1
|
Baur K, Abdullah Y, Mandl C, Hölzl‐Wenig G, Shi Y, Edelkraut U, Khatri P, Hagenston AM, Irmler M, Beckers J, Ciccolini F. A novel stem cell type at the basal side of the subventricular zone maintains adult neurogenesis. EMBO Rep 2022; 23:e54078. [PMID: 35861333 PMCID: PMC9442324 DOI: 10.15252/embr.202154078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Katja Baur
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Yomn Abdullah
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Claudia Mandl
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Gabriele Hölzl‐Wenig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Yan Shi
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Udo Edelkraut
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Priti Khatri
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Anna M Hagenston
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| | - Martin Irmler
- Helmholtz Zentrum München GmbH Institute of Experimental Genetics Neuherberg Germany
| | - Johannes Beckers
- Helmholtz Zentrum München GmbH Institute of Experimental Genetics Neuherberg Germany
- Technische Universität München Chair of Experimental Genetics Weihenstephan Germany
- Deutsches Zentrum für Diabetesforschung e.V. (DZD) Neuherberg Germany
| | - Francesca Ciccolini
- Department of Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg University Heidelberg Germany
| |
Collapse
|
2
|
Rajan A, Ostgaard CM, Lee CY. Regulation of Neural Stem Cell Competency and Commitment during Indirect Neurogenesis. Int J Mol Sci 2021; 22:12871. [PMID: 34884676 PMCID: PMC8657492 DOI: 10.3390/ijms222312871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
Indirect neurogenesis, during which neural stem cells generate neurons through intermediate progenitors, drives the evolution of lissencephalic brains to gyrencephalic brains. The mechanisms that specify intermediate progenitor identity and that regulate stem cell competency to generate intermediate progenitors remain poorly understood despite their roles in indirect neurogenesis. Well-characterized lineage hierarchy and available powerful genetic tools for manipulating gene functions make fruit fly neural stem cell (neuroblast) lineages an excellent in vivo paradigm for investigating the mechanisms that regulate neurogenesis. Type II neuroblasts in fly larval brains repeatedly undergo asymmetric divisions to generate intermediate neural progenitors (INPs) that undergo limited proliferation to increase the number of neurons generated per stem cell division. Here, we review key regulatory genes and the mechanisms by which they promote the specification and generation of INPs, safeguarding the indirect generation of neurons during fly larval brain neurogenesis. Homologs of these regulators of INPs have been shown to play important roles in regulating brain development in vertebrates. Insight into the precise regulation of intermediate progenitors will likely improve our understanding of the control of indirect neurogenesis during brain development and brain evolution.
Collapse
Affiliation(s)
- Arjun Rajan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (A.R.); (C.M.O.)
| | - Cyrina M. Ostgaard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (A.R.); (C.M.O.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Cheng-Yu Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (A.R.); (C.M.O.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Division of Genetic Medicine, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Nam HS, Capecchi MR. Lrig1 expression prospectively identifies stem cells in the ventricular-subventricular zone that are neurogenic throughout adult life. Neural Dev 2020; 15:3. [PMID: 32183906 PMCID: PMC7077007 DOI: 10.1186/s13064-020-00139-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1) regulates stem cell quiescence. As a marker, it identifies stem cells in multiple organs of the mouse. We had detected Lrig1 expression in cultured Id1high neural stem cells obtained from the lateral walls lining the lateral ventricles of the adult mouse brain. Thus, we investigated whether Lrig1 expression also identifies stem cells in that region in vivo. METHODS Publicly available single cell RNA sequencing datasets were analyzed with Seurat and Monocle. The Lrig1+ cells were lineage traced in vivo with a novel non-disruptive co-translational Lrig1T2A-iCreERT2 reporter mouse line. RESULTS Analysis of single cell RNA sequencing datasets suggested Lrig1 was highly expressed in the most primitive stem cells of the neurogenic lineage in the lateral wall of the adult mouse brain. In support of their neurogenic stem cell identity, cell cycle entry was only observed in two morphologically distinguishable Lrig1+ cells that could also be induced into activation by Ara-C infusion. The Lrig1+ neurogenic stem cells were observed throughout the lateral wall. Neuroblasts and neurons were lineage traced from Lrig1+ neurogenic stem cells at 1 year after labeling. CONCLUSIONS We identified Lrig1 as a marker of long-term neurogenic stem cells in the lateral wall of the mouse brain. Lrig1 expression revealed two morphotypes of the Lrig1+ cells that function as long-term neurogenic stem cells. The spatial distribution of the Lrig1+ neurogenic stem cells suggested all subtypes of the adult neurogenic stem cells were labeled.
Collapse
Affiliation(s)
- Hyung-Song Nam
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112-5331, USA.
| | - Mario R Capecchi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112-5331, USA
| |
Collapse
|
4
|
Hakes AE, Brand AH. Tailless/TLX reverts intermediate neural progenitors to stem cells driving tumourigenesis via repression of asense/ASCL1. eLife 2020; 9:e53377. [PMID: 32073402 PMCID: PMC7058384 DOI: 10.7554/elife.53377] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
Understanding the sequence of events leading to cancer relies in large part upon identifying the tumour cell of origin. Glioblastoma is the most malignant brain cancer but the early stages of disease progression remain elusive. Neural lineages have been implicated as cells of origin, as have glia. Interestingly, high levels of the neural stem cell regulator TLX correlate with poor patient prognosis. Here we show that high levels of the Drosophila TLX homologue, Tailless, initiate tumourigenesis by reverting intermediate neural progenitors to a stem cell state. Strikingly, we could block tumour formation completely by re-expressing Asense (homologue of human ASCL1), which we show is a direct target of Tailless. Our results predict that expression of TLX and ASCL1 should be mutually exclusive in glioblastoma, which was verified in single-cell RNA-seq of human glioblastoma samples. Counteracting high TLX is a potential therapeutic strategy for suppressing tumours originating from intermediate progenitor cells.
Collapse
Affiliation(s)
- Anna E Hakes
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
5
|
Luque-Molina I, Shi Y, Abdullah Y, Monaco S, Hölzl-Wenig G, Mandl C, Ciccolini F. The Orphan Nuclear Receptor TLX Represses Hes1 Expression, Thereby Affecting NOTCH Signaling and Lineage Progression in the Adult SEZ. Stem Cell Reports 2019; 13:132-146. [PMID: 31178417 PMCID: PMC6626847 DOI: 10.1016/j.stemcr.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022] Open
Abstract
In the adult subependymal zone (SEZ), neural stem cells (NSCs) apically contacting the lateral ventricle on activation generate progenitors proliferating at the niche basal side. We here show that Tailless (TLX) coordinates NSC activation and basal progenitor proliferation by repressing the NOTCH effector Hes1. Consistent with this, besides quiescence Hes1 expression also increases on Tlx mutation. Since HES1 levels are higher at the apical SEZ, NOTCH activation is increased in Tlx−/− NSCs, but not in surrounding basal progenitors. Underscoring the causative relationship between higher HES1/NOTCH and increased quiescence, downregulation of Hes1 only in mutant NSCs normalizes NOTCH activation and resumes proliferation and neurogenesis not only in NSCs, but especially in basal progenitors. Since pharmacological blockade of NOTCH signaling also promotes proliferation of basal progenitors, we conclude that TLX, by repressing Hes1 expression, counteracts quiescence and NOTCH activation in NSCs, thereby relieving NOTCH-mediated lateral inhibition of proliferation in basal progenitors. TLX autonomously controls quiescence in apical NSCs by repressing Hes1 TLX controls basal progenitor proliferation via NOTCH-mediated lateral inhibition Downregulation of Hes1 in apical Tlx−/− NSCs resumes proliferation and neurogenesis
Collapse
Affiliation(s)
- Inma Luque-Molina
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Yan Shi
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Yomn Abdullah
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Sara Monaco
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Gabriele Hölzl-Wenig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Claudia Mandl
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Francesca Ciccolini
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| |
Collapse
|
6
|
Gkikas D, Tsampoula M, Politis PK. Nuclear receptors in neural stem/progenitor cell homeostasis. Cell Mol Life Sci 2017; 74:4097-4120. [PMID: 28638936 PMCID: PMC11107725 DOI: 10.1007/s00018-017-2571-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
Abstract
In the central nervous system, embryonic and adult neural stem/progenitor cells (NSCs) generate the enormous variety and huge numbers of neuronal and glial cells that provide structural and functional support in the brain and spinal cord. Over the last decades, nuclear receptors and their natural ligands have emerged as critical regulators of NSC homeostasis during embryonic development and adult life. Furthermore, substantial progress has been achieved towards elucidating the molecular mechanisms of nuclear receptors action in proliferative and differentiation capacities of NSCs. Aberrant expression or function of nuclear receptors in NSCs also contributes to the pathogenesis of various nervous system diseases. Here, we review recent advances in our understanding of the regulatory roles of steroid, non-steroid, and orphan nuclear receptors in NSC fate decisions. These studies establish nuclear receptors as key therapeutic targets in brain diseases.
Collapse
Affiliation(s)
- Dimitrios Gkikas
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Matina Tsampoula
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece.
| |
Collapse
|
7
|
Luque-Molina I, Khatri P, Schmidt-Edelkraut U, Simeonova IK, Hölzl-Wenig G, Mandl C, Ciccolini F. Bone Morphogenetic Protein Promotes Lewis X Stage-Specific Embryonic Antigen 1 Expression Thereby Interfering with Neural Precursor and Stem Cell Proliferation. Stem Cells 2017; 35:2417-2429. [PMID: 28869691 DOI: 10.1002/stem.2701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/31/2017] [Accepted: 08/14/2017] [Indexed: 01/17/2023]
Abstract
The glycoprotein Prominin-1 and the carbohydrate Lewis X stage-specific embryonic antigen 1 (LeX-SSEA1) both have been extensively used as cell surface markers to purify neural stem cells (NSCs). While Prominin-1 labels a specialized membrane region in NSCs and ependymal cells, the specificity of LeX-SSEA1 expression and its biological significance are still unknown. To address these issues, we have here monitored the expression of the carbohydrate in neonatal and adult NSCs and in their progeny. Our results show that the percentage of immunopositive cells and the levels of LeX-SSEA1 immunoreactivity both increase with postnatal age across all stages of the neural lineage. This is associated with decreased proliferation in precursors including NSCs, which accumulate the carbohydrate at the cell surface while remaining quiescent. Exposure of precursors to bone morphogenetic protein (BMP) increases LEX-SSEA1 expression, which promotes cell cycle withdrawal by a mechanism involving LeX-SSEA1-mediated interaction at the cell surface. Conversely, interference with either BMP signaling or with LeX-SSEA1 promotes proliferation to a similar degree. Thus, in the postnatal germinal niche, the expression of LeX-SSEA1 increases with age and exposure to BMP signaling, thereby downregulating the proliferation of subependymal zone precursors including NSCs. Stem Cells 2017;35:2417-2429.
Collapse
Affiliation(s)
- Inma Luque-Molina
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Priti Khatri
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Udo Schmidt-Edelkraut
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Ina K Simeonova
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Gabriele Hölzl-Wenig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Claudi Mandl
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Francesca Ciccolini
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Maheu ME, Ressler KJ. Developmental pathway genes and neural plasticity underlying emotional learning and stress-related disorders. Learn Mem 2017; 24:492-501. [PMID: 28814475 PMCID: PMC5580529 DOI: 10.1101/lm.044271.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/18/2017] [Indexed: 11/24/2022]
Abstract
The manipulation of neural plasticity as a means of intervening in the onset and progression of stress-related disorders retains its appeal for many researchers, despite our limited success in translating such interventions from the laboratory to the clinic. Given the challenges of identifying individual genetic variants that confer increased risk for illnesses like depression and post-traumatic stress disorder, some have turned their attention instead to focusing on so-called "master regulators" of plasticity that may provide a means of controlling these potentially impaired processes in psychiatric illnesses. The mammalian homolog of Tailless (TLX), Wnt, and the homeoprotein Otx2 have all been proposed to constitute master regulators of different forms of plasticity which have, in turn, each been implicated in learning and stress-related disorders. In the present review, we provide an overview of the changing distribution of these genes and their roles both during development and in the adult brain. We further discuss how their distinct expression profiles provide clues as to their function, and may inform their suitability as candidate drug targets in the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Marissa E Maheu
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA
| |
Collapse
|
9
|
|
10
|
Sobhan PK, Zhai Q, Green LC, Hansford LM, Funa K. ASK1 regulates the survival of neuroblastoma cells by interacting with TLX and stabilizing HIF-1α. Cell Signal 2016; 30:104-117. [PMID: 27890558 DOI: 10.1016/j.cellsig.2016.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
Elevated expression of TLX (also called as NR2E1) in neuroblastoma (NB) correlates with unfavorable prognosis, and TLX is required for self-renewal of NB cells. Knockdown of TLX has been shown to reduce the NB sphere-forming ability. ASK1 (MAP3K5) and TLX expression are both enhanced in SP (side population) NB and patient-derived primary NB sphere cell lines, but the majority of non-SP NB lines express lower ASK1 expression. We found that ASK1 phosphorylated and stabilized TLX, which led induction of HIF-1α, and its downstream VEGF-A in an Akt dependent manner. In depleting ASK1 upon hypoxia, TLX decreased and the apoptosis ratio of NB cells was enhanced, while low-ASK1-expressing NB cell lines were refractory in TUNEL assay by using flow cytometry. Interestingly, primary NB spheres cell lines express only high levels of active pASK1Thr-838 but the established cell lines expressed inhibitory pASK1Ser-966, and both could be targeted by ASK1 depletion. We report a novel pro-survival role of ASK1 in the tumorigenic NB cell populations, which may be applied as a therapeutic target, inducing apoptosis specifically in cancer stem cells.
Collapse
Affiliation(s)
- Praveen K Sobhan
- Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE 405 30 Gothenburg, Sweden.
| | - Qiwei Zhai
- Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE 405 30 Gothenburg, Sweden.
| | - Lydia C Green
- Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE 405 30 Gothenburg, Sweden.
| | - Loen M Hansford
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, University of Toronto, Toronto, Canada.
| | - Keiko Funa
- Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE 405 30 Gothenburg, Sweden; Oncology Laboratory, Department of Pathology, Sahlgrenska University Hospital, SE 413 45 Gothenburg, Sweden.
| |
Collapse
|
11
|
Li Y, Schmidt-Edelkraut U, Poetz F, Oliva I, Mandl C, Hölzl-Wenig G, Schönig K, Bartsch D, Ciccolini F. γ-Aminobutyric A receptor (GABA(A)R) regulates aquaporin 4 expression in the subependymal zone: relevance to neural precursors and water exchange. J Biol Chem 2014; 290:4343-55. [PMID: 25540202 DOI: 10.1074/jbc.m114.618686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Activation of γ-aminobutyric A receptors (GABA(A)Rs) in the subependymal zone (SEZ) induces hyperpolarization and osmotic swelling in precursors, thereby promoting surface expression of the epidermal growth factor receptor (EGFR) and cell cycle entry. However, the mechanisms underlying the GABAergic modulation of cell swelling are unclear. Here, we show that GABA(A)Rs colocalize with the water channel aquaporin (AQP) 4 in prominin-1 immunopositive (P(+)) precursors in the postnatal SEZ, which include neural stem cells. GABA(A)R signaling promotes AQP4 expression by decreasing serine phosphorylation associated with the water channel. The modulation of AQP4 expression by GABA(A)R signaling is key to its effect on cell swelling and EGFR expression. In addition, GABA(A)R function also affects the ability of neural precursors to swell in response to an osmotic challenge in vitro and in vivo. Thus, the regulation of AQP4 by GABA(A)Rs is involved in controlling activation of neural stem cells and water exchange dynamics in the SEZ.
Collapse
Affiliation(s)
- Yuting Li
- From the Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg and
| | - Udo Schmidt-Edelkraut
- From the Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg and
| | - Fabian Poetz
- From the Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg and
| | - Ilaria Oliva
- From the Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg and
| | - Claudia Mandl
- From the Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg and
| | - Gabriele Hölzl-Wenig
- From the Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg and
| | - Kai Schönig
- the Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5 Mannheim, Germany
| | - Dusan Bartsch
- the Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5 Mannheim, Germany
| | - Francesca Ciccolini
- From the Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg and
| |
Collapse
|
12
|
Parlato R, Mandl C, Hölzl-Wenig G, Liss B, Tucker KL, Ciccolini F. Regulation of proliferation and histone acetylation in embryonic neural precursors by CREB/CREM signaling. NEUROGENESIS 2014; 1:e970883. [PMID: 27504469 PMCID: PMC4973597 DOI: 10.4161/23262125.2014.970883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/05/2014] [Accepted: 09/26/2014] [Indexed: 12/26/2022]
Abstract
The transcription factor CREB (cAMP-response element binding protein) regulates differentiation, migration, survival and activity-dependent gene expression in the developing and mature nervous system. However, its specific role in the proliferation of embryonic neural progenitors is still not completely understood. Here we investigated how CREB regulates proliferation of mouse embryonic neural progenitors by a conditional mutant lacking Creb gene in neural progenitors. In parallel, we explored possible compensatory effects by the genetic ablation of another member of the same gene family, the cAMP-responsive element modulator (Crem). We show that CREB loss differentially impaired the proliferation, clonogenic potential and self-renewal of precursors derived from the ganglionic eminence (GE), in comparison to those derived from the cortex. This phenotype was associated with a specific reduction of histone acetylation in the GE of CREB mutant mice, and this reduction was rescued in vivo by inhibition of histone deacetylation. These observations indicate that the impaired proliferation could be caused by a reduced acetyltransferase activity in Creb conditional knock-out mice. These findings support a crucial role of CREB in controlling embryonic neurogenesis and propose a novel mechanism by which CREB regulates embryonic neural development.
Collapse
Affiliation(s)
- Rosanna Parlato
- Institute of Applied Physiology; University of Ulm; Ulm, Germany; Dept. of Molecular Biology of the Cell I; DKFZ-ZMBH Alliance; German Cancer Research Center; Heidelberg, Germany; Institute of Anatomy and Cell Biology; Interdisciplinary Center for Neurosciences (IZN); University of Heidelberg; Heidelberg, Germany
| | - Claudia Mandl
- Department of Neurobiology; Interdisciplinary Center for Neurosciences (IZN); University of Heidelberg ; Heidelberg, Germany
| | - Gabriele Hölzl-Wenig
- Department of Neurobiology; Interdisciplinary Center for Neurosciences (IZN); University of Heidelberg ; Heidelberg, Germany
| | - Birgit Liss
- Institute of Applied Physiology; University of Ulm ; Ulm, Germany
| | - Kerry L Tucker
- Institute of Anatomy and Cell Biology; Interdisciplinary Center for Neurosciences (IZN); University of Heidelberg; Heidelberg, Germany; Kerry L Tucker's current affiliation is the Center for Excellence in the Neurosciences, Dept. of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Francesca Ciccolini
- Department of Neurobiology; Interdisciplinary Center for Neurosciences (IZN); University of Heidelberg ; Heidelberg, Germany
| |
Collapse
|
13
|
Sun E, Shi Y. MicroRNAs: Small molecules with big roles in neurodevelopment and diseases. Exp Neurol 2014; 268:46-53. [PMID: 25128264 DOI: 10.1016/j.expneurol.2014.08.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/29/2014] [Accepted: 08/05/2014] [Indexed: 01/13/2023]
Abstract
MicroRNAs (miRNAs) are single-stranded, non-coding RNA molecules that play important roles in the development and functions of the brain. Extensive studies have revealed critical roles for miRNAs in brain development and function. Dysregulation or altered expression of miRNAs is associated with abnormal brain development and pathogenesis of neurodevelopmental diseases. This review serves to highlight the versatile roles of these small RNA molecules in normal brain development and their association with neurodevelopmental disorders, in particular, two closely related neuropsychiatric disorders of neurodevelopmental origin, schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Emily Sun
- Department of Neurosciences, Cancer Center, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Yanhong Shi
- Department of Neurosciences, Cancer Center, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
14
|
Islam MM, Zhang CL. TLX: A master regulator for neural stem cell maintenance and neurogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:210-6. [PMID: 24930777 DOI: 10.1016/j.bbagrm.2014.06.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/22/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
The orphan nuclear receptor TLX, also known as NR2E1, is an essential regulator of neural stem cell (NSC) self-renewal, maintenance, and neurogenesis. In vertebrates, TLX is specifically localized to the neurogenic regions of the forebrain and retina throughout development and adulthood. TLX regulates the expression of genes involved in multiple pathways, such as the cell cycle, DNA replication, and cell adhesion. These roles are primarily performed through the transcriptional repression or activation of downstream target genes. Emerging evidence suggests that the misregulation of TLX might play a role in the onset and progression of human neurological disorders making this factor an ideal therapeutic target. Here, we review the current understanding of TLX function, expression, regulation, and activity significant to NSC maintenance, adult neurogenesis, and brain plasticity. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- Mohammed M Islam
- Department of Molecular Biology, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, 6000 Harry Hines Blvd., Dallas, TX 75390, USA.
| |
Collapse
|
15
|
Qin S, Niu W, Iqbal N, Smith DK, Zhang CL. Orphan nuclear receptor TLX regulates astrogenesis by modulating BMP signaling. Front Neurosci 2014; 8:74. [PMID: 24782704 PMCID: PMC3989729 DOI: 10.3389/fnins.2014.00074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/26/2014] [Indexed: 01/17/2023] Open
Abstract
Neural stem cells (NSCs) are self-renewing multipotent progenitors that generate both neurons and glia. The precise control of NSC behavior is fundamental to the architecture and function of the central nervous system. We previously demonstrated that the orphan nuclear receptor TLX is required for postnatal NSC activation and neurogenesis in the neurogenic niche. Here, we show that TLX modulates bone morphogenetic protein (BMP)-SMAD signaling to control the timing of postnatal astrogenesis. Genes involved in the BMP signaling pathway, such as Bmp4, Hes1, and Id3, are upregulated in postnatal brains lacking Tlx. Chromatin immunoprecipitation and electrophoretic mobility shift assays reveal that TLX can directly bind the enhancer region of Bmp4. In accordance with elevated BMP signaling, the downstream effectors SMAD1/5/8 are activated by phosphorylation in Tlx mutant mice. Consequently, Tlx mutant brains exhibit an early appearance and increased number of astrocytes with marker expression of glial fibrillary acidic protein (GFAP) and S100B. Taken together, these results suggest that TLX tightly controls postnatal astrogenesis through the modulation of BMP-SMAD signaling pathway activity.
Collapse
Affiliation(s)
- Song Qin
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai, China ; Department of Molecular Biology, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Wenze Niu
- Department of Molecular Biology, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Nida Iqbal
- Department of Molecular Biology, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Derek K Smith
- Department of Molecular Biology, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
16
|
Carrillo-García C, Prochnow S, Simeonova IK, Strelau J, Hölzl-Wenig G, Mandl C, Unsicker K, von Bohlen Und Halbach O, Ciccolini F. Growth/differentiation factor 15 promotes EGFR signalling, and regulates proliferation and migration in the hippocampus of neonatal and young adult mice. Development 2014; 141:773-83. [PMID: 24496615 PMCID: PMC3930467 DOI: 10.1242/dev.096131] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The activation of epidermal growth factor receptor (EGFR) affects multiple aspects of neural precursor behaviour, including proliferation and migration. Telencephalic precursors acquire EGF responsiveness and upregulate EGFR expression at late stages of development. The events regulating this process and its significance are still unclear. We here show that in the developing and postnatal hippocampus (HP), growth/differentiation factor (GDF) 15 and EGFR are co-expressed in primitive precursors as well as in more differentiated cells. We also provide evidence that GDF15 promotes responsiveness to EGF and EGFR expression in hippocampal precursors through a mechanism that requires active CXC chemokine receptor (CXCR) 4. Besides EGFR expression, GDF15 ablation also leads to decreased proliferation and migration. In particular, lack of GDF15 impairs both processes in the cornu ammonis (CA) 1 and only proliferation in the dentate gyrus (DG). Importantly, migration and proliferation in the mutant HP were altered only perinatally, when EGFR expression was also affected. These data suggest that GDF15 regulates migration and proliferation by promoting EGFR signalling in the perinatal HP and represent a first description of a functional role for GDF15 in the developing telencephalon.
Collapse
Affiliation(s)
- Carmen Carrillo-García
- Department of Neurobiology, Interdisciplinary Centre for Neuroscience (IZN), Ruprecht-Karls University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Proliferation and cilia dynamics in neural stem cells prospectively isolated from the SEZ. Sci Rep 2014; 4:3803. [PMID: 24448162 PMCID: PMC3898048 DOI: 10.1038/srep03803] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 12/16/2013] [Indexed: 01/10/2023] Open
Abstract
Neural stem cells (NSCs) generate new neurons in vivo and in vitro throughout adulthood and therefore are physiologically and clinically relevant. Unveiling the mechanisms regulating the lineage progression from NSCs to newborn neurons is critical for the transition from basic research to clinical application. However, the direct analysis of NSCs and their progeny is still elusive due to the problematic identification of the cells. We here describe the isolation of highly purified genetically unaltered NSCs and transit-amplifying precursors (TAPs) from the adult subependymal zone (SEZ). Using this approach we show that a primary cilium and high levels of epidermal growth factor receptor (EGFR) at the cell membrane characterize quiescent and cycling NSCs, respectively. However, we also observed non-ciliated quiescent NSCs and NSCs progressing into the cell cycle without up-regulating EGFR expression. Thus, the existence of NSCs displaying distinct molecular and structural conformations provides more flexibility to the regulation of quiescence and cell cycle progression.
Collapse
|
18
|
Stergiopoulos A, Politis PK. The role of nuclear receptors in controlling the fine balance between proliferation and differentiation of neural stem cells. Arch Biochem Biophys 2013; 534:27-37. [DOI: 10.1016/j.abb.2012.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/23/2012] [Accepted: 09/20/2012] [Indexed: 12/22/2022]
|
19
|
Transcriptional Regulation and Specification of Neural Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:129-55. [DOI: 10.1007/978-94-007-6621-1_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Li S, Sun G, Murai K, Ye P, Shi Y. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains. PLoS One 2012; 7:e43324. [PMID: 22952666 PMCID: PMC3431389 DOI: 10.1371/journal.pone.0043324] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 07/19/2012] [Indexed: 01/12/2023] Open
Abstract
TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.
Collapse
Affiliation(s)
- Shengxiu Li
- Department of Neurosciences, Cancer Center, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Guoqiang Sun
- Department of Neurosciences, Cancer Center, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Kiyohito Murai
- Department of Neurosciences, Cancer Center, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Peng Ye
- Department of Neurosciences, Cancer Center, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Yanhong Shi
- Department of Neurosciences, Cancer Center, Beckman Research Institute of City of Hope, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression at the post-transcriptional level by mediating mRNA degradation or translational inhibition. MiRNAs are implicated in many biological functions, including neurogenesis. It has been shown that miRNAs regulate multiple steps of neurogenesis, from neural stem cell proliferation to neuronal differentiation and maturation. MiRNAs execute their functions in a dynamic and context-dependent manner by targeting diverse downstream target genes, from transcriptional factors to epigenetic regulators. Identifying context-specific target genes is instrumental for understanding the roles that miRNAs play in neurogenesis. This review summarizes our current state of knowledge on the dynamic roles that miRNAs play in neural stem cells and neurogenesis.
Collapse
Affiliation(s)
- Ming-Fei Lang
- Department of Neurosciences, Center for Gene Expression and Drug Discovery, Cancer Center, Beckman Research Institute of City of Hope Duarte, CA, USA
| | | |
Collapse
|