1
|
Amakhin DV, Sinyak DS, Soboleva EB, Zaitsev AV. HCN channels promote Na/K-ATPase activity during slow afterhyperpolarization after seizure-like events in vitro. J Physiol 2025; 603:1197-1223. [PMID: 39918972 DOI: 10.1113/jp286965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are strongly involved in the regulation of neuronal excitability, with their precise role being determined by their subcellular localization and interaction with other ion channels and transporters. Their role in causing epileptic seizures is not fully understood. Using whole-cell patch-clamp recordings of rat brain slices, we show that HCN channels constitute a substantial fraction of the membrane conductance of deep entorhinal principal neurons. Using the 4-aminopyridine model of epileptic seizures in vitro, we show that HCN channel blockade with ZD-7288 increases the frequency of seizure-like events (SLEs) and alters the time course of afterhyperpolarization after SLEs (post-SLE AHP), promoting its faster onset and making it more transient. Simultaneous whole-cell patch-clamp and K+ ion-selective electrode recordings revealed that the time course of changes in neuronal membrane potential and extracellular K+ concentration after SLEs in the presence of ZD-7288 differed from that in the control, which can be explained by altered Na/K-ATPase [sodium-potassium adenosine triphosphatase (sodium-potassium pump)] activity after SLEs. To confirm this hypothesis, we demonstrated the ouabain sensitivity of post-SLE AHP and showed that loading neurons with high intracellular Na+ concentration prevented the effect of HCN channel blockade on post-SLE AHP. Taken together, the results obtained suggest that during post-SLE AHP, the influx of Na+ through HCN channels helps to maintain Na/K-ATPase hyperactivity, resulting in the longer pauses between SLEs. Mathematical modelling confirmed the feasibility of the proposed mechanism. Such an interplay between Na/K-ATPase and HCN channels may be crucial for the regulation of seizure termination in epilepsy. KEY POINTS: HCN channels constitute a significant fraction of the resting membrane conductance of deep entorhinal principal neurons. HCN channels modulate the seizure-like events (SLEs) in the entorhinal cortex. The blockade of HCN channels increases the frequency of SLEs and reduces the duration of the afterhyperpolarization that follows them. The results suggest that HCN channels affect intracellular sodium ion concentration dynamics, prolonging the activity of the Na/K-ATPase [sodium-potassium adenosine triphosphatase (sodium-potassium) pump] after SLEs, which in turn results in longer pauses between them.
Collapse
Affiliation(s)
- Dmitry V Amakhin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Denis S Sinyak
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Elena B Soboleva
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| |
Collapse
|
2
|
Zhao K, Li Y, Yang X, Zhou L. The Impact of Altered HCN1 Expression on Brain Function and Its Relationship with Epileptogenesis. Curr Neuropharmacol 2023; 21:2070-2078. [PMID: 37366350 PMCID: PMC10556362 DOI: 10.2174/1570159x21666230214110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/13/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated cation channel 1 (HCN1) is predominantly expressed in neurons from the neocortex and hippocampus, two important regions related to epilepsy. Both animal models for epilepsy and epileptic patients show decreased HCN1 expression and HCN1-mediated Ih current. It has been shown in neuroelectrophysiological experiments that a decreased Ih current can increase neuronal excitability. However, some studies have shown that blocking the Ih current in vivo can exert antiepileptic effects. This paradox raises an important question regarding the causal relationship between HCN1 alteration and epileptogenesis, which to date has not been elucidated. In this review, we summarize the literature related to HCN1 and epilepsy, aiming to find a possible explanation for this paradox, and explore the correlation between HCN1 and the mechanism of epileptogenesis. We analyze the alterations in the expression and distribution of HCN1 and the corresponding impact on brain function in epilepsy. In addition, we also discuss the effect of blocking Ih on epilepsy symptoms. Addressing these issues will help to inspire new strategies to explore the relationship between HCN1 and epileptogenesis, and ultimately promote the development of new targets for epilepsy therapy.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Neurology, The Seventh Affliated Hospital of Sun Yet-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, China
| | - Yinchao Li
- Department of Neurology, The Seventh Affliated Hospital of Sun Yet-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, China
| | - Xiaofeng Yang
- Guangzhou Laboratory, Guangzhou, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Liemin Zhou
- Department of Neurology, The Seventh Affliated Hospital of Sun Yet-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, China
| |
Collapse
|
3
|
Ghotbeddin Z, Heysieattalab S, Borjkhani M, Mirnajafi-Zadeh J, Semnanian S, Hosseinmardi N, Janahmadi M. Ca 2+ Channels Involvement in Low-Frequency Stimulation-Mediated Suppression of Intrinsic Excitability of Hippocampal CA1 Pyramidal Cells in a Rat Amygdala Kindling Model. Neuroscience 2019; 406:234-248. [PMID: 30885638 DOI: 10.1016/j.neuroscience.2019.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/26/2022]
Abstract
Low-frequency stimulation has demonstrated promising seizure suppression in animal models of epilepsy, while the mechanism of the effect is still debated. Changes in intrinsic properties have been recognized as a prominent pathophysiologically relevant feature of numerous neurological disorders including epilepsy. Here, it was evaluated whether LFS can preserve the intrinsic neuronal electrophysiological properties in a rat model of epilepsy, focusing on the possible involvement of voltage-gated Ca2+ channels. The amygdala kindling model was induced by 3 s monophasic square wave pulses (50 Hz, 1 ms duration, 12times/day at 5 min intervals). Both LFS alone and kindled plus LFS (KLFS) groups received four packages of LFS (each consisting of 200 monophasic square pulses, 0.1 ms pulse duration at 1 Hz with the after discharge threshold intensity), which in KLFS rats was applied immediately after kindling induction. Whole-cell patch-clamp recordings were made in the presence of fast synaptic blockers 24 h after the last kindling stimulations or following kindling stimulations plus LFS application. In the KLFS group, both the rebound excitation and kindling-induced intrinsic hyperexcitability were decreased, associated with a regular intrinsic firing as indicated by a lower coefficient of variation. The amplitude of afterdepolarization (ADP) and its area under the curve were both decreased in the KLFS group compared to the kindled group. LFS prevented the increasing effect of kindling on Ca2+ currents in the KLFS group. Findings provided evidence for a novel form of epileptiform activity suppression by LFS in the presence of synaptic blockade possibly by decreasing Ca2+ currents.
Collapse
Affiliation(s)
- Zohreh Ghotbeddin
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Physiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Mehdi Borjkhani
- Department of Electrical Engineering, Urmia University of Technology, Urmia, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narges Hosseinmardi
- Neuroscience Research Center and Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center and Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Church TW, Brown JT, Marrion NV. β 3-Adrenergic receptor-dependent modulation of the medium afterhyperpolarization in rat hippocampal CA1 pyramidal neurons. J Neurophysiol 2019; 121:773-784. [PMID: 30625002 DOI: 10.1152/jn.00334.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Action potential firing in hippocampal pyramidal neurons is regulated by generation of an afterhyperpolarization (AHP). Three phases of AHP are recognized, with the fast AHP regulating action potential firing at the onset of a burst and the medium and slow AHPs supressing action potential firing over hundreds of milliseconds and seconds, respectively. Activation of β-adrenergic receptors suppresses the slow AHP by a protein kinase A-dependent pathway. However, little is known regarding modulation of the medium AHP. Application of the selective β-adrenergic receptor agonist isoproterenol suppressed both the medium and slow AHPs evoked in rat CA1 hippocampal pyramidal neurons recorded from slices maintained in organotypic culture. Suppression of the slow AHP was mimicked by intracellular application of cAMP, with the suppression of the medium AHP by isoproterenol still being evident in cAMP-dialyzed cells. Suppression of both the medium and slow AHPs was antagonized by the β-adrenergic receptor antagonist propranolol. The effect of isoproterenol to suppress the medium AHP was mimicked by two β3-adrenergic receptor agonists, BRL37344 and SR58611A. The medium AHP was mediated by activation of small-conductance calcium-activated K+ channels and deactivation of H channels at the resting membrane potential. Suppression of the medium AHP by isoproterenol was reduced by pretreating cells with the H-channel blocker ZD7288. These data suggest that activation of β3-adrenergic receptors inhibits H channels, which suppresses the medium AHP in CA1 hippocampal neurons by utilizing a pathway that is independent of a rise in intracellular cAMP. This finding highlights a potential new target in modulating H-channel activity and thereby neuronal excitability. NEW & NOTEWORTHY The noradrenergic input into the hippocampus is involved in modulating long-term synaptic plasticity and is implicated in learning and memory. We demonstrate that activation of functional β3-adrenergic receptors suppresses the medium afterhyperpolarization in hippocampal pyramidal neurons. This finding provides an additional mechanism to increase action potential firing frequency, where neuronal excitability is likely to be crucial in cognition and memory.
Collapse
Affiliation(s)
- Timothy W Church
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| | - Jon T Brown
- University of Exeter Medical School , Exeter , United Kingdom
| | - Neil V Marrion
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| |
Collapse
|
5
|
Moradi Chameh H, Janahmadi M, Semnanian S, Shojaei A, Mirnajafi-Zadeh J. Effect of low frequency repetitive transcranial magnetic stimulation on kindling-induced changes in electrophysiological properties of rat CA1 pyramidal neurons. Brain Res 2015; 1606:34-43. [DOI: 10.1016/j.brainres.2015.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 12/29/2022]
|
6
|
Increased bursting glutamatergic neurotransmission in an auditory forebrain area of the zebra finch (Taenopygia guttata) induced by auditory stimulation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:705-16. [PMID: 22752655 DOI: 10.1007/s00359-012-0741-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 06/14/2012] [Accepted: 06/16/2012] [Indexed: 12/23/2022]
Abstract
The caudomedial nidopallium (NCM) is a telencephalic area involved in auditory processing and memorization in songbirds, but the synaptic mechanisms associated with auditory processing in NCM are largely unknown. To identify potential changes in synaptic transmission induced by auditory stimulation in NCM, we used a slice preparation for path-clamp recordings of synaptic currents in the NCM of adult zebra finches (Taenopygia guttata) sacrificed after sound isolation followed by exposure to conspecific song or silence. Although post-synaptic GABAergic and glutamatergic currents in the NCM of control and song-exposed birds did not present any differences regarding their frequency, amplitude and duration after song exposure, we observed a higher probability of generation of bursting glutamatergic currents after blockade of GABAergic transmission in song-exposed birds as compared to controls. Both song-exposed males and females presented an increase in the probability of the expression of bursting glutamatergic currents, however bursting was more commonly seen in males where they appeared even without blocking GABAergic transmission. Our data show that song exposure changes the excitability of the glutamatergic neuronal network, increasing the probability of the generation of bursts of glutamatergic currents, but does not affect basic parameters of glutamatergic and GABAergic synaptic currents.
Collapse
|
7
|
Giocomo LM, Hasselmo ME. Time constants of h current in layer ii stellate cells differ along the dorsal to ventral axis of medial entorhinal cortex. J Neurosci 2008; 28:9414-25. [PMID: 18799674 PMCID: PMC2990529 DOI: 10.1523/jneurosci.3196-08.2008] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 08/11/2008] [Indexed: 11/21/2022] Open
Abstract
Chronic recordings in the medial entorhinal cortex of behaving rats have found grid cells, neurons that fire when the rat is in a hexagonal array of locations. Grid cells recorded at different dorsal-ventral anatomical positions show systematic changes in size and spacing of firing fields. To test possible mechanisms underlying these differences, we analyzed properties of the hyperpolarization-activated cation current I(h) in voltage-clamp recordings from stellate cells in entorhinal slices from different dorsal-ventral locations. The time constant of h current was significantly different between dorsal and ventral neurons. The time constant of h current correlated with membrane potential oscillation frequency and the time constant of the sag potential in the same neurons. Differences in h current could underlie differences in membrane potential oscillation properties and contribute to grid cell periodicity along the dorsal-ventral axis of medial entorhinal cortex.
Collapse
Affiliation(s)
- Lisa M Giocomo
- Center for Memory and Brain, Program in Neuroscience and Department of Psychology, Boston University, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
8
|
MATSUDA Y, SAITO N, YAMAMOTO K, NIITSU T, KOGURE S. Effects of the Ih Blockers CsCl and ZD7288 on Inherited Epilepsy in Mongolian Gerbils. Exp Anim 2008; 57:377-84. [DOI: 10.1538/expanim.57.377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Yoshiki MATSUDA
- Department of Bioinformatics, Graduate School of Engineering, Soka University
| | - Nobuko SAITO
- Department of Bioinformatics, Graduate School of Engineering, Soka University
| | - Kiyofumi YAMAMOTO
- Department of Bioinformatics, Graduate School of Engineering, Soka University
| | - Takashi NIITSU
- Department of Environmental Engineering for Symbiosis, Graduate School of Engineering, Soka University
| | - Shinichi KOGURE
- Department of Bioinformatics, Graduate School of Engineering, Soka University
| |
Collapse
|
9
|
Bender RA, Kirschstein T, Kretz O, Brewster AL, Richichi C, Rüschenschmidt C, Shigemoto R, Beck H, Frotscher M, Baram TZ. Localization of HCN1 channels to presynaptic compartments: novel plasticity that may contribute to hippocampal maturation. J Neurosci 2007; 27:4697-706. [PMID: 17460082 PMCID: PMC3086816 DOI: 10.1523/jneurosci.4699-06.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence supports roles for the current mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, I(h), in hippocampal maturation and specifically in the evolving changes of intrinsic properties as well as network responses of hippocampal neurons. Here, we describe a novel developmental plasticity of HCN channel expression in axonal and presynaptic compartments: HCN1 channels were localized to axon terminals of the perforant path (the major hippocampal afferent pathway) of immature rats, where they modulated synaptic efficacy. However, presynaptic expression and functions of the channels disappeared with maturation. This was a result of altered channel transport to the axons, because HCN1 mRNA and protein levels in entorhinal cortex neurons, where the perforant path axons originate, were stable through adulthood. Blocking action potential firing in vitro increased presynaptic expression of HCN1 channels in the perforant path, suggesting that network activity contributed to regulating this expression. These findings support a novel developmentally regulated axonal transport of functional ion channels and suggest a role for HCN1 channel-mediated presynaptic I(h) in hippocampal maturation.
Collapse
Affiliation(s)
- Roland A Bender
- Department of Anatomy, University of California, Irvine, Irvine, California 92697-4475, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Piccinin S, Randall AD, Brown JT. KCNQ/Kv7 channel regulation of hippocampal gamma-frequency firing in the absence of synaptic transmission. J Neurophysiol 2006; 95:3105-12. [PMID: 16467425 DOI: 10.1152/jn.01083.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synchronous neuronal firing can be induced in hippocampal slices in the absence of synaptic transmission by lowering extracellular Ca2+ and raising extracellular K+. However, the ionic mechanisms underlying this nonsynaptic synchronous firing are not well understood. In this study we have investigated the role of KCNQ/Kv7 channels in regulating this form of nonsynaptic bursting activity. Incubation of rat hippocampal slices in reduced (<0.2 mM) [Ca2+]o and increased (6.3 mM) [K+]o, blocked synaptic transmission, increased neuronal firing, and led to the development of spontaneous periodic nonsynaptic epileptiform activity. This activity was recorded extracellularly as large (4.7 +/- 1.9 mV) depolarizing envelopes with superimposed high-frequency synchronous population spikes. These intraburst population spikes initially occurred at a high frequency (about 120 Hz), which decayed throughout the burst stabilizing in the gamma-frequency band (30-80 Hz). Further increasing [K+]o resulted in an increase in the interburst frequency without altering the intraburst population spike frequency. Application of retigabine (10 microM), a Kv7 channel modulator, completely abolished the bursts, in an XE-991-sensitive manner. Furthermore, application of the Kv7 channel blockers, linopirdine (10 microM) or XE-991 (10 microM) alone, abolished the gamma frequency, but not the higher-frequency population spike firing observed during low Ca2+/high K+ bursts. These data suggest that Kv7 channels are likely to play a role in the regulation of synchronous population firing activity.
Collapse
Affiliation(s)
- S Piccinin
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol School of Medical Sciences, Bristol, UK
| | | | | |
Collapse
|