1
|
Collins HM, Pinacho R, Tam SKE, Sharp T, Bannerman DM, Peirson SN. Continuous home cage monitoring of activity and sleep in mice during repeated paroxetine treatment and discontinuation. Psychopharmacology (Berl) 2023; 240:2403-2418. [PMID: 37584734 PMCID: PMC10593620 DOI: 10.1007/s00213-023-06442-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023]
Abstract
RATIONALE Non-invasive home cage monitoring is emerging as a valuable tool to assess the effects of experimental interventions on mouse behaviour. A field in which these techniques may prove useful is the study of repeated selective serotonin reuptake inhibitor (SSRI) treatment and discontinuation. SSRI discontinuation syndrome is an under-researched condition that includes the emergence of sleep disturbances following treatment cessation. OBJECTIVES We used passive infrared (PIR) monitoring to investigate changes in activity, sleep, and circadian rhythms during repeated treatment with the SSRI paroxetine and its discontinuation in mice. METHODS Male mice received paroxetine (10 mg/kg/day, s.c.) for 12 days, then were swapped to saline injections for a 13 day discontinuation period and compared to mice that received saline injections throughout. Mice were continuously tracked using the Continuous Open Mouse Phenotyping of Activity and Sleep Status (COMPASS) system. RESULTS Repeated paroxetine treatment reduced activity and increased behaviourally-defined sleep in the dark phase. These effects recovered to saline-control levels within 24 h of paroxetine cessation, yet there was also evidence of a lengthening of sleep bouts in the dark phase for up to a week following discontinuation. CONCLUSIONS This study provides the first example of how continuous non-invasive home cage monitoring can be used to detect objective behavioural changes in activity and sleep during and after drug treatment in mice. These data suggest that effects of paroxetine administration reversed soon after its discontinuation but identified an emergent change in sleep bout duration, which could be used as a biomarker in future preclinical studies to prevent or minimise SSRI discontinuation symptoms.
Collapse
Affiliation(s)
- Helen M Collins
- University Department of Pharmacology, Oxford, UK
- University Department of Experimental Psychology, Oxford, UK
| | - Raquel Pinacho
- University Department of Pharmacology, Oxford, UK
- University Department of Experimental Psychology, Oxford, UK
| | - S K Eric Tam
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK
| | - Trevor Sharp
- University Department of Pharmacology, Oxford, UK
| | | | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
2
|
Abstract
Many processes in the human body - including brain function - are regulated over the 24-hour cycle, and there are strong associations between disrupted circadian rhythms (for example, sleep-wake cycles) and disorders of the CNS. Brain disorders such as autism, depression and Parkinson disease typically develop at certain stages of life, and circadian rhythms are important during each stage of life for the regulation of processes that may influence the development of these disorders. Here, we describe circadian disruptions observed in various brain disorders throughout the human lifespan and highlight emerging evidence suggesting these disruptions affect the brain. Currently, much of the evidence linking brain disorders and circadian dysfunction is correlational, and so whether and what kind of causal relationships might exist are unclear. We therefore identify remaining questions that may direct future research towards a better understanding of the links between circadian disruption and CNS disorders.
Collapse
Affiliation(s)
- Ryan W Logan
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Colleen A McClung
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Duncan MJ, Smith JT, Franklin KM. Time of day but not aging regulates 5-HT 7 receptor binding sites in the hamster hippocampus. Neurosci Lett 2017; 662:306-311. [PMID: 29107707 DOI: 10.1016/j.neulet.2017.10.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/18/2017] [Accepted: 10/27/2017] [Indexed: 12/15/2022]
Abstract
Activation of 5-HT7 receptors influences memory as well as circadian rhythms and other processes. This study investigated the regulation of the 5-HT7 receptors in the hippocampus, a likely substrate for the effects of 5-HT7 receptor compounds on memory. Because endogenous serotonin release is higher during the active phase, and chronic treatment with a serotonin-selective reuptake inhibitor down-regulates 5-HT7 receptors, we hypothesized that 5-HT7 receptors exhibit 24-h variations. We also hypothesized that aging decreases 5-HT7 receptors in the hippocampus, as it does in the dorsal raphe nucleus, a brain site for serotonergic resetting of circadian rhythms. Male hamsters (young, 3-5 mos; old, 17-21 mos) exposed to a light:dark cycle were euthanized at 4 times of day (zeitgeber times [ZT]1, 6, 13, & 19; ZT12=time of lights:off). 5-HT7 receptor autoradiography was conducted on hippocampal sections using [3H]8-OH-DPAT [2nM] as the radioligand and SB-269970 [1μM] to define nonspecific binding. Slide-mounted sections and radioactive standards were apposed to X-ray films; the resultant autoradiograms were assessed by computer-assisted microdensitometry. Specific 5-HT7 receptor binding was robustly expressed in the dentate gyrus (DG) and CA1 but not in the CA2 or CA3. In the CA1 and DG, specific 5-HT7 receptor binding exhibited 24-h rhythms with troughs at night (P<0.005; P<0.05, respectively). Aging did not significantly affect specific 5-HT7 receptor binding in these regions, nor were significant time and age interactions observed. These findings suggest that the therapeutic effectiveness of 5-HT7 drugs may vary with time of day of administration but not with the age of the recipient.
Collapse
Affiliation(s)
- Marilyn J Duncan
- Department of Neuroscience, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, USA.
| | - J Tyler Smith
- Department of Neuroscience, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, USA.
| | - Kathleen M Franklin
- Department of Neuroscience, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, USA.
| |
Collapse
|
4
|
Versteeg RI, Serlie MJ, Kalsbeek A, la Fleur SE. Serotonin, a possible intermediate between disturbed circadian rhythms and metabolic disease. Neuroscience 2015; 301:155-67. [PMID: 26047725 DOI: 10.1016/j.neuroscience.2015.05.067] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 01/27/2023]
Abstract
It is evident that eating in misalignment with the biological clock (such as in shift work, eating late at night and skipping breakfast) is associated with increased risk for obesity and diabetes. The biological clock located in the suprachiasmatic nucleus dictates energy balance including feeding behavior and glucose metabolism. Besides eating and sleeping patterns, glucose metabolism also exhibits clear diurnal variations with higher blood glucose concentrations, glucose tolerance and insulin sensitivity prior to waking up. The daily variation in plasma glucose concentrations in rats, is independent of the rhythm in feeding behavior. On the other hand, feeding itself has profound effects on glucose metabolism, but differential effects occur depending on the time of the day. We here review data showing that a disturbed diurnal eating pattern results in alterations in glucose metabolism induced by a disrupted circadian clock. We first describe the role of central serotonin on feeding behavior and glucose metabolism and subsequently describe the effects of central serotonin on the circadian system. We next explore the interaction between the serotonergic system and the circadian clock in conditions of disrupted diurnal rhythms in feeding and how this might be involved in the metabolic dysregulation that occurs with chronodisruption.
Collapse
Affiliation(s)
- R I Versteeg
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - M J Serlie
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - A Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - S E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Prosser RA, Glass JD. Assessing ethanol's actions in the suprachiasmatic circadian clock using in vivo and in vitro approaches. Alcohol 2015; 49:321-339. [PMID: 25457753 DOI: 10.1016/j.alcohol.2014.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 12/18/2022]
Abstract
Research over the past decade has demonstrated substantial interactions between the circadian system and the processes through which alcohol affects behavior and physiology. Here we summarize the results of our collaborative efforts focused on this intersection. Using a combination of in vivo and in vitro approaches, we have shown that ethanol affects many aspects of the mammalian circadian system, both acutely as well as after chronic administration. Conversely, we have shown circadian influences on ethanol consumption. Importantly, we are beginning to delve into the cellular mechanisms associated with these effects. We are also starting to form a picture of the neuroanatomical bases for many of these actions. Finally, we put our current findings into perspective by suggesting new avenues of inquiry for our future efforts.
Collapse
|
6
|
Serotonin-2C receptor involved serotonin-induced Ca²⁺ mobilisations in neuronal progenitors and neurons in rat suprachiasmatic nucleus. Sci Rep 2014; 4:4106. [PMID: 24531181 PMCID: PMC3925950 DOI: 10.1038/srep04106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/30/2014] [Indexed: 02/03/2023] Open
Abstract
The hypothalamic suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals, undergoes serotonergic regulation, but the underlying mechanisms remain obscure. Here, we generated a subclone of an SCN progenitor cell line expressing Ca(2+) sensors (SCN2.2YC) and compared its 5-HT receptor signalling with that of rat SCN neurons in brain slices. SCN2.2YC cells expressed 5-HT1A/2A/2B/2C, but not 5A/7, while all six subtypes were expressed in SCN tissues. High K(+) or 5-HT increased cytosolic Ca(2+) in SCN2.2YC cells. The 5-HT responses were inhibited by ritanserin and SB-221284, but resistant to WAY-100635 and RS-127445, suggesting predominant involvement of 5-HT2C for Ca(2+) mobilisations. Consistently, Ca(2+) imaging and voltage-clamp electrophysiology using rat SCN slices demonstrated post-synaptic 5-HT2C expression. Because 5-HT2C expression was postnatally increased in the SCN and 5-HT-induced Ca(2+) mobilisations were amplified in differentiated SCN2.2YC cells and developed SCN neurons, we suggest that this signalling development occurs in accordance with central clock maturations.
Collapse
|
7
|
Garrett TL, Joshi K, Rapp CM, Chapleau M, Cool DR, Schlager JJ, Lucot JB. The effects of 8-OH-DPAT on neuroinflammation after sarin exposure in mice. Toxicology 2013; 310:22-8. [DOI: 10.1016/j.tox.2013.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 10/26/2022]
|
8
|
Westrich L, Sprouse J, Sánchez C. The effects of combining serotonin reuptake inhibition and 5-HT7 receptor blockade on circadian rhythm regulation in rodents. Physiol Behav 2012; 110-111:42-50. [PMID: 23276605 DOI: 10.1016/j.physbeh.2012.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/01/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
Disruption of circadian rhythms may lead to mood disorders. The present study investigated the potential therapeutic utility of combining a 5-HT7 antagonist with a selective serotonin (5-HT) reuptake inhibitor (SSRI), the standard of care in depression, on circadian rhythm regulation. In tissue explants of the suprachiasmatic nucleus (SCN) from PER2::LUC mice genetically modified to report changes in the expression of a key clock protein, the period length of PER2 bioluminescence was shortened in the presence of AS19, a 5-HT7 partial agonist. This reduction was blocked by SB269970, a selective 5-HT7 antagonist. The SSRI, escitalopram, had no effect alone on period length, but a combination with SB269970, yielded significant increases. Dosed in vivo, escitalopram had little impact on the occurrence of activity onsets in rats given access to running wheels, whether the drug was given acutely or sub-chronically. However, preceding the escitalopram treatment with a single acute dose of SB269970 produced robust phase delays, in keeping with the in vitro explant data. Taken together, these findings suggest that the combination of an SSRI and a 5-HT7 receptor antagonist has a greater impact on circadian rhythms than that observed with either agent alone, and that such a multimodal approach may be of therapeutic value in treating patients with poor clock function.
Collapse
Affiliation(s)
- Ligia Westrich
- Lundbeck Research USA, 215 College Avenue, Paramus, NJ 07652, USA.
| | | | | |
Collapse
|
9
|
The native serotonin 5-HT(5A) receptor: electrophysiological characterization in rodent cortex and 5-HT(1A)-mediated compensatory plasticity in the knock-out mouse. J Neurosci 2012; 32:5804-9. [PMID: 22539842 DOI: 10.1523/jneurosci.4849-11.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The 5-HT(5A) receptor is the least understood serotonin (5-HT) receptor. Here, we electrophysiologically identify and characterize a native 5-HT(5A) receptor current in acute ex vivo brain slices of adult rodent prefrontal cortex. In the presence of antagonists for the previously characterized 5-HT(1A) and 5-HT₂ receptors, a proportion of layer V pyramidal neurons continue to show 5-HT-elicited outward currents in both rats and mice. These 5-HT currents are suppressed by the selective 5-HT(5A) antagonist, SB-699551, and are not observed in 5-HT(5A) receptor knock-out mice. Further characterization reveals that the 5-HT(5A) current is activated by submicromolar concentrations of 5-HT, is inwardly rectifying with a reversal potential near the equilibrium potential for K+ ions, and is suppressed by blockers of Kir3 channels. Finally, we observe that genetic deletion of the inhibitory 5-HT(5A) receptor results in an unexpected, large increase in the inhibitory 5-HT(1A) receptor currents. The presence of functional prefrontal 5-HT(5A) receptors in normal rodents along with compensatory plasticity in 5-HT(5A) receptor knock-out mice testifies to the significance of this receptor in the healthy prefrontal cortex.
Collapse
|
10
|
Glass JD, Brager AJ, Stowie AC, Prosser RA. Cocaine modulates pathways for photic and nonphotic entrainment of the mammalian SCN circadian clock. Am J Physiol Regul Integr Comp Physiol 2012; 302:R740-50. [PMID: 22218419 DOI: 10.1152/ajpregu.00602.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cocaine abuse is highly disruptive to circadian physiological and behavioral rhythms. The present study was undertaken to determine whether such effects are manifest through actions on critical photic and nonphotic regulatory pathways in the master circadian clock of the mouse suprachiasmatic nucleus (SCN). Impairment of SCN photic signaling by systemic (intraperitoneal) cocaine injection was evidenced by strong (60%) attenuation of light-induced phase-delay shifts of circadian locomotor activity during the early night. A nonphotic action of cocaine was apparent from its induction of 1-h circadian phase-advance shifts at midday. The serotonin receptor antagonist, metergoline, blocked shifting by 80%, implicating a serotonergic mechanism. Reverse microdialysis perfusion of the SCN with cocaine at midday induced 3.7 h phase-advance shifts. Control perfusions with lidocaine and artificial cerebrospinal fluid had little shifting effect. In complementary in vitro experiments, photic-like phase-delay shifts of the SCN circadian neuronal activity rhythm induced by glutamate application to the SCN were completely blocked by cocaine. Cocaine treatment of SCN slices alone at subjective midday, but not the subjective night, induced 3-h phase-advance shifts. Lidocaine had no shifting effect. Cocaine-induced phase shifts were completely blocked by metergoline, but not by the dopamine receptor antagonist, fluphenazine. Finally, pretreatment of SCN slices for 2 h with a low concentration of serotonin agonist (to block subsequent serotonergic phase resetting) abolished cocaine-induced phase shifts at subjective midday. These results reveal multiple effects of cocaine on adult circadian clock regulation that are registered within the SCN and involve enhanced serotonergic transmission.
Collapse
Affiliation(s)
- J David Glass
- Department of Biological Sciences, Kent State Univ., Kent, OH 44242, USA.
| | | | | | | |
Collapse
|
11
|
Whitaker KW, Neumeister H, Huffman LS, Kidd CE, Preuss T, Hofmann HA. Serotonergic modulation of startle-escape plasticity in an African cichlid fish: a single-cell molecular and physiological analysis of a vital neural circuit. J Neurophysiol 2011; 106:127-37. [DOI: 10.1152/jn.01126.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Social life affects brain function at all levels, including gene expression, neurochemical balance, and neural circuits. We have previously shown that in the cichlid fish Astatotilapia burtoni brightly colored, socially dominant (DOM) males face a trade-off between reproductive opportunities and increased predation risk. Compared with camouflaged subordinate (SUB) males, DOMs exposed to a loud sound pip display higher startle responsiveness and increased excitability of the Mauthner cell (M-cell) circuit that governs this behavior. Using behavioral tests, intracellular recordings, and single-cell molecular analysis, we show here that serotonin (5-HT) modulates this socially regulated plasticity via the 5-HT receptor subtype 2 (5-HTR2). Specifically, SUBs display increased sensitivity to pharmacological manipulation of 5-HTR2 compared with DOMs in both startle-escape behavior and electrophysiological properties of the M-cell. Immunohistochemistry showed serotonergic varicosities around the M-cells, further suggesting that 5-HT impinges directly onto the startle-escape circuitry. To determine whether the effects of 5-HTR2 are pre- or postsynaptic, and whether other 5-HTR subtypes are involved, we harvested the mRNA from single M-cells via cytoplasmic aspiration and found that 5-HTR subtypes 5A and 6 are expressed in the M-cell. 5-HTR2, however, was absent, suggesting that it affects M-cell excitability through a presynaptic mechanism. These results are consistent with a role for 5-HT in modulating startle plasticity and increase our understanding of the neural and molecular basis of a trade-off between reproduction and predation.
Collapse
Affiliation(s)
- K. W. Whitaker
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas
- Army Research Laboratory, Aberdeen Proving Grounds, Maryland
| | - H. Neumeister
- Department of Psychology, CUNY Hunter College, New York, New York; and
| | - L. S. Huffman
- Section of Integrative Biology and
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas
| | | | - T. Preuss
- Department of Psychology, CUNY Hunter College, New York, New York; and
| | - H. A. Hofmann
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas
- Section of Integrative Biology and
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas
| |
Collapse
|
12
|
Differential influence of selective 5-HT5A vs 5-HT1A, 5-HT1B, or 5-HT2C receptor blockade upon light-induced phase shifts in circadian activity rhythms: interaction studies with citalopram. Eur Neuropsychopharmacol 2009; 19:887-97. [PMID: 19604677 DOI: 10.1016/j.euroneuro.2009.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/06/2009] [Accepted: 06/16/2009] [Indexed: 11/20/2022]
Abstract
Though serotonergic mechanisms modulate circadian rhythms, roles of individual serotonin (5-HT) receptors remain uncertain since data are lacking for antagonists. Herein, both the 5-HT(5A) receptor antagonist, A843277 (10 mg/kg), and the 5-HT(1B) antagonist, SB224289 (1 mg/kg), inhibited light-induced phase advances in hamster circadian wheel-running rhythms. Conversely, though 5-HT(1A) and 5-HT(7) receptors are likewise implicated in circadian scheduling, their blockade by WAY100635 (0.5 mg/kg) and SB269970 (1 mg/kg), respectively, was ineffective. Since actions of 5-HT reuptake inhibitors are modified by antagonists, we evaluated their influence on suppression of phase advances by citalopram (10 mg/kg). Its action was potentiated by WAY100635 and the 5-HT(2C) antagonist, SB242084 (1 mg/kg), but not by A842377, SB224289, SB269970, and antagonists at 5-HT(2A) (MDL100907) and 5-HT(6) (SB399885) receptors. In conclusion, this is the first in vivo evidence for an influence of 5-HT(5A) receptors upon circadian rhythms, but no single class of 5-HT receptor mediates their control by citalopram.
Collapse
|
13
|
Cuesta M, Clesse D, Pévet P, Challet E. New light on the serotonergic paradox in the rat circadian system. J Neurochem 2009; 110:231-43. [PMID: 19457131 DOI: 10.1111/j.1471-4159.2009.06128.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The main mammalian circadian clock, localized in the suprachiasmatic nuclei can be synchronized not only with light, but also with serotonergic activation. Serotonergic agonists and serotonin reuptake inhibitors (e.g., fluoxetine) have a non-photic influence (shifting effects during daytime and attenuation of photic resetting during nighttime) on hamsters' and mice' main clock. Surprisingly, in rats serotonergic modulation of the clock shows essentially photic-like features in vivo (shifting effects during nighttime). To delineate this apparent paradox, we analyzed the effects of fluoxetine and serotonin agonists on rats' clock. First, fluoxetine induced behavioral phase-advances associated with down-regulated expression of the clock genes Per1 and Rorbeta and up-regulated expression of Rev-erbalpha during daytime. Moreover, fluoxetine produced an attenuation of light-induced phase-advances in association with altered expression of Per1, Per2 and Rorbeta during nighttime. Second, we showed that 5-HT(1A) receptors -maybe with co-activation of 5-HT(7) receptors- were implicated in non-photic effects on the main clock. By contrast, 5-HT(3) and 5-HT(2C) receptors were involved in photic-like effects and, for 5-HT(2C) subtype only, in potentiation of photic resetting. Thus this study demonstrates that as for other nocturnal rodents, a global activation of the serotonergic system induces non-photic effects in the rats' clock during daytime and nighttime.
Collapse
Affiliation(s)
- Marc Cuesta
- Département de Neurobiologie des Rythmes, Institut de Neurosciences Cellulaires et Intégratives, UPR3212, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | | | | | | |
Collapse
|
14
|
Smith VM, Sterniczuk R, Phillips CI, Antle MC. Altered photic and non-photic phase shifts in 5-HT(1A) receptor knockout mice. Neuroscience 2008; 157:513-23. [PMID: 18930788 DOI: 10.1016/j.neuroscience.2008.09.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 11/30/2022]
Abstract
The mammalian circadian clock located in the suprachiasmatic nucleus (SCN) is thought to be modulated by 5-HT. 5-HT is though to inhibit photic phase shifts by inhibiting the release of glutamate from retinal terminals, as well as by decreasing the responsiveness of retinorecipient cells in the SCN. Furthermore, there is also evidence that 5-HT may underlie, in part, non-photic phase shifts of the circadian system. Understanding the mechanism by which 5-HT accomplishes these goals is complicated by the wide variety of 5-HT receptors found in the SCN, the heterogeneous organization of both the circadian clock and the location of 5-HT receptors, and by a lack of sufficiently selective pharmacological agents for the 5-HT receptors of interest. Genetically modified animals engineered to lack a specific 5-HT receptor present an alternative avenue of investigation to understand how 5-HT regulates the circadian system. Here we examine behavioral and molecular responses to both photic and non-photic stimuli in mice lacking the 5-HT(1A) receptor. When compared with wild-type controls, these mice exhibit larger phase advances to a short late-night light pulse and larger delays to long 12 h light pulses that span the whole subjective night. Fos and mPer1 expression in the retinorecipient SCN is significantly attenuated following late-night light pulses in the 5-HT(1A) knockout animals. Finally, non-photic phase shifts to (+/-)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) are lost in the knockout animals, while attenuation of the phase shift to the long light pulse due to rebound activity following a wheel lock is unaffected. These findings suggest that the 5-HT(1A) receptor plays an inhibitory role in behavioral phase shifts, a facilitatory role in light-induced gene expression, a necessary role in phase shifts to 8-OH-DPAT, and is not necessary for activity-induced phase advances that oppose photic phase shifts to long light pulses.
Collapse
Affiliation(s)
- V M Smith
- Department of Psychology, University of Calgary, 2500 University Drive Northwest, Calgary, Alberta, Canada T2N 1N4
| | | | | | | |
Collapse
|
15
|
Acute ethanol modulates glutamatergic and serotonergic phase shifts of the mouse circadian clock in vitro. Neuroscience 2008; 152:837-48. [PMID: 18313227 DOI: 10.1016/j.neuroscience.2007.12.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 12/18/2007] [Accepted: 12/28/2007] [Indexed: 01/05/2023]
Abstract
Alcohol abuse is associated with sleep problems, which are often linked to circadian rhythm disturbances. However, there is no information on the direct effects of ethanol on the mammalian circadian clock. Acute ethanol inhibits glutamate signaling, which is the primary mechanism through which light resets the mammalian clock in the suprachiasmatic nucleus (SCN). Glutamate and light also inhibit circadian clock resetting induced by nonphotic signals, including 5-HT. Thus, we investigated the effects of acute ethanol on both glutamatergic and serotoninergic resetting of the mouse SCN clock in vitro. We show that ethanol dose-dependently inhibits glutamate-induced phase shifts and enhances serotonergic phase shifts. The inhibition of glutamate-induced phase shifts is not affected by excess glutamate, glycine or d-serine, but is prevented by excess brain-derived neurotrophic factor (BDNF). BDNF is known to augment glutamate signaling in the SCN and to be necessary for glutamate/light-induced phase shifts. Thus, ethanol may inhibit glutamate-induced clock resetting at least in part by blocking BDNF enhancement of glutamate signaling. Ethanol enhancement of serotonergic phase shifts is mimicked by treatments that suppress glutamate signaling in the SCN, including antagonists of glutamate receptors, BDNF signaling and nitric oxide synthase. The combined effect of ethanol with these treatments is not additive, suggesting they act through a common pathway. Our data indicate further that the interaction between 5-HT and glutamate in the SCN may occur downstream from nitric oxide synthase activation. Thus, acute ethanol disrupts normal circadian clock phase regulation, which could contribute to the physiological and psychological problems associated with alcohol abuse.
Collapse
|
16
|
Dutton AC, Massoura AN, Dover TJ, Andrews NA, Barnes NM. Identification and functional significance of N-glycosylation of the 5-ht5A receptor. Neurochem Int 2007; 52:419-25. [PMID: 17881091 DOI: 10.1016/j.neuint.2007.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 07/16/2007] [Accepted: 07/25/2007] [Indexed: 10/23/2022]
Abstract
The presence and roles of N-glycosylation of the human (h) 5-ht(5A) receptor were investigated using a heterologous expression system. Following transient transfection of COS-7 cells with h5-ht(5A) receptor cDNA, SDS-PAGE/Western blot analysis of immunoreactivity demonstrated two protein species; a predominant species with a molecular weight of approximately 35-45 kDa and a minor species of approximately 45-55 kDa. Transfected cells grown in the presence of the N-glycosylation inhibitor tunicamycin, failed to express the minor immunoreactive species indicating this represented the N-glycosylated form of the h5-ht(5A) receptor. Comparison of the molecular weights of immunoreactive bands arising from the wild-type and each of the mutant 5-ht(5A) receptors with disruption of the predicted N-glycosylation sites (N6S and N21S) demonstrated that both identified asparagines were N-glycosylated. Immunocytochemical and ELISA studies demonstrated that the [N6S]h5-ht(5A) receptor mutation, but not the [N21S]h5-ht(5A) receptor mutation, reduced protein expression in the cell membrane, indicating that N-glycosylation of the N6 residue is important for the membrane expression of this neurotransmitter receptor; a requirement for receptor function.
Collapse
Affiliation(s)
- Alice C Dutton
- Cellular and Molecular Neuropharmacology Research Group, Division of Neuroscience, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|
17
|
Brown TM, Piggins HD. Electrophysiology of the suprachiasmatic circadian clock. Prog Neurobiol 2007; 82:229-55. [PMID: 17646042 DOI: 10.1016/j.pneurobio.2007.05.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/29/2007] [Accepted: 05/30/2007] [Indexed: 01/28/2023]
Abstract
In mammals, an internal timekeeping mechanism located in the suprachiasmatic nuclei (SCN) orchestrates a diverse array of neuroendocrine and physiological parameters to anticipate the cyclical environmental fluctuations that occur every solar day. Electrophysiological recording techniques have proved invaluable in shaping our understanding of how this endogenous clock becomes synchronized to salient environmental cues and appropriately coordinates the timing of a multitude of physiological rhythms in other areas of the brain and body. In this review we discuss the pioneering studies that have shaped our understanding of how this biological pacemaker functions, from input to output. Further, we highlight insights from new studies indicating that, more than just reflecting its oscillatory output, electrical activity within individual clock cells is a vital part of SCN clockwork itself.
Collapse
Affiliation(s)
- Timothy M Brown
- Faculty of Life Sciences, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
18
|
Abstract
In mammals, the master circadian clock that drives many biochemical, physiological and behavioral rhythms is located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Generation and maintenance of circadian rhythms rely on complex interlaced feedback loops based on transcriptional and posttranscriptional events involving clock genes and kinases. This clock serves the purpose to organize an organism's biochemistry on a 24 h time scale thereby avoiding interference between biochemical pathways and optimizing performance. Synchronization to environmental 24 h oscillations tunes physiological processes optimally with nature. In this review, I briefly describe the principle of the clock mechanism, its synchronization to the environment and consequences on health when the circadian clock is disrupted.
Collapse
Affiliation(s)
- Urs Albrecht
- Department of Medicine, Division of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
19
|
Carter CJ. Multiple genes and factors associated with bipolar disorder converge on growth factor and stress activated kinase pathways controlling translation initiation: implications for oligodendrocyte viability. Neurochem Int 2007; 50:461-90. [PMID: 17239488 DOI: 10.1016/j.neuint.2006.11.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 11/27/2006] [Indexed: 02/06/2023]
Abstract
Famine and viral infection, as well as interferon therapy have been reported to increase the risk of developing bipolar disorder. In addition, almost 100 polymorphic genes have been associated with this disease. Several form most of the components of a phosphatidyl-inositol signalling/AKT1 survival pathway (PIK3C3, PIP5K2A, PLCG1, SYNJ1, IMPA2, AKT1, GSK3B, TCF4) which is activated by growth factors (BDNF, NRG1) and also by NMDA receptors (GRIN1, GRIN2A, GRIN2B). Various other protein products of genes associated with bipolar disorder either bind to or are affected by phosphatidyl-inositol phosphate products of this pathway (ADBRK2, HIP1R, KCNQ2, RGS4, WFS1), are associated with its constituent elements (BCR, DUSP6, FAT, GNAZ) or are downstream targets of this signalling cascade (DPYSL2, DRD3, GAD1, G6PD, GCH1, KCNQ2, NOS3, SLC6A3, SLC6A4, SST, TH, TIMELESS). A further pathway relates to endoplasmic reticulum-stress (HSPA5, XBP1), caused by problems in protein glycosylation (ALG9), growth factor receptor sorting (PIK3C3, HIP1R, SYBL1), or aberrant calcium homoeostasis (WFS1). Key processes relating to these pathways appear to be under circadian control (ARNTL, CLOCK, PER3, TIMELESS). DISC1 can also be linked to many of these pathways. The growth factor pathway promotes protein synthesis, while the endoplasmic reticulum stress pathway, and other stress pathways activated by viruses and cytokines (IL1B, TNF, Interferons), oxidative stress or starvation, all factors associated with bipolar disorder risk, shuts down protein synthesis via control of the EIF2 alpha and beta translation initiation complex. For unknown reasons, oligodendrocytes appear to be particularly prone to defects in the translation initiation complex (EIF2B) and the convergence of these environmental and genomic signalling pathways on this area might well explain their vulnerability in bipolar disorder.
Collapse
|
20
|
Coutinho AM, Sousa I, Martins M, Correia C, Morgadinho T, Bento C, Marques C, Ataíde A, Miguel TS, Moore JH, Oliveira G, Vicente AM. Evidence for epistasis between SLC6A4 and ITGB3 in autism etiology and in the determination of platelet serotonin levels. Hum Genet 2007; 121:243-56. [PMID: 17203304 DOI: 10.1007/s00439-006-0301-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Accepted: 11/15/2006] [Indexed: 11/28/2022]
Abstract
Autism is a neurodevelopmental disorder of unclear etiology. The consistent finding of platelet hyperserotonemia in a proportion of patients and its heritability within affected families suggest that genes involved in the serotonin system play a role in this disorder. The role in autism etiology of seven candidate genes in the serotonin metabolic and neurotransmission pathways and mapping to autism linkage regions (SLC6A4, HTR1A, HTR1D, HTR2A, HTR5A, TPH1 and ITGB3) was analyzed in a sample of 186 nuclear families. The impact of interactions among these genes in autism was assessed using the multifactor-dimensionality reduction (MDR) method in 186 patients and 181 controls. We further evaluated whether the effect of specific gene variants or gene interactions associated with autism etiology might be mediated by their influence on serotonin levels, using the quantitative transmission disequilibrium test (QTDT) and the restricted partition method (RPM), in a sample of 109 autistic children. We report a significant main effect of the HTR5A gene in autism (P = 0.0088), and a significant three-locus model comprising a synergistic interaction between the ITGB3 and SLC6A4 genes with an additive effect of HTR5A (P < 0.0010). In addition to the previously reported contribution of SLC6A4, we found significant associations of ITGB3 haplotypes with serotonin level distribution (P = 0.0163). The most significant models contributing to serotonin distribution were found for interactions between TPH1 rs4537731 and SLC6A4 haplotypes (P = 0.002) and between HTR1D rs6300 and SLC6A4 haplotypes (P = 0.013). In addition to the significant independent effects, evidence for interaction between SLC6A4 and ITGB3 markers was also found. The overall results implicate SLC6A4 and ITGB3 gene interactions in autism etiology and in serotonin level determination, providing evidence for a common underlying genetic mechanism and a molecular explanation for the association of platelet hyperserotonemia with autism.
Collapse
Affiliation(s)
- Ana M Coutinho
- Instituto Gulbenkian de Ciência, R. Quinta Grande 6, Ap. 14, 2781-901 Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sprouse J, Braselton J, Reynolds L. Fluoxetine modulates the circadian biological clock via phase advances of suprachiasmatic nucleus neuronal firing. Biol Psychiatry 2006; 60:896-9. [PMID: 16631132 DOI: 10.1016/j.biopsych.2006.03.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 02/23/2006] [Accepted: 03/06/2006] [Indexed: 02/06/2023]
Abstract
BACKGROUND The documented ability of serotonin (5-HT) to directly modulate circadian rhythms prompted interest in a similar role for therapeutic agents that readily enhance 5-HT neurotransmission, namely the selective serotonin reuptake inhibitors (SSRIs). METHODS Extracellular recordings of unit firing of suprachiasmatic nucleus (SCN) neurons maintained in slice culture enabled determinations of circadian rhythmicity. Shifts in the peak of activity were determined during the next circadian cycle following drug exposure. RESULTS Fluoxetine (10 microm, 60 minutes incubation) produced robust phase advances only in the presence of L-tryptophan (.5 microm), added to maintain serotonergic tone. CONCLUSIONS Actions of SSRIs at the level of the circadian biological clock add to the list of pharmacological effects for this drug class and encourage speculation as to their importance clinically.
Collapse
Affiliation(s)
- Jeffrey Sprouse
- Department of Neuroscience, Pfizer Global Research & Development, Groton, Connecticut 06340, USA.
| | | | | |
Collapse
|
22
|
Prosser RA, Lee HM, Wehner A. Serotonergic pre-treatments block in vitro serotonergic phase shifts of the mouse suprachiasmatic nucleus circadian clock. Neuroscience 2006; 142:547-55. [PMID: 16876330 DOI: 10.1016/j.neuroscience.2006.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 06/09/2006] [Accepted: 06/12/2006] [Indexed: 02/01/2023]
Abstract
The suprachiasmatic nucleus (SCN) contains a circadian clock that maintains its time-generating and phase-modulating capacities in vitro. Previous studies report clear differences in the ability of serotonergic stimuli to phase-shift the SCN clock when applied directly to the SCN either in vivo or in vitro: while mice and rat circadian clocks are readily phase-shifted by serotonin (5-HT) or 5-HT agonists applied in vitro, hamster and mice circadian clocks respond inconsistently to 5-HT agonists injected directly into the SCN in vivo. Here we have investigated one possible explanation for these differences: that the SCN isolated in vitro experiences reduced endogenous 5-HT signaling, which increases clock sensitivity to subsequent 5-HT stimulation. For these experiments we treated mouse SCN brain slices with low concentrations of compounds that increase serotonin signaling: 5-HT, a 5-HT agonist (8-OH-DPAT), the 5-HT precursor, l-tryptophan, or the 5-HT re-uptake inhibitor, fluoxetine. Pretreatment with each of these substances completely blocked subsequent phase-shifts induced by mid-subjective day treatment with either 5-HT or 8-OH-DPAT, while they did not block phase-shifts induced by the adenylate cyclase activator, forskolin. Time-course data on l-tryptophan-induced inhibition are consistent with this treatment inducing receptor internalization, while timing of the recovery from inhibition is consistent with receptor reinsertion. Together these data support the hypothesis that SCN clock sensitivity to serotonergic phase modulation is affected by the amount of prior serotonin signaling present in the SCN, and that this signaling alters the density of surface 5-HT receptors on SCN clock neurons.
Collapse
Affiliation(s)
- R A Prosser
- Department of Biochemistry and Cellular and Molecular Biology, Walters Life Sci Building M407, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | |
Collapse
|
23
|
Thomas DR, Soffin EM, Roberts C, Kew JNC, de la Flor RM, Dawson LA, Fry VA, Coggon SA, Faedo S, Hayes PD, Corbett DF, Davies CH, Hagan JJ. SB-699551-A (3-cyclopentyl-N-[2-(dimethylamino)ethyl]-N-[(4'-{[(2-phenylethyl)amino]methyl}-4-biphenylyl)methyl]propanamide dihydrochloride), a novel 5-ht5A receptor-selective antagonist, enhances 5-HT neuronal function: Evidence for an autoreceptor role for the 5-ht5A receptor in guinea pig brain. Neuropharmacology 2006; 51:566-77. [PMID: 16846620 DOI: 10.1016/j.neuropharm.2006.04.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 03/10/2006] [Accepted: 04/28/2006] [Indexed: 11/16/2022]
Abstract
This study utilised the selective 5-ht(5A) receptor antagonist, SB-699551-A (3-cyclopentyl-N-[2-(dimethylamino)ethyl]-N-[(4'-{[(2-phenylethyl)amino]methyl}-4-biphenylyl)methyl]propanamide dihydrochloride), to investigate 5-ht5A receptor function in guinea pig brain. SB-699551-A competitively antagonised 5-HT-stimulated [35S]GTPgammaS binding to membranes from human embryonic kidney (HEK293) cells transiently expressing the guinea pig 5-ht5A receptor (pA2 8.1+/-0.1) and displayed 100-fold selectivity versus the serotonin transporter and those 5-HT receptor subtypes (5-HT(1A/B/D), 5-HT2A/C and 5-HT7) reported to modulate central 5-HT neurotransmission in the guinea pig. In guinea pig dorsal raphe slices, SB-699551-A (1 microM) did not alter neuronal firing per se but attenuated the 5-CT-induced depression in serotonergic neuronal firing in a subpopulation of cells insensitive to the 5-HT1A receptor-selective antagonist WAY-100635 (100 nM). In contrast, SB-699551-A (100 or 300 nM) failed to affect both electrically-evoked 5-HT release and 5-CT-induced inhibition of evoked release measured using fast cyclic voltammetry in vitro. SB-699551-A (0.3, 1 and 3 mg/kg s.c.) did not modulate extracellular levels of 5-HT in the guinea pig frontal cortex in vivo. However, when administered in combination with WAY-100635 (0.3 mg/kg s.c.), SB-699551-A (0.3, 1 or 3 mg/kg s.c.) produced a significant increase in extracellular 5-HT levels. These studies provide evidence for an autoreceptor role for the 5-ht5A receptor in guinea pig brain.
Collapse
Affiliation(s)
- David R Thomas
- Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park (North), Harlow, Essex, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Knoch ME, Siegel D, Duncan MJ, Glass JD. Serotonergic mediation of constant light-potentiated nonphotic phase shifting of the circadian locomotor activity rhythm in Syrian hamsters. Am J Physiol Regul Integr Comp Physiol 2006; 291:R180-8. [PMID: 16760334 DOI: 10.1152/ajpregu.00047.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Short-term (1–3 days) constant light exposure (brief LL) potentiates nonphotic phase shifting induced by sleep deprivation and serotonin (5-HT) agonist stimulation. The present assessments reveal that exposure to brief LL markedly alters the magnitude and shape of the 5-HT1A,7 receptor agonist, 8-(+)2-dipropyl-amino-8-hydroxyl-1,2,3,4-tetrahyronapthalene (8-OH-DPAT) phase-response curve, facilitating (∼12 h) phase-advance shifts during the early morning when serotonergics have no phase-shifting effect. Brief LL also reduces the threshold for 8-OH-DPAT shifting at midday, evidenced by 5- to 6-h phase-advance shifts elicited by dosages that have no effect without the LL treatment. The brief LL-potentiated phase advances to intraperitoneal 8-OH-DPAT at zeitgeber time 0 (ZT 0) were blocked by the 5-HT1A antagonists, pindolol and WAY 100635, indicating that this shifting is mediated by 5-HT1A receptors. Antagonists with action at 5-HT7 receptors, including ritanserin and metergoline, were without effect. Although autoradiographic analyses of [3H]8-OH-DPAT binding indicate that brief LL does not upregulate suprachiasmatic nucleus (SCN) 5-HT1A receptor binding, intra-SCN microinjection of 8-OH-DPAT at ZT 0 in brief LL-exposed hamsters induced shifts similar to those produced by intraperitoneal injection, suggesting that SCN 5-HT1A receptors mediate potentiated 8-OH-DPAT-induced shifts during the early morning. Lack of shifting by intra-SCN 8-OH-DPAT at ZT 6 or 18 (when intraperitoneal 8-OH-DPAT induces large shifts), further indicates that brief LL-potentiated shifts at these time points are mediated by 5-HT target(s) outside the SCN. Significantly, sleep deprivation-induced phase-advance shifts potentiated by brief LL (∼9 h) at ZT 0 were blocked by pindolol, suggesting that these behavioral shifts could be mediated by the same SCN 5-HT1A receptor phase-resetting pathway as that activated by 8-OH-DPAT treatment.
Collapse
Affiliation(s)
- Megan E Knoch
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | | | | | |
Collapse
|
25
|
Morin LP, Allen CN. The circadian visual system, 2005. ACTA ACUST UNITED AC 2006; 51:1-60. [PMID: 16337005 DOI: 10.1016/j.brainresrev.2005.08.003] [Citation(s) in RCA: 306] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/19/2005] [Accepted: 08/09/2005] [Indexed: 11/17/2022]
Abstract
The primary mammalian circadian clock resides in the suprachiasmatic nucleus (SCN), a recipient of dense retinohypothalamic innervation. In its most basic form, the circadian rhythm system is part of the greater visual system. A secondary component of the circadian visual system is the retinorecipient intergeniculate leaflet (IGL) which has connections to many parts of the brain, including efferents converging on targets of the SCN. The IGL also provides a major input to the SCN, with a third major SCN afferent projection arriving from the median raphe nucleus. The last decade has seen a blossoming of research into the anatomy and function of the visual, geniculohypothalamic and midbrain serotonergic systems modulating circadian rhythmicity in a variety of species. There has also been a substantial and simultaneous elaboration of knowledge about the intrinsic structure of the SCN. Many of the developments have been driven by molecular biological investigation of the circadian clock and the molecular tools are enabling novel understanding of regional function within the SCN. The present discussion is an extension of the material covered by the 1994 review, "The Circadian Visual System."
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry and Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
26
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
27
|
Duncan MJ, Davis VA. Cyclic AMP mediates circadian phase shifts induced by microinjection of serotonergic drugs in the hamster dorsal raphe nucleus. Brain Res 2005; 1058:10-6. [PMID: 16150426 DOI: 10.1016/j.brainres.2005.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 07/13/2005] [Accepted: 07/13/2005] [Indexed: 10/25/2022]
Abstract
We have previously shown that pretreatment with a 5-HT(7) receptor antagonist, SB-269970-A, attenuated phase shifts induced by microinjections of serotonergic agonists in the hamster dorsal raphe (Duncan, M.J., Grear, K.E., Hoskins, M.A.; Brain Research 1008:40-48, 2004). Although SB-269970-A is highly selective for the 5-HT(7) receptors, it has moderate affinity for the 5-HT(5A) receptors, which are present in the hamster dorsal raphe. To further test whether the 5-HT(7) receptors mediate the phase shifting effect of serotonergic agonists in the dorsal raphe, we investigated the role of cAMP because this second messenger is increased by activation of the 5-HT(7) receptors but inhibited by activation of the 5-HT(5A) or 5-HT(1A) receptors. As an additional control experiment, the effect of WAY-100,635, an antagonist to the 5-HT(1A) receptors, was tested. The results showed that local administration of Rp-cAMPS (1 microM), a cAMP antagonist, significantly reduced the phase shift induced by the 5-HT(1A/5A/7) agonist, (R)-(+)8-hydroxy-2-(di-n-propylamino)tetralin (10 microM), microinjected into the dorsal raphe 6 h before lights off. Furthermore, microinjection of 8-bromo-cAMP (50 microM) induced significantly larger phase shifts than vehicle. In the last experiment, microinjection of the dorsal raphe with WAY-100,635 (50 nM) before the 5-HT(1A/5A/7) agonist, 5-carboxyamidotryptamine (100 nM), did not significantly affect the phase shift. These results show that activation of cAMP-dependent kinase by cAMP is necessary and sufficient for induction of phase shifts by serotonergic drugs in the hamster dorsal raphe. Furthermore, these findings are consistent with the hypothesis that the 5-HT(7) but not the 5-HT(5A) or 5-HT(1A) receptors mediate serotonergic phase shifts.
Collapse
Affiliation(s)
- Marilyn J Duncan
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536-0298, USA.
| | | |
Collapse
|
28
|
Dietz BM, Mahady GB, Pauli GF, Farnsworth NR. Valerian extract and valerenic acid are partial agonists of the 5-HT5a receptor in vitro. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2005; 138:191-7. [PMID: 15921820 PMCID: PMC5805132 DOI: 10.1016/j.molbrainres.2005.04.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 03/24/2005] [Accepted: 04/18/2005] [Indexed: 11/25/2022]
Abstract
Insomnia is the most frequently encountered sleep complaint worldwide. While many prescription drugs are used to treat insomnia, extracts of valerian (Valeriana officinalis L., Valerianaceae) are also used for the treatment of insomnia and restlessness. To determine novel mechanisms of action, radioligand binding studies were performed with valerian extracts (100% methanol, 50% methanol, dichloromethane [DCM], and petroleum ether [PE]) at the melatonin, glutamate, and GABA(A) receptors, and 8 serotonin receptor subtypes. Both DCM and PE extracts had strong binding affinity to the 5-HT(5a) receptor, but only weak binding affinity to the 5-HT(2b) and the serotonin transporter. Subsequent binding studies focused on the 5-HT(5a) receptor due to the distribution of this receptor in the suprachiasmatic nucleus of the brain, which is implicated in the sleep-wake cycle. The PE extract inhibited [(3)H]lysergic acid diethylamide (LSD) binding to the human 5-HT(5a) receptor (86% at 50 microg/ml) and the DCM extract inhibited LSD binding by 51%. Generation of an IC(50) curve for the PE extract produced a biphasic curve, thus GTP shift experiments were also performed. In the absence of GTP, the competition curve was biphasic (two affinity sites) with an IC(50) of 15.7 ng/ml for the high-affinity state and 27.7 microg/ml for the low-affinity state. The addition of GTP (100 microM) resulted in a right-hand shift of the binding curve with an IC(50) of 11.4 microg/ml. Valerenic acid, the active constituent of both extracts, had an IC(50) of 17.2 microM. These results indicate that valerian and valerenic acid are new partial agonists of the 5-HT(5a) receptor.
Collapse
Affiliation(s)
- Birgit M Dietz
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
29
|
Sprouse J, Li X, Stock J, McNeish J, Reynolds L. Circadian rhythm phenotype of 5-HT7 receptor knockout mice: 5-HT and 8-OH-DPAT-induced phase advances of SCN neuronal firing. J Biol Rhythms 2005; 20:122-31. [PMID: 15834109 DOI: 10.1177/0748730404273432] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In vitro neuronal recordings in the SCN have clearly documented shifts in the peak of unit activity following the application of serotonergic agents, and yet selectivity issues with these very tools have limited progress in establishing the precise receptor mechanisms. As an alternative strategy, mice were bred (C57BL/6J) lacking 1 serotonin receptor, the 5-HT(7), to serve as a null background for this subtype; earlier work had documented the involvement of 5-HT(7) receptors in the phase advances elicited by 8-OH-DPAT, a mixed 5-HT(1A/7) agonist, in SCN slices prepared from rat donors. Single-unit recordings in sequential electrode passes revealed peaks of activity that occurred at nearly the same time in the knockout (KO; ZT4.2 +/- 0.6) and wild-type animals (WT; ZT4.3 +/- 0.1), where ZT0 marks the beginning of the light phase in a 12:12 LD cycle. Bath application of 8-OH-DPAT produced a phase advance in neuronal firing (2.1 +/- 0.5 h) when applied 1 circadian cycle earlier at ZT6 (10 microM, 10 min), but surprisingly, the mean phase advance in slices prepared from KO mice (2.3 +/- 0.1 h) was no different. Coapplication of 8-OH-DPAT with WAY-100,635 (10 microM), a highly selective 5-HT(1A) antagonist, significantly reduced the phase advance, both in experiments with WT and KO mice, suggesting the greater importance of this serotonin sub-type independent of genetic modification. 5-HT itself (0.5 +/-M, 10 min) at ZT6 also yielded phase advances that were indistinguishable in slices prepared from WT and KO mice (1.8 +/- 0.4 h and 2.1 +/- 0.2 h, respectively) and that were also sensitive to WAY-100,635. Unlike the pattern with 8-OH-DPAT, however, 5-HT-induced phase advances, in both WT and KO mice, were blocked by ritanserin, in this paradigm useful as a 5-HT(5A/7) antagonist (in addition to its more typical role as a 5-HT2A/2C antagonist). Serotonin antagonists when administered alone were without effect in slices from WT mice but produced significant phase shifts when administered to those from KO animals. Taken together, these results highlight the importance of the species used in establishing receptor mechanism. More provocatively, they support the involvement of multiple serotonin receptors in shifting the phase of circadian rhythms at ZT6.
Collapse
Affiliation(s)
- Jeffrey Sprouse
- Pfizer Global Research & Development, Groton, CT 06340, USA.
| | | | | | | | | |
Collapse
|
30
|
Viyoch J, Matsunaga N, Yoshida M, To H, Higuchi S, Ohdo S. Effect of Haloperidol on mPer1 Gene Expression in Mouse Suprachiasmatic Nuclei. J Biol Chem 2005; 280:6309-15. [PMID: 15590637 DOI: 10.1074/jbc.m411704200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of a typical neuroleptic haloperidol (Hal) on mPer1 gene expression was investigated in mouse suprachiasmatic nuclei (SCN). Hal induced mPer1 mRNA levels both in vivo and in cultured SCN cells. For mechanisms underlying Hal-induced mPer1 expression, N-methyl-d-aspartate (NMDA) glutamate receptor subtype, the phosphorylation form of the transcription factor, and the Ser-133 phosphorylation form of cAMP-responsive element-binding protein (CREB) played an important role, because the induction of mPer1 mRNA significantly decreased after pretreatment with a non-competitive NMDA receptor antagonist, such as MK-801 or CREB antisense. These results suggest that Hal may increase CREB phosphorylation and mPer1 expression according to the activation of the NMDA receptor through the dopaminergic pathways. Although the injection of Hal during the light period increased the amplitude of mPer1 mRNA rhythmicity in a nondrug state, the injection of the drug during the dark period disturbed the rhythmic pattern of mPer1 mRNA. These results suggest that the rhythmicity of clock genes in SCN may be disturbed depending on the dosing time of Hal. On the other hand, because the induction of mPer1 mRNA by Hal seems to be at least partly caused by the NMDA receptor, showing a phase shift or resetting effect of the circadian clock, Hal may also cause such phase shift effects.
Collapse
Affiliation(s)
- Jarupa Viyoch
- Clinical Pharmacokinetics, Division of Clinical Pharmacy, Department of Medico-Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|