1
|
Jiang N, Hu Z, Wang Q, Hao J, Yang R, Jiang J, Wang H. Fibroblast growth factor 2 enhances BMSC stemness through ITGA2-dependent PI3K/AKT pathway activation. J Cell Physiol 2024; 239:e31423. [PMID: 39188080 DOI: 10.1002/jcp.31423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSC) are promising cellular reservoirs for treating degenerative diseases, tissue injuries, and immune system disorders. However, the stemness of BMSCs tends to decrease during in vitro cultivation, thereby restricting their efficacy in clinical applications. Consequently, investigating strategies that bolster the preservation of BMSC stemness and maximize therapeutic potential is necessary. Transcriptomic and single-cell sequencing methodologies were used to perform a comprehensive examination of BMSCs with the objective of substantiating the pivotal involvement of fibroblast growth factor 2 (FGF2) and integrin alpha 2 (ITGA2) in stemness regulation. To investigate the impact of these genes on the BMSC stemness in vitro, experimental approaches involving loss and gain of function were implemented. These approaches encompassed the modulation of FGF2 and ITGA2 expression levels via small interfering RNA and overexpression plasmids. Furthermore, we examined their influence on the proliferation and differentiation capacities of BMSCs, along with the expression of stemness markers, including octamer-binding transcription factor 4, Nanog homeobox, and sex determining region Y-box 2. Transcriptomic analyzes successfully identified FGF2 and ITGA2 as pivotal genes responsible for regulating the stemness of BMSCs. Subsequent single-cell sequencing revealed that elevated FGF2 and ITGA2 expression levels within specific stem cell subpopulations are closely associated with stemness maintenance. Moreover, additional in vitro experiments have convincingly demonstrated that FGF2 effectively enhances the BMSC stemness by upregulating ITGA2 expression, a process mediated by the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. This conclusion was supported by the observed upregulation of stemness markers following the induction of FGF2 and ITGA2. Moreover, administration of the BEZ235 pathway inhibitor resulted in the repression of stemness transcription factors, suggesting the substantial involvement of the PI3K/AKT pathway in stemness preservation facilitated by FGF2 and ITGA2. This study elucidates the involvement of FGF2 in augmenting BMSC stemness by modulating ITGA2 and activating the PI3K/AKT pathway. These findings offer valuable contributions to stem cell biology and emphasize the potential of manipulating FGF2 and ITGA2 to optimize BMSCs for therapeutic purposes.
Collapse
Affiliation(s)
- Nizhou Jiang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
- Department of Spine Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhenxin Hu
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Quanxiang Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jiayu Hao
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Rui Yang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Jian Jiang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Hong Wang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| |
Collapse
|
2
|
Mirzaei R, Mohammadzadeh R, Mirzaei H, Sholeh M, Karampoor S, Abdi M, Alikhani MY, Kazemi S, Ahmadyousefi Y, Jalalifar S, Yousefimashouf R. Role of microRNAs in Staphylococcus aureus infection: Potential biomarkers and mechanism. IUBMB Life 2020; 72:1856-1869. [PMID: 32516518 DOI: 10.1002/iub.2325] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/15/2020] [Indexed: 01/27/2023]
Abstract
Staphylococcus aureus is known as a common pathogen that colonizes 30% of healthy humans. Additionally, this bacterium can cause a number of serious infections, that is, endocarditis, bacteremia, pneumonia, wound, skin infections, and tissue abscesses. A variety of cellular and molecular pathways and targets are involved in response against S. aureus. Among them, microRNAs (miRNAs) have crucial roles in response against S. aureus. In this regard, it has been shown that these molecules exert their regulatory roles via modulating a wide range of events, such as inflammatory reactions, host innate, and adaptive immunity. Current works have provided insight into the crucial involvement of miRNAs in immune defense toward Staphylococcal infections. Herein, we highlighted the current findings on the deregulation of different miRNAs in S. aureus-infected cells. Moreover, we summarized the mechanisms and targets of miRNAs in S. aureus infections.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rokhsareh Mohammadzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Abdi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Zhou Y, Wu C, Lu G, Hu Z, Chen Q, Du X. FGF/FGFR signaling pathway involved resistance in various cancer types. J Cancer 2020; 11:2000-2007. [PMID: 32127928 PMCID: PMC7052940 DOI: 10.7150/jca.40531] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/04/2020] [Indexed: 12/16/2022] Open
Abstract
Resistance becomes major clinical issue in cancer treatment, which strongly limits patients to benefit from oncotherapy. Growing evidences have been indicative of the critical role of fibroblast growth factor (FGF)/receptor (FGFR) signaling played in resistance to oncotherapy. In this review we discussed the underlying mechanisms of FGF/FGFR signaling mediated resistance to chemotherapy, radiotherapy and target therapy in various cancers. Meanwhile, we summarized the reported mechanism of FGF/FGFR inhibitors resistance in cancers.
Collapse
Affiliation(s)
- Yangyang Zhou
- Department of Rheumatology and Immunology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chengyu Wu
- Department of Rheumatology and Immunology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Guangrong Lu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical, Wenzhou, Zhejiang 325000, China)
| | - Zijing Hu
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qiuxiang Chen
- Department of Ultrasonic Imaging, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaojing Du
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
4
|
Hsieh MJ, Huang C, Lin CC, Tang CH, Lin CY, Lee IN, Huang HC, Chen JC. Basic fibroblast growth factor promotes doxorubicin resistance in chondrosarcoma cells by affecting XRCC5 expression. Mol Carcinog 2020; 59:293-303. [PMID: 31916307 DOI: 10.1002/mc.23153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022]
Abstract
Chondrosarcoma is the second most common form of bone cancer and is characterized by its ability to produce an extracellular matrix of the cartilage. High-grade chondrosarcoma is highly aggressive and can metastasize to other parts of the body. Chondrosarcoma is resistant to both conventional chemotherapy and radiotherapy; hence, the current main treatment is still surgical resection. Doxorubicin (Dox) has been shown to significantly improve patient survival compared with untreated chondrosarcoma. However, for patients with metastasis, surgical resection alone can hardly treat them. In addition, drug resistance is one of the leading causes of death in patients with chondrosarcoma. Secreted proteins can mediate cell-cell interactions in the cancer microenvironment, which may be associated with the development of drug resistance. In the present study, chondrosarcoma cells were treated with Dox, the conditioned medium was then collected and changes in secreted proteins were analyzed using the antibody array. Results showed that the Dox-treated group had the highest secretion of basic fibroblast growth factor (bFGF), indicating the effect of bFGF on Dox sensitivity in chondrosarcoma. Furthermore, lentiviral-mediated knockdown and treatment of exogenous recombinant protein were employed to further investigate the effect of bFGF on Dox resistance. Results demonstrated that bFGF can promote the expression of X-ray repair cross-complementing protein 5 (XRCC5), leading to Dox resistance. Secreted bFGF is likely to be detected in serum, in addition to being a biomarker for predicting Dox resistance, the combination of Dox and bFGF/XRCC5 blockers may be a new therapeutic strategy to improve the efficacy of Dox in future.
Collapse
Affiliation(s)
- Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Holistic Wellness, Mingdao University, Changhua, Taiwan
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Earth and Life Sciences, University of Taipei, Taipei, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Chih-Yang Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - I-Neng Lee
- Department of Medical Research, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hsiu-Chen Huang
- Department of Applied Science, National Tsing Hua University, South Campus, Hsinchu, Taiwan
| | - Jui-Chieh Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
5
|
Iterative Three-Dimensional Epidermis Bioengineering and Xenografting to Assess Long-Term Regenerative Potential in Human Keratinocyte Precursor Cells. Methods Mol Biol 2019. [PMID: 31309517 DOI: 10.1007/7651_2019_250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The functional definition of somatic adult stem cells is based on their regenerative capacity, which allows tissue regeneration throughout life. Thus, refining methodologies to characterize this capacity is of great importance for progress in the fundamental knowledge of specific keratinocyte subpopulations but also for preclinical and clinical research, considering the high potential of keratinocytes in cell therapy. We present here a methodology which we define as iterative xenografting, which originates in the classical model of human skin substitute xenografts onto immunodeficient recipient mice. The principle of this functional assay is first to perform primary xenografts to assess graft take and the quality of epidermal differentiation. Then, human keratinocytes are extracted from primary graft samples to perform secondary xenografts, to assess the presence and preservation of functional keratinocyte stem cells with long-term regenerative potential. In the example of experiments shown, iterative skin xenografting was used to document the high regenerative potential of epidermal holoclone keratinocytes.
Collapse
|
6
|
DNA Damage Response After Ionizing Radiation Exposure in Skin Keratinocytes Derived from Human-Induced Pluripotent Stem Cells. Int J Radiat Oncol Biol Phys 2019; 105:193-205. [PMID: 31085283 DOI: 10.1016/j.ijrobp.2019.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 04/11/2019] [Accepted: 05/07/2019] [Indexed: 11/23/2022]
Abstract
PURPOSE Epidermal cells are positioned on the body surface and thus risk being exposed to genotoxic stress, including ionizing radiation (IR), ultraviolet rays, and chemical compounds. The biological effect of IR on the skin tissue is a significant problem for medical applications such as radiation therapy. Keratinocyte stem cells and progenitors are at risk for IR-dependent tumorigenesis during radiation therapy for cancer treatment. To elucidate the molecular mechanism of genome stability in epidermal cells, we derived skin keratinocytes from human-induced pluripotent stem cells (iPSCs) and analyzed their DNA damage response (DDR). METHODS AND MATERIALS Skin keratinocytes were derived from iPSCs and designated as first- (P1), second- (P2), and third- (P3) passage cells to compare the differentiation states of DDR. After 2 Gy gamma-ray exposure, cells were immunostained with DNA double-strand break markers γ-H2AX/53BP1 and cell senescence markers p16/p21 for DDR analysis. DDR protein expression level, cell survival, and apoptosis were analyzed by western blotting, WST-8 assay and TUNEL assay, respectively. DDR of constructed 3D organoid modeling was also analyzed. RESULTS P1, P2, and P3 keratinocytes were characterized with keratinocyte markers keratin 14 and p63 using immunofluorescence, and all cells were positive to both markers. Derived keratinocytes showed high expression of integrin α6 and CD71 (real-time (qRT)-PCR ratio: iPSCs: integrin α6: 1.12, CD71: 1.25, P1: integrin α6: 7.80, CD71: 0.43, P2: integrin α6: 5.53, CD71: 0.48), suggesting that P1 and P2 keratinocytes have potential as keratinocyte progenitors. Meanwhile, P3 keratinocytes showed low expression of integrin α6 and CD71 (qRT-PCR ratio: P3: integrin α6: 0.55, CD71: 0.10), suggesting differentiated keratinocytes. After IR exposure, the P1 and P2 keratinocytes showed an increase in DNA repair activity by a γ-H2AX/53BP1 focus assay (P1: γ-H2AX: 28.0%, 53BP1: 17.0%, P2: γ-H2AX: 37.7%, 53BP1: 28.3%) but not in P3 keratinocytes (P3: γ-H2AX: 74.7%, 53BP1: 63.7%) compared with iPSCs (γ-H2AX: 57.0%, 53BP1: 55.0%). Furthermore, in derived keratinocytes, expression of the cellular senescence markers p16 and p21 were increased compared with iPSCs (P16: non irradiated, iPSCs: 0%, P1: 12.5%, P2: 14.5%, P3: 29.7%, IR, iPSCs: 0%, P1: 19.5%, P2: 34.8%, P3: 64.5%). DDR protein expression, cellular sensitivity, and apoptosis activity decreased in derived keratinocytes compared with iPSCs. CONCLUSIONS We have demonstrated the derivation of keratinocytes from iPSCs and their characterization of differentiated states and DDR. Derived keratinocytes showed progenitors like character as a result of DDR. These results suggest that derived keratinocytes are useful tools for analyzing the effects of IR, such as DDR on the skin tissue from radiation therapy for cancer.
Collapse
|
7
|
Keratinocyte stem cells are more resistant to UVA radiation than their direct progeny. PLoS One 2018; 13:e0203863. [PMID: 30208100 PMCID: PMC6135485 DOI: 10.1371/journal.pone.0203863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 08/29/2018] [Indexed: 12/16/2022] Open
Abstract
The epidermis undergoes constant renewal during its lifetime. This is possible due to a special population of keratinocyte stem cells (KSCs) located at the basal layer. These cells are surrounded by their direct progeny, keratinocyte progenitors or transient amplifying cells (TAs), which arise from cell division. Skin is exposed every day to sun radiation; in particular, UVA radiation penetrates through the epidermis and induces damage to KSCs and TAs. Although keratinocytes in the basal layer are the most likely skin carcinomas and/or photoaging cells of origin, surprisingly few studies have addressed the specific responses of these cells to UV radiation. In this study, we showed for the first time that keratinocyte stem cells were more resistant to UVA irradiation than their direct progeny, transient amplifying cells. Using both the MTT assay and clonogenic assay, we found that KSCs were more photo-resistant compared to TAs after exposure to different doses of UVA (from 0 to 50 J/cm2). Moreover, KSCs had a greater ability to reconstruct human epidermis (RHE) after UVA exposure compared with TAs. Finally, investigations of DNA repair using the comet assay showed that DNA single-strand breaks and thymine dimers were repaired quicker and more efficiently in KSCs compared with TAs. In a previous work, we showed that the same stem cell population was more resistant to ionizing radiation, another carcinogenic agent. Collectively, our results combined with other observations demonstrate that keratinocyte stem cells, which are responsible for epidermal renewal throughout life, are equipped with an efficient arsenal against several genotoxic agents. Our future work will try to identify the factors or signaling pathways that are responsible for this differential photo-sensitivity and DNA repair capacity between KSCs and TAs.
Collapse
|
8
|
Subramaniam N, Petrik JJ, Vickaryous MK. VEGF, FGF-2 and TGFβ expression in the normal and regenerating epidermis of geckos: implications for epidermal homeostasis and wound healing in reptiles. J Anat 2018; 232:768-782. [PMID: 29417581 PMCID: PMC5879961 DOI: 10.1111/joa.12784] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2018] [Indexed: 01/17/2023] Open
Abstract
The skin is a bilayered organ that serves as a key barrier between an organism and its environment. In addition to protecting against microbial invasion, physical trauma and environmental damage, skin participates in maintaining homeostasis. Skin is also capable of spontaneous self-repair following injury. These functions are mediated by numerous pleiotrophic growth factors, including members of the vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and transforming growth factor β (TGFβ) families. Although growth factor expression has been well documented in mammals, particularly during wound healing, for groups such as reptiles less is known. Here, we investigate the spatio-temporal pattern of expression of multiple growth factors in normal skin and following a full-thickness cutaneous injury in the representative lizard Eublepharis macularius, the leopard gecko. Unlike mammals, leopard geckos can heal cutaneous wounds without scarring. We demonstrate that before, during and after injury, keratinocytes of the epidermis express a diverse panel of growth factor ligands and receptors, including: VEGF, VEGFR1, VEGFR2, and phosphorylated VEGFR2; FGF-2 and FGFR1; and phosphorylated SMAD2, TGFβ1, and activin βA. Unexpectedly, only the tyrosine kinase receptors VEGFR1 and FGFR1 were dynamically expressed, and only during the earliest phases of re-epithelization; otherwise all the proteins of interest were constitutively present. We propose that the ubiquitous pattern of growth factor expression by keratinocytes is associated with various roles during tissue homeostasis, including protection against ultraviolet photodamage and coordinated body-wide skin shedding.
Collapse
Affiliation(s)
- Noeline Subramaniam
- Department of Biomedical SciencesOntario Veterinary CollegeUniversity of GuelphGuelphONCanada
- Institute of Medical ScienceFaculty of MedicineUniversity of TorontoTorontoONCanada
- Keenan Research Centre in the Li Ka Shing Knowledge InstituteSt. Michael's HospitalDepartment of MedicineUniversity of TorontoTorontoONCanada
| | - James J. Petrik
- Department of Biomedical SciencesOntario Veterinary CollegeUniversity of GuelphGuelphONCanada
| | - Matthew K. Vickaryous
- Department of Biomedical SciencesOntario Veterinary CollegeUniversity of GuelphGuelphONCanada
| |
Collapse
|
9
|
Auvré F, Coutier J, Martin MT, Fortunel NO. Quantitative Detection of Low-Abundance Transcripts at Single-Cell Level in Human Epidermal Keratinocytes by Digital Droplet Reverse Transcription-Polymerase Chain Reaction. Methods Mol Biol 2018; 1879:31-41. [PMID: 29736807 DOI: 10.1007/7651_2018_149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genetic and epigenetic characterization of the large cellular diversity observed within tissues is essential to understanding the molecular networks that ensure the regulation of homeostasis, repair, and regeneration, but also pathophysiological processes. Skin is composed of multiple cell lineages and is therefore fully concerned by this complexity. Even within one particular lineage, such as epidermal keratinocytes, different immaturity statuses or differentiation stages are represented, which are still incompletely characterized. Accordingly, there is presently great demand for methods and technologies enabling molecular investigation at single-cell level. Also, most current methods used to analyze gene expression at RNA level, such as RT-qPCR, do not directly provide quantitative data, but rather comparative ratios between two conditions. A second important need in skin biology is thus to determine the number of RNA molecules in a given cell sample. Here, we describe a workflow that we have set up to meet these specific needs, by means of transcript quantification in cellular micro-samples using flow cytometry sorting and reverse transcription-digital droplet polymerase chain reaction. As a proof-of-principle, the workflow was tested for the detection of transcription factor transcripts expressed at low levels in keratinocyte precursor cells. A linear correlation was found between quantification values and keratinocyte input numbers in a low quantity range from 40 cells to 1 cell. Interpretable signals were repeatedly obtained from single-cell samples corresponding to estimated expression levels as low as 10-20 transcript copies per keratinocyte or less. The present workflow may have broad applications for the detection and quantification of low-abundance nucleic acid species in single cells, opening up perspectives for the study of cell-to-cell genetic and molecular heterogeneity. Interestingly, the process described here does not require internal references such as house-keeping gene expression, as it is initiated with defined cell numbers, precisely sorted by flow cytometry.
Collapse
Affiliation(s)
- Frédéric Auvré
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Evry, France.,INSERM U967, Fontenay-aux-Roses, France.,Université Paris-Diderot, Paris 7, France.,Université Paris-Saclay, Paris 11, France
| | - Julien Coutier
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Evry, France.,INSERM U967, Fontenay-aux-Roses, France.,Université Paris-Diderot, Paris 7, France.,Université Paris-Saclay, Paris 11, France
| | - Michèle T Martin
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Evry, France.,INSERM U967, Fontenay-aux-Roses, France.,Université Paris-Diderot, Paris 7, France.,Université Paris-Saclay, Paris 11, France
| | - Nicolas O Fortunel
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Evry, France. .,INSERM U967, Fontenay-aux-Roses, France. .,Université Paris-Diderot, Paris 7, France. .,Université Paris-Saclay, Paris 11, France.
| |
Collapse
|
10
|
Staphylococcus aureus Triggers Induction of miR-15B-5P to Diminish DNA Repair and Deregulate Inflammatory Response in Diabetic Foot Ulcers. J Invest Dermatol 2017; 138:1187-1196. [PMID: 29273315 DOI: 10.1016/j.jid.2017.11.038] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 01/13/2023]
Abstract
Diabetic foot ulcers (DFUs) are a debilitating complication of diabetes in which bacterial presence, including the frequent colonizer Staphylococcus aureus, contributes to inhibition of healing. MicroRNAs (miRs) play a role in healing and host response to bacterial pathogens. However, the mechanisms by which miR response to cutaneous S. aureus contributes to DFU pathophysiology are unknown. Here, we show that S. aureus inhibits wound closure and induces miR-15b-5p in acute human and porcine wound models and in chronic DFUs. Transcriptome analyses of DFU tissue showed induction of miR-15b-5p to be critical, regulating many cellular processes, including DNA repair and inflammatory response, by suppressing downstream targets IKBKB, WEE1, FGF2, RAD50, MSH2, and KIT. Using a human wound model, we confirmed that S. aureus-triggered miR-15b-5p induction results in suppression of the inflammatory- and DNA repair-related genes IKBKB and WEE1. Inhibition of DNA repair and accumulation of DNA breaks was functionally confirmed by the presence of the pH2AX within colonized DFUs. We conclude that S. aureus induces miR-15b-5p, subsequently repressing DNA repair and inflammatory response, showing a mechanism of inhibition of healing in DFUs previously unreported, to our knowledge. This underscores a previously unknown role of DNA damage repair in the pathophysiology of DFUs colonized with S. aureus.
Collapse
|
11
|
Justet A, Joannes A, Besnard V, Marchal-Sommé J, Jaillet M, Bonniaud P, Sallenave JM, Solhonne B, Castier Y, Mordant P, Mal H, Cazes A, Borie R, Mailleux AA, Crestani B. FGF9 prevents pleural fibrosis induced by intrapleural adenovirus injection in mice. Am J Physiol Lung Cell Mol Physiol 2017; 313:L781-L795. [PMID: 28729349 DOI: 10.1152/ajplung.00508.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Fibroblast growth factor 9 (FGF9) is necessary for fetal lung development and is expressed by epithelium and mesothelium. We evaluated the role of FGF9 overexpression on adenoviral-induced pleural injury in vivo and determined the biological effects of FGF9 on mesothelial cells in vitro. We assessed the expression of FGF9 and FGF receptors by mesothelial cells in both human and mouse lungs. Intrapleural injection of an adenovirus expressing human FGF9 (AdFGF9) or a control adenovirus (AdCont) was performed. Mice were euthanized at days 3, 5, and 14 Expression of FGF9 and markers of inflammation and myofibroblastic differentiation was studied by qPCR and immunohistochemistry. In vitro, rat mesothelial cells were stimulated with FGF9 (20 ng/ml), and we assessed its effect on proliferation, survival, migration, and differentiation. FGF9 was expressed by mesothelial cells in human idiopathic pulmonary fibrosis. FGF receptors, mainly FGFR3, were expressed by mesothelial cells in vivo in humans and mice. AdCont instillation induced diffuse pleural thickening appearing at day 5, maximal at day 14 The altered pleura cells strongly expressed α-smooth muscle actin and collagen. AdFGF9 injection induced maximal FGF9 expression at day 5 that lasted until day 14 FGF9 overexpression prevented pleural thickening, collagen and fibronectin accumulation, and myofibroblastic differentiation of mesothelial cells. In vitro, FGF9 decreased mesothelial cell migration and inhibited the differentiating effect of transforming growth factor-β1. We conclude that FGF9 has a potential antifibrotic effect on mesothelial cells.
Collapse
Affiliation(s)
- Aurélien Justet
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, Paris, France
| | - Audrey Joannes
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Valérie Besnard
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Joëlle Marchal-Sommé
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Madeleine Jaillet
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Philipe Bonniaud
- Institut National de la Santé et de la Recherche Médicale U866, Université de Bourgogne, Dijon, France
| | - Jean Michel Sallenave
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Brigitte Solhonne
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Yves Castier
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Chirurgie Thoracique et Vasculaire, Paris, France
| | - Pierre Mordant
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Chirurgie Thoracique et Vasculaire, Paris, France
| | - Hervé Mal
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie et Transplantation, Paris, France; and
| | - Aurélie Cazes
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Département d'Anatomie Pathologique, Paris, France
| | - Raphael Borie
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, Paris, France
| | - Arnaud A Mailleux
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Bruno Crestani
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France; .,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, Paris, France
| |
Collapse
|
12
|
Metral E, Bechetoille N, Demarne F, Rachidi W, Damour O. α6 Integrin (α6 high)/Transferrin Receptor (CD71) low Keratinocyte Stem Cells Are More Potent for Generating Reconstructed Skin Epidermis Than Rapid Adherent Cells. Int J Mol Sci 2017; 18:ijms18020282. [PMID: 28134816 PMCID: PMC5343818 DOI: 10.3390/ijms18020282] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/16/2017] [Indexed: 12/29/2022] Open
Abstract
The epidermis basal layer is composed of two keratinocyte populations: Keratinocyte Stem cells (KSC) and Transitory Amplifying (TA) cells that arise from KSC division. Unfortunately, no specific marker exists to differ between KSC and TA cells. Here, we aimed at comparing two different methods that pretended to isolate these two populations: (i) the rapid adhesion method on coated substrate and (ii) the flow cytometry method, which is based on the difference in cell surface expressions of the α6 integrin and transferrin receptor (CD71). Then, we compared different parameters that are known to discriminate KSC and TA populations. Interestingly, we showed that both methods allow enrichment in stem cells. However, cell sorting by flow cytometry (α6high/CD71low) phenotype leads to a better enrichment of KSC since the colony forming efficiency is five times increased versus total cell suspension, whereas it is only 1.4 times for the adhesion method. Moreover, α6high/CD71low cells give rise to a thicker pluristratified epithelium with lower seeding density and display a low Ki67 positive cells number, showing that they have reached the balance between proliferation and differentiation. We clearly demonstrated that cells isolated by a rapid adherent method are not the same population as KSC isolated by flow cytometry following α6high/CD71low phenotype.
Collapse
Affiliation(s)
- Elodie Metral
- Gattefossé, 36 chemin de Genas, F-69800 Saint-Priest, France.
- Commissariat à l'énergie atomique et aux énergies alternatives (CEA)/Institut Nanosciences et cryogénie (INAC)/SYstèmes Moléculaires et nanoMatériaux pour l'Energie et la Santé (SyMMES)/Lésions des acides nucléiques (LAN), 17 avenue des martyrs, F-38054 Grenoble CEDEX, France.
- Hospices Civils de LYON (HCL)/Banque de Tissus et Cellules/Laboratoire des Substituts Cutanés, 5 place d'Arsonval, F-69000 Lyon, France.
- Department of Biological Sciences, University Grenoble Alpes, F-38000 Grenoble, France.
| | | | | | - Walid Rachidi
- Commissariat à l'énergie atomique et aux énergies alternatives (CEA)/Institut Nanosciences et cryogénie (INAC)/SYstèmes Moléculaires et nanoMatériaux pour l'Energie et la Santé (SyMMES)/Lésions des acides nucléiques (LAN), 17 avenue des martyrs, F-38054 Grenoble CEDEX, France.
- Department of Biological Sciences, University Grenoble Alpes, F-38000 Grenoble, France.
| | - Odile Damour
- Hospices Civils de LYON (HCL)/Banque de Tissus et Cellules/Laboratoire des Substituts Cutanés, 5 place d'Arsonval, F-69000 Lyon, France.
| |
Collapse
|
13
|
Konstantinidou C, Taraviras S, Pachnis V. Geminin prevents DNA damage in vagal neural crest cells to ensure normal enteric neurogenesis. BMC Biol 2016; 14:94. [PMID: 27776507 PMCID: PMC5075986 DOI: 10.1186/s12915-016-0314-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/23/2016] [Indexed: 12/29/2022] Open
Abstract
Background In vertebrate organisms, the neural crest (NC) gives rise to multipotential and highly migratory progenitors which are distributed throughout the embryo and generate, among other structures, the peripheral nervous system, including the intrinsic neuroglial networks of the gut, i.e. the enteric nervous system (ENS). The majority of enteric neurons and glia originate from vagal NC-derived progenitors which invade the foregut mesenchyme and migrate rostro-caudally to colonise the entire length of the gut. Although the migratory behaviour of NC cells has been studied extensively, it remains unclear how their properties and response to microenvironment change as they navigate through complex cellular terrains to reach their target embryonic sites. Results Using conditional gene inactivation in mice we demonstrate here that the cell cycle-dependent protein Geminin (Gem) is critical for the survival of ENS progenitors in a stage-dependent manner. Gem deletion in early ENS progenitors (prior to foregut invasion) resulted in cell-autonomous activation of DNA damage response and p53-dependent apoptosis, leading to severe intestinal aganglionosis. In contrast, ablation of Gem shortly after ENS progenitors had invaded the embryonic gut did not result in discernible survival or migratory deficits. In contrast to other developmental systems, we obtained no evidence for a role of Gem in commitment or differentiation of ENS lineages. The stage-dependent resistance of ENS progenitors to mutation-induced genotoxic stress was further supported by the enhanced survival of post gut invasion ENS lineages to γ-irradiation relative to their predecessors. Conclusions Our experiments demonstrate that, in mammals, NC-derived ENS lineages are sensitive to genotoxic stress in a stage-specific manner. Following gut invasion, ENS progenitors are distinctly resistant to Gem ablation and irradiation in comparison to their pre-enteric counterparts. These studies suggest that the microenvironment of the embryonic gut protects ENS progenitors and their progeny from genotoxic stress. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0314-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chrysoula Konstantinidou
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK.,Present address: MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, GR 26 500, Greece.
| | - Vassilis Pachnis
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK.
| |
Collapse
|
14
|
Niwa O, Barcellos-Hoff MH, Globus RK, Harrison JD, Hendry JH, Jacob P, Martin MT, Seed TM, Shay JW, Story MD, Suzuki K, Yamashita S. ICRP Publication 131: Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection. Ann ICRP 2016; 44:7-357. [PMID: 26637346 DOI: 10.1177/0146645315595585] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This report provides a review of stem cells/progenitor cells and their responses to ionising radiation in relation to issues relevant to stochastic effects of radiation that form a major part of the International Commission on Radiological Protection's system of radiological protection. Current information on stem cell characteristics, maintenance and renewal, evolution with age, location in stem cell 'niches', and radiosensitivity to acute and protracted exposures is presented in a series of substantial reviews as annexes concerning haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. This foundation of knowledge of stem cells is used in the main text of the report to provide a biological insight into issues such as the linear-no-threshold (LNT) model, cancer risk among tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. Knowledge of the biology and associated radiation biology of stem cells and progenitor cells is more developed in tissues that renew fairly rapidly, such as haematopoietic tissue, intestinal mucosa, and epidermis, although all the tissues considered here possess stem cell populations. Important features of stem cell maintenance, renewal, and response are the microenvironmental signals operating in the niche residence, for which a well-defined spatial location has been identified in some tissues. The identity of the target cell for carcinogenesis continues to point to the more primitive stem cell population that is mostly quiescent, and hence able to accumulate the protracted sequence of mutations necessary to result in malignancy. In addition, there is some potential for daughter progenitor cells to be target cells in particular cases, such as in haematopoietic tissue and in skin. Several biological processes could contribute to protecting stem cells from mutation accumulation: (a) accurate DNA repair; (b) rapidly induced death of injured stem cells; (c) retention of the DNA parental template strand during divisions in some tissue systems, so that mutations are passed to the daughter differentiating cells and not retained in the parental cell; and (d) stem cell competition, whereby undamaged stem cells outcompete damaged stem cells for residence in the niche. DNA repair mainly occurs within a few days of irradiation, while stem cell competition requires weeks or many months depending on the tissue type. The aforementioned processes may contribute to the differences in carcinogenic radiation risk values between tissues, and may help to explain why a rapidly replicating tissue such as small intestine is less prone to such risk. The processes also provide a mechanistic insight relevant to the LNT model, and the relative and absolute risk models. The radiobiological knowledge also provides a scientific insight into discussions of the dose and dose-rate effectiveness factor currently used in radiological protection guidelines. In addition, the biological information contributes potential reasons for the age-dependent sensitivity to radiation carcinogenesis, including the effects of in-utero exposure.
Collapse
|
15
|
Martin MT, Vulin A, Hendry JH. Human epidermal stem cells: Role in adverse skin reactions and carcinogenesis from radiation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:349-368. [PMID: 27919341 DOI: 10.1016/j.mrrev.2016.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 02/06/2023]
Abstract
In human skin, keratinopoiesis is based on a functional hierarchy among keratinocytes, with rare slow-cycling stem cells responsible for the long-term maintenance of the tissue through their self-renewal potential, and more differentiated daughter progenitor cells actively cycling to permit epidermal renewal and turn-over every month. Skin is a radio-responsive tissue, developing all types of radiation damage and pathologies, including early tissue reactions such as dysplasia and denudation in epidermis, and later fibrosis in the dermis and acanthosis in epidermis, with the TGF-beta 1 pathway as a known master switch. Also there is a risk of basal cell carcinoma, which arises from epidermal keratinocytes, notably after oncogenic events in PTCH1 or TP53 genes. This review will cover the mechanisms of adverse human skin reactions and carcinogenesis after various types of exposures to ionizing radiation, with comparison with animal data when necessary, and will discuss the possible role of stem cells and their progeny in the development of these disorders. The main endpoints presented are basal cell intrinsic radiosensitivity, genomic stability, individual factors of risk, dose specific responses, major molecular pathways involved and the cellular origin of skin reactions and cancer. Although major advances have been obtained in recent years, the precise implications of epidermal stem cells and their progeny in these processes are not yet fully characterized.
Collapse
Affiliation(s)
- Michèle T Martin
- CEA/DRF/IRCM/LGRK, 91057 Evry, France; INSERM U967, 92265 Fontenay aux Roses, Cedex, France; Université Paris-Diderot, Paris 7, France; Université Paris-Saclay, Paris 11, France.
| | - Adeline Vulin
- CEA/DRF/IRCM/LGRK, 91057 Evry, France; INSERM U967, 92265 Fontenay aux Roses, Cedex, France; Université Paris-Diderot, Paris 7, France; Université Paris-Saclay, Paris 11, France
| | - Jolyon H Hendry
- Christie Medical Physics and Engineering, Christie Hospital and University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Teye K, Numata S, Ishii N, Krol RP, Tsuchisaka A, Hamada T, Koga H, Karashima T, Ohata C, Tsuruta D, Saya H, Haftek M, Hashimoto T. Isolation of All CD44 Transcripts in Human Epidermis and Regulation of Their Expression by Various Agents. PLoS One 2016; 11:e0160952. [PMID: 27505250 PMCID: PMC4978388 DOI: 10.1371/journal.pone.0160952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/27/2016] [Indexed: 01/06/2023] Open
Abstract
CD44, a cell surface proteoglycan, is involved in many biological events. CD44 transcripts undergo complex alternative splicing, resulting in many functionally distinct isoforms. To date, however, the nature of these isoforms in human epidermis has not been adequately determined. In this study, we isolated all CD44 transcripts from normal human epidermis, and studied how their expressions are regulated. By RT-PCR, we found that a number of different CD44 transcripts were expressed in human epidermis, and we obtained all these transcripts from DNA bands in agarose and acrylamide gels by cloning. Detailed sequence analysis revealed 18 CD44 transcripts, 3 of which were novel. Next, we examined effects of 10 different agents on the expression of CD44 transcripts in cultured human keratinocytes, and found that several agents, particularly epidermal growth factor, hydrogen peroxide, phorbol 12-myristate 13-acetate, retinoic acid, calcium and fetal calf serum differently regulated their expressions in various patterns. Furthermore, normal and malignant keratinocytes were found to produce different CD44 transcripts upon serum stimulation and subsequent starvation, suggesting that specific CD44 isoforms are involved in tumorigenesis via different CD44-mediated biological pathways.
Collapse
Affiliation(s)
- Kwesi Teye
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Sanae Numata
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Norito Ishii
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Rafal P Krol
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Atsunari Tsuchisaka
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Takahiro Hamada
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Hiroshi Koga
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Tadashi Karashima
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Chika Ohata
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Marek Haftek
- University of Lyon 1, EA 4169 and CNRS, Lyon, France
| | - Takashi Hashimoto
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
17
|
The role of the microenvironment on the fate of adult stem cells. SCIENCE CHINA-LIFE SCIENCES 2015; 58:639-48. [PMID: 25985755 DOI: 10.1007/s11427-015-4865-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/02/2015] [Indexed: 12/13/2022]
Abstract
Adult stem cells (SCs) exist in all tissues that promote tissue growth, regeneration, and healing throughout life. The SC niche in which they reside provides signals that direct them to proliferate, differentiate, or remain dormant; these factors include neighboring cells, the extracellular matrix, soluble molecules, and physical stimuli. In disease and aging states, stable or transitory changes in the microenvironment can directly cause SC activation or inhibition in tissue healing as well as functional regulation. Here, we discuss the microenvironmental regulation of the behavior of SC and focus on plasticity approaches by which various environmental factors can enhance the function of SCs and more effectively direct the fate of SCs.
Collapse
|
18
|
1α,25(OH)2D3 inhibits FGF-2 release from oral squamous cell carcinoma cells through down-regulation of HBp17/FGFBP-1. In Vitro Cell Dev Biol Anim 2014; 50:802-6. [DOI: 10.1007/s11626-014-9787-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
|
19
|
Casey-Sawicki K, Zhang M, Kim S, Zhang A, Zhang SB, Zhang Z, Singh R, Yang S, Swarts S, Vidyasagar S, Zhang L, Zhang A, Okunieff P. A basic fibroblast growth factor analog for protection and mitigation against acute radiation syndromes. HEALTH PHYSICS 2014; 106:704-712. [PMID: 24776903 DOI: 10.1097/hp.0000000000000095] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The effects of fibroblast growth factors and their potential as broad-spectrum agents to treat and mitigate radiation injury have been studied extensively over the past two decades. This report shows that a peptide mimetic of basic fibroblast growth factor (FGF-P) protects and mitigates against acute radiation syndromes. FGF-P attenuates both sepsis and bleeding in a radiation-induced bone marrow syndrome model and reduces the severity of gastrointestinal and cutaneous syndromes; it should also mitigate combined injuries. FGF-2 and FGF-P induce little or no deleterious inflammation or vascular leakage, which distinguishes them from most other growth factors, angiogenic factors, and cytokines. Although recombinant FGFs have proven safe in several ongoing clinical trials, they are expensive to synthesize, can only be produced in limited quantity, and have limited shelf life. FGF-P mimics the advantageous features of FGF-2 without these disadvantages. This paper shows that FGF-P not only has the potential to be a potent yet safe broad-spectrum medical countermeasure that mitigates acute radiotoxicity but also holds promise for thermal burns, ischemic wound healing, tissue engineering, and stem-cell regeneration.
Collapse
Affiliation(s)
- Kate Casey-Sawicki
- *Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, FL; †BioPowerTech, 4734 Bluegrass Pkwy, Tuscaloosa, AL 35406; ‡Department of Pharmaceutics, University of Florida, College of Pharmacy, University of Florida, Gainesville, FL; §DiaCarta, LLC, Hayward, CA 94545
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Haley EM, Kim Y. The role of basic fibroblast growth factor in glioblastoma multiforme and glioblastoma stem cells and in their in vitro culture. Cancer Lett 2014; 346:1-5. [DOI: 10.1016/j.canlet.2013.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/17/2022]
|
21
|
Zachman DK, Leon RP, Das P, Goldman DC, Hamlin KL, Guha C, Fleming WH. Endothelial cells mitigate DNA damage and promote the regeneration of hematopoietic stem cells after radiation injury. Stem Cell Res 2013; 11:1013-21. [PMID: 23939266 DOI: 10.1016/j.scr.2013.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 06/25/2013] [Accepted: 07/06/2013] [Indexed: 11/16/2022] Open
Abstract
Endothelial cells (ECs) are an essential component of the hematopoietic microenvironment, which maintains and regulates hematopoietic stem cells (HSCs). Although ECs can support the regeneration of otherwise lethally-irradiated HSCs, the mechanisms are not well understood. To further understand this phenomenon, we studied HSC regeneration from irradiated bone marrow using co-culture with human aortic ECs (HAECs). Co-culture with HAECs induced a 24-fold expansion of long-term HSCs (CD150(+), lineage(lo), Sca-1(+), c-Kit(+); CD150(+)LSK cells) in vitro. These cells gave rise to functional hematopoietic stem and progenitor cells (HSPCs) with colony-forming activity, multilineage reconstitution and serial transplantation potential. Furthermore, HAECs significantly reduced DNA damage in irradiated LSK cells within 24h. Remarkably, we were able to delay the exposure of irradiated bone marrow to the regenerative, HAEC-derived signals for up to 48h and still rescue functional HSCs. G-CSF is the gold standard for promoting hematopoietic regeneration in vivo. However, when compared to HAECs, in vitro G-CSF treatment promoted lineage differentiation and regenerated 5-fold fewer CD150(+)LSK cells. Together, our results show that HAECs are powerful, direct mitigators of HSC injury and DNA damage. Identification of the HAEC-derived factors that rescue HSCs may lead to improved therapies for hematopoietic regeneration after radiation injury.
Collapse
Affiliation(s)
- Derek K Zachman
- Papé Family Pediatric Research Institute, Oregon Stem Cell Center, Department of Pediatrics, Portland, OR, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Marie M, Hafner S, Moratille S, Vaigot P, Mine S, Rigaud O, Martin MT. FGF2 mediates DNA repair in epidermoid carcinoma cells exposed to ionizing radiation. Int J Radiat Biol 2012; 88:688-93. [PMID: 22732006 PMCID: PMC3477890 DOI: 10.3109/09553002.2012.706358] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose Fibroblast growth factor 2 (FGF2) is a well-known survival factor. However, its role in DNA repair is poorly documented. The present study was designed to investigate in epidermoid carcinoma cells the potential role of FGF2 in DNA repair. Materials and methods The side population (SP) with cancer stem cell-like properties and the main population (MP) were isolated from human A431 squamous carcinoma cells. Radiation-induced DNA damage and repair were assessed using the alkaline comet assay. FGF2 expression was quantified by enzyme linked immunosorbent assay (ELISA). Results SP cells exhibited rapid repair of radiation induced DNA damage and a high constitutive level of nuclear FGF2. Blocking FGF2 signaling abrogated the rapid DNA repair. In contrast, in MP cells, a slower repair of damage was associated with low basal expression of FGF2. Moreover, the addition of exogenous FGF2 accelerated DNA repair in MP cells. When irradiated, SP cells secreted FGF2, whereas MP cells did not. Conclusions FGF2 was found to mediate DNA repair in epidermoid carcinoma cells. We postulate that carcinoma stem cells would be intrinsically primed to rapidly repair DNA damage by a high constitutive level of nuclear FGF2. In contrast, the main population with a low FGF2 content exhibits a lower repair rate which can be increased by exogenous FGF2.
Collapse
Affiliation(s)
- Mélanie Marie
- CEA, iRCM, Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Evry, France
| | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Sotiropoulou PA, Blanpain C. Development and homeostasis of the skin epidermis. Cold Spring Harb Perspect Biol 2012; 4:a008383. [PMID: 22751151 DOI: 10.1101/cshperspect.a008383] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The skin epidermis is a stratified epithelium that forms a barrier that protects animals from dehydration, mechanical stress, and infections. The epidermis encompasses different appendages, such as the hair follicle (HF), the sebaceous gland (SG), the sweat gland, and the touch dome, that are essential for thermoregulation, sensing the environment, and influencing social behavior. The epidermis undergoes a constant turnover and distinct stem cells (SCs) are responsible for the homeostasis of the different epidermal compartments. Deregulation of the signaling pathways controlling the balance between renewal and differentiation often leads to cancer formation.
Collapse
|
25
|
Fortunel NO, Martin MT. Cellular organization of the human epidermal basal layer: clues sustaining a hierarchical model. Int J Radiat Biol 2012; 88:677-81. [PMID: 22730916 DOI: 10.3109/09553002.2012.706359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The basal layer of adult interfollicular epidermis is a highly dynamic cellular system, ensuring the continuous physiological renewal of this tissue, as well as regenerative processes in the context of wound healing. In human skin, despite its major importance for the maintenance of epidermal homeostasis and regenerative processes, the functional organization of basal keratinocytes is still debated today. Progress in this understanding is closely linked to the development of research models enabling investigations of the different coexisting basal keratinocyte subpopulations, to address their specific functional and molecular characteristics, particularly through clonal analyses. We review here different strategies that have led to significant advances in the knowledge of human basal keratinocyte properties, at both phenotypic and functional levels. CONCLUSIONS Convincing clues supporting a hierarchical organization of the keratinocyte basal layer in humans have emerged from the different functional studies. In particular, the hierarchical model constitutes a straight forward interpretation of the clearly non-equivalent potentialities observed when basal keratinocytes were studied individually in a cell culture context.
Collapse
Affiliation(s)
- Nicolas O Fortunel
- Alternative Energies and Atomic Energy Commission, Institute of Cellular and Molecular Radiobiology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Evry Cedex, France
| | | |
Collapse
|
26
|
Kinoshita N, Tsuda M, Hamuy R, Nakashima M, Nakamura-Kurashige T, Matsuu-Matsuyama M, Hirano A, Akita S. The usefulness of basic fibroblast growth factor for radiation-exposed tissue. Wound Repair Regen 2012; 20:91-102. [PMID: 22276588 DOI: 10.1111/j.1524-475x.2011.00758.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A high dose of ionizing external radiation damage to the skin and soft tissue results in changes in function as well as in the general body condition. Once radiation surpasses the tissue safety or survival level, progressive alteration in the damaged tissue results in tissue loss and then flap loss. Local expression and action of stem cells or local growth factors in the irradiated tissue is mitigated, and external administration is sought to investigate the possibility of skin and soft tissue survival after an elevating flap. Basic fibroblast growth factor (bFGF) is primarily considered as a potent angiogenic growth factor. In burns, resurfacing with a dermal component is required, and bFGF stimulates wound healing and enhances human skin-derived mesenchymal stem cells under serum-free conditions in a dose-dependent manner. Thirty-five male, 4- to 8-week-old CLAWN miniature pigs received radiation exposure to assess the effectiveness of bFGF in terms of the progressive clinical course relevant to human skin and soft tissue. At 2 weeks following 10-Gy irradiation, tissue was preserved in the group receiving subcutaneous placement of a round-type tissue expander and bFGF. The expander plus bFGF group demonstrated significantly greater dermo-epidermal proliferation than the radiation alone, radiation plus bFGF, or expander plus radiation plus vehicle-solution groups, and new blood vessel formation was significantly increased in the expander tissue with bFGF after irradiation (p < 0.01). Electron microscopy revealed that tissue with expander and bFGF maintained more stable skin adnexae with preserved intact epidermis and dermis. Thus, bFGF improved and maintained the tissue viability after immediate irradiation in the skin and soft tissue.
Collapse
Affiliation(s)
- Naoshi Kinoshita
- Division of Plastic and Reconstructive Surgery, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Firat E, Gaedicke S, Tsurumi C, Esser N, Weyerbrock A, Niedermann G. Delayed cell death associated with mitotic catastrophe in γ-irradiated stem-like glioma cells. Radiat Oncol 2011; 6:71. [PMID: 21663643 PMCID: PMC3130665 DOI: 10.1186/1748-717x-6-71] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 06/10/2011] [Indexed: 01/08/2023] Open
Abstract
Background and Purpose Stem-like tumor cells are regarded as highly resistant to ionizing radiation (IR). Previous studies have focused on apoptosis early after irradiation, and the apoptosis resistance observed has been attributed to reduced DNA damage or enhanced DNA repair compared to non-stem tumor cells. Here, early and late radioresponse of patient-derived stem-like glioma cells (SLGCs) and differentiated cells directly derived from them were examined for cell death mode and the influence of stem cell-specific growth factors. Materials and methods Primary SLGCs were propagated in serum-free medium with the stem-cell mitogens epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2). Differentiation was induced by serum-containing medium without EGF and FGF. Radiation sensitivity was evaluated by assessing proliferation, clonogenic survival, apoptosis, and mitotic catastrophe. DNA damage-associated γH2AX as well as p53 and p21 expression were determined by Western blots. Results SLGCs failed to apoptose in the first 4 days after irradiation even at high single doses up to 10 Gy, but we observed substantial cell death later than 4 days postirradiation in 3 of 6 SLGC lines treated with 5 or 10 Gy. This delayed cell death was observed in 3 of the 4 SLGC lines with nonfunctional p53, was associated with mitotic catastrophe and occurred via apoptosis. The early apoptosis resistance of the SLGCs was associated with lower γH2AX compared to differentiated cells, but we found that the stem-cell culture cytokines EGF plus FGF-2 strongly reduce γH2AX levels. Nonetheless, in two p53-deficient SLGC lines examined γIR-induced apoptosis even correlated with EGF/FGF-induced proliferation and mitotic catastrophe. In a line containing CD133-positive and -negative stem-like cells, the CD133-positive cells proliferated faster and underwent more γIR-induced mitotic catastrophe. Conclusions Our results suggest the importance of delayed apoptosis, associated mitotic catastrophe, and cellular proliferation for γIR-induced death of p53-deficient SLGCs. This may have therapeutic implications. We further show that the stem-cell culture cytokines EGF plus FGF-2 activate DNA repair and thus confound in vitro comparisons of DNA damage repair between stem-like and more differentiated tumor cells.
Collapse
Affiliation(s)
- Elke Firat
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
The existence of "tumor-initiating cells" (TICs) has been a topic of heated debate for the last few years within the field of cancer biology. Their continuous characterization in a variety of solid tumors has led to an abundance of evidence supporting their existence. TICs are believed to be responsible for resistance against conventional treatment regimes of chemotherapy and radiation, ultimately leading to metastasis and patient demise. This review summarizes DNA repair mechanism(s) and their role in the maintenance and regulation of stem cells. There is evidence supporting the hypothesis that TICs, similar to embryonic stem (ES) cells and hematopoietic stem cells (HSCs), display an increase in their ability to survive genotoxic stress and injury. Mechanistically, the ability of ES cells, HSCs and TICs to survive under stressful conditions can be attributed to an increase in the efficiency at which these cells undergo DNA repair. Furthermore, the data presented in this review summarize the results found by our lab and others demonstrating that TICs have an increase in their genomic stability, which can allow for TIC survival under conditions such as anticancer treatments, while the bulk population of tumor cells dies. We believe that these data will greatly impact the development and design of future therapies being engineered to target and eradicate this highly aggressive cancer cell population.
Collapse
Affiliation(s)
- Lesley A. Mathews
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute at Frederick, 1050 Boyles St., Building 560, Room 21-81, Frederick, MD 21702 USA
| | - Stephanie M. Cabarcas
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute at Frederick, 1050 Boyles St., Building 560, Room 21-81, Frederick, MD 21702 USA
| | - William L. Farrar
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute at Frederick, 1050 Boyles St., Building 560, Room 21-81, Frederick, MD 21702 USA
| |
Collapse
|
29
|
|