8232-8244. [PMID: 29931229 PMCID: PMC6144787 DOI: 10.1093/nar/gky562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/07/2018] [Indexed: 11/15/2022] Open
Abstract
Given our previous demonstration that RBPJ binds a methylated repressor element and regulates smooth muscle cell (SMC)-specific gene expression, we used genome-wide approaches to identify RBPJ binding regions in human aortic SMC and to assess RBPJ's effects on chromatin structure and gene expression. RBPJ bound to consensus cis elements, but also to TCmGGGA sequences within Alu repeats that were less transcriptionally active as assessed by DNAse hypersensitivity, H3K9 acetylation, and Notch3 and RNA Pol II binding. Interestingly, RBPJ binding was frequently detected at the borders of open chromatin, and a large fraction of genes induced or repressed by RBPJ depletion were associated with this cluster of RBPJ binding sites. RBPJ binding dramatically co-localized with serum response factor (SRF) and RNA seq experiments in RBPJ- and SRF-depleted SMC demonstrated that these factors interact functionally to regulate the contraction and inflammatory gene programs that help define SMC phenotype. Finally, we showed that RBPJ bound preferentially to phased nucleosomes independent of active chromatin marks and to cis elements positioned at the beginning and middle of the nucleosome dyad. These novel findings add important insight into RBPJ's role in chromatin structure and gene expression in SMC.
Collapse
Affiliation(s)
- Julian M Rozenberg
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joan M Taylor
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christopher P Mack
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
46
|
Zou S, Ren P, Zhang L, Azares AR, Zhang S, Coselli JS, Shen YH, LeMaire SA. Activation of Bone Marrow-Derived Cells and Resident Aortic Cells During Aortic Injury. J Surg Res 2019; 245:1-12. [PMID: 31394402 DOI: 10.1016/j.jss.2019.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/17/2019] [Accepted: 07/05/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND The process of aortic injury, repair, and remodeling during aortic aneurysm and dissection is poorly understood. We examined the activation of bone marrow (BM)-derived and resident aortic cells in response to aortic injury in a mouse model of sporadic aortic aneurysm and dissection. MATERIALS AND METHODS Wild-type C57BL/6 mice were transplanted with green fluorescent protein (GFP)+ BM cells. For 4 wk, these mice were either unchallenged with chow diet and saline infusion or challenged with high-fat diet and angiotensin II infusion. We then examined the aortic recruitment of GFP+ BM-derived cells, growth factor production, and the differentiation potential of GFP+ BM-derived and GFP- resident aortic cells. RESULTS Aortic challenge induced recruitment of GFP+ BM cells and activation of GFP- resident aortic cells, both of which produced growth factors. Although BM cells and resident aortic cells equally contributed to the fibroblast populations, we did not detect the differentiation of BM cells into smooth muscle cells. Interestingly, aortic macrophages were both of BM-derived (45%) and of non-BM-derived (55%) origin. We also observed a significant increase in stem cell antigen-1 (Sca-1)+ stem/progenitor cells and neural/glial antigen 2 (NG2+) cells in the aortic wall of challenged mice. Although some of the Sca-1+ cells and NG2+ cells were BM derived, most of these cells were resident aortic cells. Sca-1+ cells produced growth factors and differentiated into fibroblasts and NG2+ cells. CONCLUSIONS BM-derived and resident aortic cells are activated in response to aortic injury and contribute to aortic inflammation, repair, and remodeling by producing growth factors and differentiating into fibroblasts and inflammatory cells.
Collapse
Affiliation(s)
- Sili Zou
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas; Department of Vascular Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Pingping Ren
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas
| | - Lin Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas
| | - Alon R Azares
- Molecular Cardiology Research Lab, Texas Heart Institute, Houston, Texas
| | - Sui Zhang
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas
| | - Joseph S Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas; Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas; Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas.
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas; Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
47
|
Frösen J, Joutel A. Smooth muscle cells of intracranial vessels: from development to disease. Cardiovasc Res 2019; 114:501-512. [PMID: 29351598 DOI: 10.1093/cvr/cvy002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/12/2018] [Indexed: 02/02/2023] Open
Abstract
Cerebrovascular diseases that cause ischaemic or haemorrhagic stroke with subsequent loss of life or functional capacity due to damage of the brain tissue are among the leading causes of human suffering and economic burden inflicted by diseases in the developed world. Diseases affecting intracranial vessels are significant contributors to ischaemic and haemorrhagic strokes. Brain arteriovenous malformations, which are a collection of abnormal blood vessels connecting arteries to veins, are the most common cause of intracranial haemorrhage in children and young adults. Saccular intracranial aneurysms, which are pathological saccular dilations mainly occurring at bifurcations of the large intracranial arteries near the circle of Willis, are highly prevalent in the middle-aged population, causing significant anxiety and concern; their rupture, although rare, is a significant cause of intracranial haemorrhage in those past middle age that is associated with a very sinister prognosis. Cerebral small-vessel disease, which comprise all pathological processes affecting vessels <500 microns in diameter, account for the majority of intracerebral haemorrhages and ∼25% of ischaemic strokes and 45% of dementias in the elderly. In this review, we summarize the developmental, structural, and functional features of intracranial vessels. We then describe the role of smooth muscle cells in brain arteriovenous malformations, intracranial aneurysms, and small-vessel diseases, and discuss how the peculiar ontogeny, structure, and function of intracranial vessels are related to the development of these diseases.
Collapse
Affiliation(s)
- Juhana Frösen
- Hemorrhagic Brain Pathology Research Group, NeuroCenter, Kuopio University Hospital, Kuopio 70029, Finland.,Department of Neurosurgery, Kuopio University Hospital, Kuopio 70029, Finland
| | - Anne Joutel
- Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, Université Paris Diderot-Paris 7, 10 av de Verdun, Paris 75010, France.,DHU NeuroVasc, Sorbonne Paris Cité, Paris 75010, France
| |
Collapse
|
48
|
Wu Y, Kang YG, Kim IG, Kim JE, Lee EJ, Chung EJ, Shin JW. Mechanical stimuli enhance simultaneous differentiation into oesophageal cell lineages in a double-layered tubular scaffold. J Tissue Eng Regen Med 2019; 13:1394-1405. [PMID: 31066514 DOI: 10.1002/term.2881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 01/02/2023]
Abstract
The tissue-engineered oesophagus serves as an alternative and promising therapeutic approach for long-gap oesophageal replacement. This study proposes an advanced in vitro culture platform focused on construction of the oesophagus by combining an electrospun double-layered tubular scaffold, stem cells, biochemical reagents, and biomechanical factors. Human mesenchymal stem cells were seeded onto the inner and outer surfaces of the scaffold. Mechanical stimuli were applied with a hollow organ bioreactor along with different biochemical reagents inside and outside of the scaffold. Electrospun fibres in a tubular scaffold were found to be randomly and circumferentially oriented for the inner and outer surfaces, respectively. Amongst the two types of mechanical stimuli, the intermittent shear flow that can simultaneously cause circumferential stretching due to hydrostatic pressure, and shear stress caused by flow on the inner surface, was found to be more effective for simultaneous differentiation into epithelial and muscle lineage than steady shear flow. Under these conditions, the expression of epithelial markers on the inner surface was significantly observed, although it was minimal on the outer surface. Muscle differentiation showed the opposite expression pattern. Meanwhile, the mechanical tests showed that the strength of the scaffold was improved after incubation for 14 days. We have developed a potential platform for tissue-engineered oesophagus construction. Specifically, simultaneous differentiation into epithelial and muscle lineages can be achieved by utilizing the double-layered scaffold and appropriate mechanical stimulation.
Collapse
Affiliation(s)
- Yanru Wu
- Department of Health Science and Technology, Inje University, Gimhae, Republic of Korea
| | - Yun Gyeong Kang
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - In Gul Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji Eun Kim
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Eun Jin Lee
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Eun-Jae Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung-Woog Shin
- Department of Health Science and Technology, Inje University, Gimhae, Republic of Korea.,Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea.,Cardiovascular and Metabolic Disease Center/Institute of Aged Life Redesign/UHARC, Inje University, Gimhae, Republic of Korea
| |
Collapse
|
49
|
Identification of lncRNAs and Genes Responsible for Fatness and Fatty Acid Composition Traits between the Tibetan and Yorkshire Pigs. Int J Genomics 2019; 2019:5070975. [PMID: 31281828 PMCID: PMC6589220 DOI: 10.1155/2019/5070975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/10/2019] [Accepted: 03/03/2019] [Indexed: 12/15/2022] Open
Abstract
Tibetan pigs from the Tibetan Plateau are characterized with a significant phenotypic difference relative to lowland pigs. In this study, a significant difference of the fatness and fatty acid composition traits was observed between the Tibetan and Yorkshire pigs. To uncover the involved mechanism, the expression profile of long noncoding RNAs (lncRNAs) and genes was compared between them. After serial filtered steps, 1,964 lncRNAs were obtained through our computational pipeline. In total, 63 and 715 lncRNAs and genes were identified to be differentially expressed. Evidence from cis- and trans-targeting analysis of lncRNAs demonstrated that some lncRNAs, such as MSTRG.14097 and MSTRG.8034, played important roles in the fatness and fatty acid composition traits. Bioinformatics analysis revealed that many candidate genes were responsible for the two traits. Of these, FASN, ACACA, SCD, ME3, PDHB, ACSS1, ACSS2, and ACLY were identified, which functioned in regulating the level of hexadecanoic acid, hexadecenoic acid, octadecenoic acid, and monounsaturated fatty acid. And LPGAT1, PDK4, ACAA1, and ADIPOQ were associated with the content of stearic acid, octadecadienoic acid, and polyunsaturated fatty acid. Candidate genes, which were responsible for fatness trait, consisted of FGF2, PLAG1, ADIPOQ, IRX3, MIF, IL-34, ADAM8, HMOX1, Vav1, and TLR8. In addition, association analysis also revealed that 34 and 57 genes significantly correlated to the fatness and fatty acid composition trait, respectively. Working out the mechanism caused by these lncRNAs and candidate genes is proven to be complicated but is invaluable to our understanding of fatness and fatty acid composition traits.
Collapse
|
50
|
Yeh YT, Wei J, Thorossian S, Nguyen K, Hoffman C, Del Álamo JC, Serrano R, Li YSJ, Wang KC, Chien S. MiR-145 mediates cell morphology-regulated mesenchymal stem cell differentiation to smooth muscle cells. Biomaterials 2019; 204:59-69. [PMID: 30884320 PMCID: PMC6825513 DOI: 10.1016/j.biomaterials.2019.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/17/2019] [Accepted: 03/01/2019] [Indexed: 01/14/2023]
Abstract
The use of biochemical signaling to derive smooth muscle cells (SMCs) from mesenchymal stem cells (MSCs) has been explored, but the induction of a fully functional SMC phenotype remains to be a major challenge. Cell morphology has been shown to regulate MSC differentiation into various lineages, including SMCs. We engineered substrates with microgrooves to induce cell elongation to study the mechanism underlying the MSC shape modulation in SMC differentiation. In comparison to those on flat substrates, MSCs cultured on engineered substrates were elongated with increased aspect ratios for both cell body and nucleus, as well as augmented cytoskeletal tensions. Biochemical studies indicated that the microgroove-elongated cells expressed significantly higher levels of SMC markers. MicroRNA analyses showed that up-regulation of miR-145 and the consequent repression of KLF4 in these elongated cells promoted MSC-to-SMC differentiation. Rho/ROCK inhibitions, which impair cytoskeletal tension, attenuated cell and nuclear elongations and disrupted the miR-145/KLF4 regulation for SMC differentiation. Furthermore, cell traction force measurements showed that miR-145 is essential for the functional contractility in the microgroove-induced SMC differentiation. Collectively, our findings demonstrate that, through a Rho-ROCK/miR-145/KLF4 pathway, the elongated cell shape serves as a decisive geometric cue to direct MSC differentiation into functional SMCs.
Collapse
Affiliation(s)
- Yi-Ting Yeh
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States; Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Josh Wei
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Satenick Thorossian
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Katherine Nguyen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Clarissa Hoffman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Juan C Del Álamo
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States; Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Ricardo Serrano
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Yi-Shuan Julie Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Kuei-Chun Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States.
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States.
| |
Collapse
|