1
|
Sezgin P, Gulcay-Ozcan E, Vučkovski M, Bondžić AM, Erucar I, Keskin S. Biomedical Applications of Metal-Organic Frameworks Revisited. Ind Eng Chem Res 2025; 64:1907-1932. [PMID: 39906289 PMCID: PMC11789151 DOI: 10.1021/acs.iecr.4c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025]
Abstract
Metal-organic frameworks (MOFs) have been shown to be great alternatives to traditional porous materials in various chemical applications, and they have been very widely studied for biomedical applications in the past decade specifically for drug storage. After our review published in 2011 [Keskin and Kızılel, Ind. Eng. Chem. Res. 2011, 50 (4), 1799-1812, 10.1021/ie101312k], we have witnessed a very fast growth not only in the number and variety of MOFs but also in their usage across a broad spectrum of biomedical fields. With the recent integration of molecular modeling and data science approaches to the experimental studies, biomedical applications of MOFs have been significantly accelerated positioning them as pivotal components in the regenerative medicine, medical imaging, and diagnostics. In this review, we visited the diverse biomedical applications of MOFs considering the recent experimental and computational efforts on drug storage and delivery, bioimaging, and biosensing. We focused on the underlying mechanisms governing the molecular interactions between MOFs and biological systems and discussed both the opportunities and challenges in the field to highlight the potential of MOFs in advanced therapeutics for cancer and neurological diseases.
Collapse
Affiliation(s)
- Pelin Sezgin
- Koç
University, Department of Chemical
and Biological Engineering, 34450 Istanbul, Turkey
| | - Ezgi Gulcay-Ozcan
- Sabanci
University, Faculty of Engineering
and Natural Sciences, Istanbul 34956, Turkey
| | - Marija Vučkovski
- Vinča
Institute of Nuclear Sciences, National Institute of the Republic
of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Aleksandra M. Bondžić
- Vinča
Institute of Nuclear Sciences, National Institute of the Republic
of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Ilknur Erucar
- Ozyegin
University, Department of Natural
and Mathematical Sciences, Faculty of Engineering, 34794 Istanbul, Turkey
| | - Seda Keskin
- Koç
University, Department of Chemical
and Biological Engineering, 34450 Istanbul, Turkey
| |
Collapse
|
2
|
Correction of the wake-sleep cycle by intranasal administration of dopamine in modeling of the preclinical stage of Parkinson's disease in rats. EUREKA: LIFE SCIENCES 2022. [DOI: 10.21303/2504-5695.2022.002643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sleep disorders, which are among the earliest and most sensitive non-motor manifestations of Parkinson's disease (PD), are not diagnosed in 40–50 % of patients and are not subject to the necessary correction. In this regard, the ineffectiveness of a late start of treatment, when more than 50 % of dopamine-producing neurons are already affected, dictates the need to search for and develop approaches to the prevention and slowdown of neurodegenerative pathology at the preclinical stages of its development using adequate experimental models. Taking into account the low bioavailability of dopamine (DA) and data on the advantages of the intranasal route of administration in comparison with oral and parenteral methods of drug delivery to the CNS, the aim of the work was to study the neurophysiological features of the wake-sleep cycle as early manifestations of nigrostriatal insufficiency and the effect of intranasal administration of DA on the quality of sleep during the formation of the preclinical stage of PD in rats. It was shown that under the conditions of modeling PD, the cyclic organization of sleep with a predominance of incomplete cycles against the background of hyperproduction of slow-wave sleep and REM phases are early manifestations of nigrostriatal insufficiency. Course administration of DA at a dose of 3 mg/kg is accompanied by the normalization of sleep quality in the form of reduction (by 76 %) in the number of incomplete cycles. The preventive orientation of the obtained effects may indicate a certain therapeutic potential of intranasal delivery of DA to the brain, aimed at slowing down the processes of neurodegeneration and possibly delaying its clinical manifestation
Collapse
|
3
|
de Figueiredo RM, Falconi-Sobrinho LL, Leite-Panissi CRA, Huston JP, Mattern C, de Carvalho MC, Coimbra NC. D 2-like receptor activation by intranasal dopamine attenuates fear responses induced by electrical stimulation of the dorsal periaqueductal grey matter, but fails to reduce aversion to pit vipers and T-maze performance. J Psychopharmacol 2022; 36:1257-1272. [PMID: 36239034 DOI: 10.1177/02698811221128018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Panic-like reactions elicited by electrical stimulation of the dorsal periaqueductal grey matter (ES-dPAG) seem to be regulated by dopamine (DA). We showed that DA applied intranasally (IN) increased escape-behaviour thresholds induced by ES-dPAG of rats, indicating a panicolytic-like effect. AIMS We investigated whether IN-DA increases escape-response thresholds induced by ES-dPAG by acting on D2-like receptors, and whether IN-DA affects escape responses elicited by the presence of a potential predator and by open space and height of the elevated T-maze (ETM) as well as motor performance in the open field (OF) test. METHODS Wistar rats exposed to ES-dPAG were treated with Sulpiride (SUL, 40 mg/kg, D2-like receptor antagonist) previously IN-DA (2 mg/kg). Independent groups of rats treated with IN-DA were submitted to prey versus snake paradigm (PSP), ETM and OF. RESULTS Anti-aversive effects of the IN-DA were reduced by SUL pretreatment in the ES-dPAG test. IN-DA did not affect the escape number in the PSP nor the escape latencies in the ETM as well as motor performance in the OF. CONCLUSIONS/INTERPRETATION The IN-DA effects in reducing unconditioned fear responses elicited by ES-dPAG seem to be mediated by D2-like receptors. The lack of effects on panic-related responses in the ETM and PSP may be related to the possibility of avoiding the danger inherent to these models, a defence strategy not available during ES-dPAG. These findings cannot be attributed to motor performance. The decision-making responses to avoid dangerous situations can be orchestrated by supra-mesencephalic structures connected by non-dopaminergic inputs.
Collapse
Affiliation(s)
- Rebeca Machado de Figueiredo
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Institute for Neuroscience and Behaviour (INeC), Ribeirão Preto, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.,Institute for Neuroscience and Behaviour (INeC), Ribeirão Preto, Brazil
| | - Christie Ramos Andrade Leite-Panissi
- Department of Psychology, Ribeirão Preto School of Philosophy, Science and Literature of the University of São Paulo, Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.,Institute for Neuroscience and Behaviour (INeC), Ribeirão Preto, Brazil
| | - Joseph P Huston
- Centre for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University of Düsseldorf, Germany
| | - Claudia Mattern
- MetP Pharma AG, Emmetten, Switzerland, and Oceanographic Centre, Nova Southeastern University, Fl, USA
| | - Milene Cristina de Carvalho
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Institute for Neuroscience and Behaviour (INeC), Ribeirão Preto, Brazil
| | - Norberto Cysne Coimbra
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.,Institute for Neuroscience and Behaviour (INeC), Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Obray JD, Small CA, Baldwin EK, Jang EY, Lee JG, Yang CH, Yorgason JT, Steffensen SC. Dopamine D2-Subtype Receptors Outside the Blood-Brain Barrier Mediate Enhancement of Mesolimbic Dopamine Release and Conditioned Place Preference by Intravenous Dopamine. Front Cell Neurosci 2022; 16:944243. [PMID: 35903367 PMCID: PMC9314669 DOI: 10.3389/fncel.2022.944243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
Dopamine (DA) is a cell-signaling molecule that does not readily cross the blood-brain barrier. Despite this, peripherally administered DA enhances DA levels in the nucleus accumbens and alters DA-related behaviors. This study was designed to investigate whether DA subtype-2 receptors are involved in the enhancement of nucleus accumbens (NAc) DA levels elicited by intravenous DA administration. This was accomplished by using microdialysis in the NAc and extracellular single unit recordings of putative DA neurons in the ventral tegmental area (VTA). Additionally, the reinforcing properties of intravenous DA were investigated using a place conditioning paradigm and the effects of intravenous DA on ultrasonic vocalizations were assessed. Following administration of intravenous dopamine, the firing rate of putative DA neurons in the VTA displayed a biphasic response and DA levels in the nucleus accumbens were enhanced. Pretreatment with domperidone, a peripheral-only DA D2 receptor (D2R) antagonist, reduced intravenous DA mediated increases in VTA DA neuron activity and NAc DA levels. Pretreatment with phentolamine, a peripheral α-adrenergic receptor antagonist, did not alter the effects of IV DA on mesolimbic DA neurotransmission. These results provide evidence for peripheral D2R mediation of the effects of intravenous DA on mesolimbic DA signaling.
Collapse
Affiliation(s)
- J. Daniel Obray
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
| | - Christina A. Small
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
| | - Emily K. Baldwin
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
| | - Eun Young Jang
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Jin Gyeom Lee
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Chae Ha Yang
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Jordan T. Yorgason
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
| | - Scott C. Steffensen
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
| |
Collapse
|
5
|
Obray JD, Jang EY, Klomp AM, Small CA, Richardson AP, LeBaron JJ, Lee JG, Yorgason JT, Yang CH, Steffensen SC. The peripheral dopamine 2 receptor antagonist domperidone attenuates ethanol enhancement of dopamine levels in the nucleus accumbens. Alcohol Clin Exp Res 2022; 46:396-409. [PMID: 35040146 PMCID: PMC8920780 DOI: 10.1111/acer.14775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/28/2021] [Accepted: 01/08/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Dopamine neuron firing in the ventral tegmental area (VTA) and dopamine release in the nucleus accumbens have been implicated in reward learning. Ethanol is known to increase both dopamine neuron firing in the VTA and dopamine levels in the nucleus accumbens. Despite this, some discrepancies exist between the dose of ethanol required to enhance firing in vivo and ex vivo. In the present study we investigated the effects of peripheral dopamine 2 subtype receptor antagonism on ethanol's effects on dopamine neurotransmission. METHODS Plasma catecholamine levels were assessed following ethanol administration across four different doses of EtOH. Microdialysis and voltammetry were used to assess the effects of domperidone pretreatment on ethanol-mediated increases in dopamine release in the nucleus accumbens. A place conditioning paradigm was used to assess conditioned preference for ethanol and whether domperidone pretreatment altered this preference. Open-field and loss-of-righting reflex paradigms were used to assess the effects of domperidone on ethanol-induced sedation. A rotarod apparatus was used to assess the effects of domperidone on ethanol-induced motor impairment. RESULTS Domperidone attenuated ethanol's enhancement of mesolimbic dopamine release under non-physiological conditions at intermediate (1.0 and 2.0 g/kg) doses of ethanol. Domperidone also decreased EtOH-induced sedation at 2.0 g/kg. Domperidone did not alter ethanol conditioned place preference nor did it affect ethanol-induced motor impairment. CONCLUSIONS These results show that peripheral dopamine 2 receptors mediate some of the effects of ethanol on nonphysiological dopamine neurotransmission, although these effects are not related to the rewarding properties of ethanol.
Collapse
Affiliation(s)
- James Daniel Obray
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA,Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Eun Young Jang
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA,Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Anneke M. Klomp
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Christina A. Small
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Aaron P. Richardson
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Joshua J. LeBaron
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Jin Gyeom Lee
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Jordan T. Yorgason
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Chae Ha Yang
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Scott C. Steffensen
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
6
|
Acute intranasal dopamine application counteracts the reversal learning deficit of spontaneously hypertensive rats in an attentional set-shifting task. Psychopharmacology (Berl) 2021; 238:2419-2428. [PMID: 33982142 DOI: 10.1007/s00213-021-05863-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
RATIONALE Studies on the attention-deficit/hyperactivity disorder (ADHD) have concluded that the disorder might be caused by a deficit in the inhibitory control of executive functions because of dopamine hypofunction. Recently, the intranasal route has emerged as an effective alternative means for sending dopamine directly to the brain. However, whether the treatment can ameliorate the deficits of inhibitory control in ADHD remains unknown. OBJECTIVES Investigating the effects of acute intranasal dopamine (IN-DA) on the inhibitory control of executive functions of an ADHD rodent model. METHODS We trained an animal model of ADHD, the spontaneously hypertensive rat (SHR), and Wistar rats as controls, in an attentional set-shifting task (ASST) in which dopamine (0.15 mg/kg, 0.3 mg/kg, or vehicle) was intranasally administered before the final test. RESULTS IN-DA application dose-dependently improved the performance and reduced errors of SHR in the initial reversal learning. The effect size was comparable to that of a peripheral injection of 0.6 mg/kg methylphenidate. In control Wistar rats, the highest dose of intranasal dopamine (0.3 mg/kg) induced deficits in the reversal learning of extradimensional discriminations. CONCLUSIONS The findings suggest that the IN-DA treatment has potential for use in the treatment of ADHD; however, caution must be exercised when determining the dosage to be administered, because too much dopamine may have negative effects.
Collapse
|
7
|
Trapani A, Guerra L, Corbo F, Castellani S, Sanna E, Capobianco L, Monteduro AG, Manno DE, Mandracchia D, Di Gioia S, Conese M. Cyto/Biocompatibility of Dopamine Combined with the Antioxidant Grape Seed-Derived Polyphenol Compounds in Solid Lipid Nanoparticles. Molecules 2021; 26:916. [PMID: 33572331 PMCID: PMC7916151 DOI: 10.3390/molecules26040916] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/15/2023] Open
Abstract
Background: The loss of nigrostriatal neurons containing dopamine (DA) together with the "mitochondrial dysfunction" in midbrain represent the two main causes related to the symptoms of Parkinson's disease (PD). Hence, the aim of this investigation is to co-administer the missing DA and the antioxidant grape seed-derived proanthocyanidins (grape seed extract, GSE) in order to increase the levels of the neurotransmitter (which is unable to cross the Blood Brain Barrier) and reducing the oxidative stress (OS) related to PD, respectively. Methods: For this purpose, we chose Solid Lipid Nanoparticles (SLN), because they have been already proven to increase DA uptake in the brain. DA-SLN adsorbing GSE (GSE/DA-SLN) were formulated and subjected to physico-chemical characterization, and their cytocompatibility and protection against OS were examined. Results: GSE was found on SLN surface and release studies evidenced the efficiency of GSE in preventing DA autoxidation. Furthermore, SLN showed high mucoadhesive strength and were found not cytotoxic to both primary Olfactory Ensheathing and neuroblastoma SH-SY5Y cells by MTT test. Co-administration of GSE/DA-SLN and the OS-inducing neurotoxin 6-hydroxydopamine (100 μM) resulted in an increase of SH-SY5Y cell viability. Conclusions: Hence, SLN formulations containing DA and GSE may constitute interesting candidates for non-invasive nose-to-brain delivery.
Collapse
Affiliation(s)
- Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Stefano Castellani
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Enrico Sanna
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, Faculty of Biology and Pharmacy, University of Cagliari, Cittadella Universitaria, 09042 Monserrato (Cagliari), Italy;
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.C.); (A.G.M.); (D.E.M.)
| | - Anna Grazia Monteduro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.C.); (A.G.M.); (D.E.M.)
| | - Daniela Erminia Manno
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.C.); (A.G.M.); (D.E.M.)
| | - Delia Mandracchia
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy;
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| |
Collapse
|
8
|
Chao OY, Pathak SS, Zhang H, Dunaway N, Li JS, Mattern C, Nikolaus S, Huston JP, Yang YM. Altered dopaminergic pathways and therapeutic effects of intranasal dopamine in two distinct mouse models of autism. Mol Brain 2020; 13:111. [PMID: 32778145 PMCID: PMC7418402 DOI: 10.1186/s13041-020-00649-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022] Open
Abstract
The dopamine (DA) system has a profound impact on reward-motivated behavior and is critically involved in neurodevelopmental disorders, such as autism spectrum disorder (ASD). Although DA defects are found in autistic patients, it is not well defined how the DA pathways are altered in ASD and whether DA can be utilized as a potential therapeutic agent for ASD. To this end, we employed a phenotypic and a genetic ASD model, i.e., Black and Tan BRachyury T+Itpr3tf/J (BTBR) mice and Fragile X Mental Retardation 1 knockout (Fmr1-KO) mice, respectively. Immunostaining of tyrosine hydroxylase (TH) to mark dopaminergic neurons revealed an overall reduction in the TH expression in the substantia nigra, ventral tegmental area and dorsal striatum of BTBR mice, as compared to C57BL/6 J wild-type ones. In contrast, Fmr1-KO animals did not show such an alteration but displayed abnormal morphology of TH-positive axons in the striatum with higher "complexity" and lower "texture". Both strains exhibited decreased expression of striatal dopamine transporter (DAT) and increased spatial coupling between vesicular glutamate transporter 1 (VGLUT1, a label for glutamatergic terminals) and TH signals, while GABAergic neurons quantified by glutamic acid decarboxylase 67 (GAD67) remained intact. Intranasal administration of DA rescued the deficits in non-selective attention, object-based attention and social approaching of BTBR mice, likely by enhancing the level of TH in the striatum. Application of intranasal DA to Fmr1-KO animals alleviated their impairment of social novelty, in association with reduced striatal TH protein. These results suggest that although the DA system is modified differently in the two ASD models, intranasal treatment with DA effectively rectifies their behavioral phenotypes, which may present a promising therapy for diverse types of ASD.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA
| | - Salil S Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA
| | - Hao Zhang
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA
| | - Nathan Dunaway
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA
| | - Jay-Shake Li
- Department of Psychology, National Chung Cheng University, Minhsiung, Chiayi, Taiwan, Republic of China
| | - Claudia Mattern
- M et P Pharma AG, Emmetten, Switzerland
- Oceanographic Center, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
| | - Susanne Nikolaus
- Clinic of Nuclear Medicine, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Heinrich Heine University of Düsseldorf, Universitaetsstr. 1, 40225, Düsseldorf, Germany.
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA.
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
9
|
Cometa S, Bonifacio MA, Trapani G, Di Gioia S, Dazzi L, De Giglio E, Trapani A. In vitro investigations on dopamine loaded Solid Lipid Nanoparticles. J Pharm Biomed Anal 2020; 185:113257. [PMID: 32199326 DOI: 10.1016/j.jpba.2020.113257] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/02/2020] [Accepted: 03/11/2020] [Indexed: 11/17/2022]
Abstract
The progressive degeneration of nigrostriatal neurons leads to depletion of the neurotransmitter dopamine (DA) in Parkinson's disease (PD). The hydrophilicity of DA, hindering its cross of the Blood Brain Barrier, makes impossible its therapeutic administration. This work aims at investigating some physicochemical features of novel Solid Lipid Nanoparticles (SLN) intended to enhance DA brain delivery for PD patients by intranasal administration. For this aim, novel SLN were formulated in the presence of Glycol Chitosan (GCS), and it was found that SLN containing GCS and DA were smaller than DA-loaded SLN, endowed with a slightly positive zeta potential value and, remarkably, incorporated 81 % of the initial DA content. The formulated SLN were accurately characterized by Infrared Spectroscopy in Attenuated Total Reflectance mode (FT-IT/ATR) and Thermogravimetric Analysis (TGA) to highlight SLN solid-state properties as a preliminary step forward biological assay. Overall, in vitro characterization shows that SLN are promising for DA incorporation and stable from a thermal viewpoint. Further studies are in due course to test their potential for PD treatment.
Collapse
Affiliation(s)
| | | | - Giuseppe Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Laura Dazzi
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Cagliari, Italy
| | - Elvira De Giglio
- Chemistry Department, University of Bari "Aldo Moro", Bari, Italy.
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
10
|
de Carvalho MC, Figueiredo RMD, Coimbra NC, Leite-Panissi CRA, de Souza Silva MA, Huston JP, Mattern C, Brandão ML. Intranasal dopamine attenuates fear responses induced by electric shock to the foot and by electrical stimulation of the dorsal periaqueductal gray matter. J Psychopharmacol 2019; 33:1524-1532. [PMID: 31328620 DOI: 10.1177/0269881119862527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Intranasally applied dopamine (IN-DA), which likely reaches the brain via nasal-brain pathways and bypasses the blood-brain barrier, has been found to increase extracellular DA and bind to the DA2 transporter in the striatum. Recent studies suggest that DA plays a significant role in the processing of signaled and unconditioned aversive stimulation, including evidence that may attenuate responses to painful input. The purpose of this study was to examine the effects of IN-DA on fear-related behaviors induced by electric shock to the foot or by electrical stimulation of the dorsal periaqueductal gray matter (dPAG). METHODS DA hydrochloride suspended in a viscous castor oil gel (1 or 2 mg/kg) was applied (IN-DA) in a volume of 5 μL into the nostrils of adult Wistar male rats in order to evaluate its effects on (a) freezing induced by electric shock to the foot and (b) thresholds of freezing and escape and duration of post-stimulation freezing induced by electrical stimulation of the dPAG. RESULTS IN-DA attenuated freezing induced by electric shock to the foot in the three test trials, indicating that it reduced long-term fear responses. IN-DA also increased the threshold of dPAG stimulation-induced escape responses and reduced post-stimulation freezing. CONCLUSIONS IN-DA, which has previously been shown to facilitate learning and to have antidepressive-like effects, attenuated unconditioned fear responses elicited by peripheral and intramesencephalic (dPAG) stimulation and reduced long-term conditioned fear responses.
Collapse
Affiliation(s)
- Milene Cristina de Carvalho
- Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, Brazil.,Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Rebeca Machado de Figueiredo
- Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, Brazil.,Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - Norberto Cysne Coimbra
- Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, Brazil.,Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Christie Ramos Andrade Leite-Panissi
- Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.,Department of Psychology, Ribeirão Preto School of Philosophy, Science and Literature of the University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Angélica de Souza Silva
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
| | - Claudia Mattern
- M et P Pharma AG, Emmetten, Switzerland.,Oceanographic Center, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Marcus Lira Brandão
- Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| |
Collapse
|
11
|
Pinna A, Ricco' R, Migheli R, Rocchitta G, Serra PA, Falcaro P, Malfatti L, Innocenzi P. A MOF-based carrier for in situ dopamine delivery. RSC Adv 2018; 8:25664-25672. [PMID: 35539814 PMCID: PMC9082660 DOI: 10.1039/c8ra04969f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 07/05/2018] [Indexed: 11/21/2022] Open
Abstract
MIL-88A (Fe) MOF crystals were nucleated and grown around a polymer core containing superparamagnetic nanoparticles to assemble a new class of biocompatible particles for magnetophoretic drug delivery of dopamine. The carrier enabled efficient targeted release, dopamine protection from oxidative damage, long-term delivery and improved drug delivery cost-efficiency. After loading, dopamine was stable within the carrier and did not undergo oxidation. Drug release monitoring via spectrofluorimetry revealed a shorter burst effect and higher release efficiency than silica based carriers. The in vitro cytotoxicity at different MOF concentrations and sizes was assessed using PC12 cells as the neuronal cell model. The drug was directly uptaken into the PC12 cells avoiding possible side effects due to oxidation occurring in the extracellular environment.
Collapse
Affiliation(s)
- Alessandra Pinna
- Department of Materials, Imperial College London, South Kensington Campus London SW72AZ UK
| | - Raffaele Ricco'
- Graz University of Technology, Institute of Physical and Theoretical Chemistry Stremayrgasse 9 8010 Graz Austria
| | - Rossana Migheli
- Dipartimento di Medicina Clinica e Sperimentale, Università di Sassari Viale S. Pietro 43 B 07100 Sassari Italy
| | - Gaia Rocchitta
- Dipartimento di Medicina Clinica e Sperimentale, Università di Sassari Viale S. Pietro 43 B 07100 Sassari Italy
| | - Pier Andrea Serra
- Dipartimento di Medicina Clinica e Sperimentale, Università di Sassari Viale S. Pietro 43 B 07100 Sassari Italy
| | - Paolo Falcaro
- Graz University of Technology, Institute of Physical and Theoretical Chemistry Stremayrgasse 9 8010 Graz Austria
| | - Luca Malfatti
- Laboratorio di Scienza dei Materiali e Nanotecnologie, CR-INSTM, Università di Sassari, Dipartimento di Chimica e Farmacia Via Vienna 2 07100 Sassari Italy
| | - Plinio Innocenzi
- Laboratorio di Scienza dei Materiali e Nanotecnologie, CR-INSTM, Università di Sassari, Dipartimento di Chimica e Farmacia Via Vienna 2 07100 Sassari Italy
| |
Collapse
|
12
|
Intra-nasal dopamine alleviates cognitive deficits in tgDISC1 rats which overexpress the human DISC1 gene. Neurobiol Learn Mem 2017; 146:12-20. [PMID: 29107702 DOI: 10.1016/j.nlm.2017.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 01/15/2023]
Abstract
The Disrupted-in-Schizophrenia 1 (DISC1) gene has been associated with mental illnesses such as major depression and schizophrenia. The transgenic DISC1 (tgDISC1) rat, which overexpresses the human DISC1 gene, is known to exhibit deficient dopamine (DA) homeostasis. To ascertain whether the DISC1 gene also impacts cognitive functions, 14-15 months old male tgDISC1 rats and wild-type controls were subjected to the novel object preference (NOP) test and the object-based attention test (OBAT) in order to assess short-term memory (1 h), long-term memory (24 h), and attention. RESULTS The tgDISC1 group exhibited intact short-term memory, but deficient long-term-memory in the NOP test and deficient attention-related behavior in the OBAT. In a different group of tgDISC1 rats, 3 mg/kg intranasally applied dopamine (IN-DA) or its vehicle was applied prior to the NOP or the OBAT test. IN-DA reversed cognitive deficits in both the NOP and OBAT tests. In a further cohort of tgDISC1 rats, post-mortem levels of DA, noradrenaline, serotonin and acetylcholine were determined in a variety of brain regions. The tgDISC1 group had less DA in the neostriatum, hippocampus and amygdala, less acetylcholine in neostriatum, nucleus accumbens, hippocampus, and amygdala, more serotonin in the nucleus accumbens, and less serotonin and noradrenaline in the amygdala. CONCLUSIONS Our findings show that DISC1 overexpression and misassembly is associated with deficits in long-term memory and attention-related behavior. Since behavioral impairments in tgDISC1 rats were reversed by IN-DA, DA deficiency may be a major cause for the behavioral deficits expressed in this model.
Collapse
|
13
|
Talbot T, Mattern C, de Souza Silva MA, Brandão ML. Intranasal administration of dopamine attenuates unconditioned fear in that it reduces restraint-induced ultrasound vocalizations and escape from bright light. J Psychopharmacol 2017; 31:682-690. [PMID: 28135884 DOI: 10.1177/0269881116686882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although substantial evidence suggests that dopamine (DA) enhances conditioned fear responses, few studies have examined the role of DA in unconditioned fear states. Whereas DA does not cross the blood-brain barrier, intranasally-applied dopamine reaches the brain directly via the nose-brain pathways in rodents, providing an alternative means of targeting DA receptors. Intranasal dopamine (IN-DA) has been demonstrated to bind to DA transporters and to increase extracellular DA in the striatum as well as having memory-promoting effects in rats. The purpose of this study was to examine the influence of IN-DA in three tests of fear/anxiety. METHODS The three doses of DA hydrochloride (0.03, 0.3, or 1 mg/kg) were applied in a viscous castor oil gel in a volume of 5 µl to each of both nostrils of adult Wistar rats prior to testing of (a) escape from a bright light, using a two-chamber procedure, (b) restraint-induced 22 kHz ultrasound vocalizations (USVs), and (c) exploratory behavior in the elevated plus-maze (EPM). RESULTS IN-DA dose-dependently reduced escape from bright light and the number of USV responses to restraint. It had no influence on the exploratory behavior in the EPM. CONCLUSIONS IN-DA application reduced escape behavior in two tests of unconditioned fear (escape from bright light and USV response to immobilization). These findings may be interpreted in light of the known antidepressant action of IN-DA and DA reuptake blockers. The results also confirm the promise of the nasal route as an alternative means for targeting the brain's dopaminergic receptors with DA.
Collapse
Affiliation(s)
- Teddy Talbot
- 1 Laboratório de Neuropsicofarmacologia, FFCLRP, Universidade de São Paulo, Campus USP, Ribeirão Preto, SP, Brazil.,2 Instituto de Neurociências e Comportamento, Avenida do Café, Ribeirão Preto, SP, Brazil
| | - Claudia Mattern
- 4 Oceanographic Center, Nova Southeastern University, Fort Lauderdale, FL, USA.,5 M et P Pharma AG, Emmetten, Switzerland
| | - Maria Angelica de Souza Silva
- 3 Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, Düsseldorf, Germany
| | - Marcus Lira Brandão
- 1 Laboratório de Neuropsicofarmacologia, FFCLRP, Universidade de São Paulo, Campus USP, Ribeirão Preto, SP, Brazil.,2 Instituto de Neurociências e Comportamento, Avenida do Café, Ribeirão Preto, SP, Brazil
| |
Collapse
|
14
|
Abdel-Hafiz L, Chao OY, Huston JP, Nikolaus S, Spieler RE, de Souza Silva MA, Mattern C. Promnestic effects of intranasally applied pregnenolone in rats. Neurobiol Learn Mem 2016; 133:185-195. [DOI: 10.1016/j.nlm.2016.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/24/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
|
15
|
de Souza Silva MA, Mattern C, Decheva C, Huston JP, Sadile AG, Beu M, Müller HW, Nikolaus S. Intranasal Dopamine Reduces In Vivo [(123)I]FP-CIT Binding to Striatal Dopamine Transporter: Correlation with Behavioral Changes and Evidence for Pavlovian Conditioned Dopamine Response. Front Behav Neurosci 2016; 10:80. [PMID: 27148001 PMCID: PMC4840254 DOI: 10.3389/fnbeh.2016.00080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/08/2016] [Indexed: 02/02/2023] Open
Abstract
Purpose: Dopamine (DA), which does not cross the blood-brain barrier, has central and behavioral effects when administered via the nasal route. Neither the mechanisms of central action of intranasal dopamine (IN-DA), nor its mechanisms of diffusion and transport into the brain are well understood. We here examined whether IN-DA application influences dopamine transporter (DAT) binding in the dorsal striatum and assessed the extent of binding in relation to motor and exploratory behaviors. We hypothesized that, based on the finding of increased extracellular DA in the striatum induced by application of IN-DA, binding of [123I]FP-CIT to the DAT should be decreased due to competition at the receptor. Methods: Rats were administered 3 mg/kg IN-DA and vehicle (VEH), with IN-DA injection either preceding or following VEH. Then motor and exploratory behaviors (traveled distance, velocity, center time, sitting, rearing, head-shoulder motility, grooming) were assessed for 30 min in an open field prior to administration of [123I]FP-CIT. DAT binding after IN-DA and VEH was measured with small animal SPECT 2 h following administration of the radioligand. Results: (1) After IN-DA application, striatal DAT binding was significantly lower as compared to VEH, indicating that the nasally delivered DA had central action and increased DA levels comparable to that found previously with L-DOPA administration; and (2) DAT binding in response to intranasal VEH was lower when IN-DA application preceded VEH treatment. This finding is suggestive of Pavlovian conditioning of DA at the level of the DAT, since the DA treatment modified (decreased) the binding in response to the subsequent VEH treatment. VEH treatment also reduced motor and exploratory behaviors more when applied before, as compared to when it followed IN-DA application, also indicative of behavioral Pavlovian conditioning akin to that found upon application of various psychostimulant drugs. Conclusions: The results: (a) demonstrate a direct central action of intranasally applied DA on the DAT in the dorsal striatum, indicating enhanced DA availability; and (b) provide first evidence of a Pavlovian conditioned DA response at the DAT. The latter results have relevance to understanding neurochemical mechanisms that underlie placebo action in the treatment of Parkinsonian patients.
Collapse
Affiliation(s)
- Maria A de Souza Silva
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Germany
| | - Claudia Mattern
- M et P Pharma AGEmmetten, Switzerland; Oceanographic Center, Nova Southeastern UniversityFort Lauderdale, FL, USA
| | - Cvetana Decheva
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Germany
| | - Adolfo G Sadile
- Department of Experimental Medicine, School of Medicine, II University of Naples Naples, Italy
| | - Markus Beu
- Clinic of Nuclear Medicine, University Hospital Düsseldorf Düsseldorf, Germany
| | - H-W Müller
- Clinic of Nuclear Medicine, University Hospital Düsseldorf Düsseldorf, Germany
| | - Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf Düsseldorf, Germany
| |
Collapse
|
16
|
Huston JP, Kornhuber J, Mühle C, Japtok L, Komorowski M, Mattern C, Reichel M, Gulbins E, Kleuser B, Topic B, De Souza Silva MA, Müller CP. A sphingolipid mechanism for behavioral extinction. J Neurochem 2016; 137:589-603. [PMID: 26788861 DOI: 10.1111/jnc.13537] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/24/2022]
Abstract
Reward-dependent instrumental behavior must continuously be re-adjusted according to environmental conditions. Failure to adapt to changes in reward contingencies may incur psychiatric disorders like anxiety and depression. When an expected reward is omitted, behavior undergoes extinction. While extinction involves active re-learning, it is also accompanied by emotional behaviors indicative of frustration, anxiety, and despair (extinction-induced depression). Here, we report evidence for a sphingolipid mechanism in the extinction of behavior. Rapid extinction, indicating efficient re-learning, coincided with a decrease in the activity of the enzyme acid sphingomyelinase (ASM), which catalyzes turnover of sphingomyelin to ceramide, in the dorsal hippocampus of rats. The stronger the decline in ASM activity, the more rapid was the extinction. Sphingolipid-focused lipidomic analysis showed that this results in a decline of local ceramide species in the dorsal hippocampus. Ceramides shape the fluidity of lipid rafts in synaptic membranes and by that way can control neural plasticity. We also found that aging modifies activity of enzymes and ceramide levels in selective brain regions. Aging also changed how the chronic treatment with corticosterone (stress) or intranasal dopamine modified regional enzyme activity and ceramide levels, coinciding with rate of extinction. These data provide first evidence for a functional ASM-ceramide pathway in the brain involved in the extinction of learned behavior. This finding extends the known cellular mechanisms underlying behavioral plasticity to a new class of membrane-located molecules, the sphingolipids, and their regulatory enzymes, and may offer new treatment targets for extinction- and learning-related psychopathological conditions. Sphingolipids are common lipids in the brain which form lipid domains at pre- and postsynaptic membrane compartments. Here we show a decline in dorsal hippocampus ceramide species together with a reduction of acid sphingomyelinase activity during extinction of conditioned behavior in rats. This reduction was associated with expression of re-learning-related behavior, but not with emotional behaviors. Read the Editorial Highlight for this article on page 485.
Collapse
Affiliation(s)
- Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine-University of Dusseldorf, Düsseldorf, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Lukasz Japtok
- Institute of Nutritional Science, Faculty of Mathematics and Natural Science, University of Potsdam, Nuthetal, Germany
| | - Mara Komorowski
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine-University of Dusseldorf, Düsseldorf, Germany
| | - Claudia Mattern
- M et P Pharma AG, Emmetten, Switzerland.,Oceanographic Center, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany.,Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Burkhard Kleuser
- Institute of Nutritional Science, Faculty of Mathematics and Natural Science, University of Potsdam, Nuthetal, Germany
| | - Bianca Topic
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine-University of Dusseldorf, Düsseldorf, Germany
| | - Maria A De Souza Silva
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine-University of Dusseldorf, Düsseldorf, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
17
|
Abstract
Animal models have been vital to recent advances in experimental neuroscience, including the modeling of common human brain disorders such as anxiety, depression, and schizophrenia. As mice express robust anxiety-like behaviors when exposed to stressors (e.g., novelty, bright light, or social confrontation), these phenotypes have clear utility in testing the effects of psychotropic drugs. Of specific interest is the extent to which mouse models can be used for the screening of new anxiolytic drugs and verification of their possible applications in humans. To address this problem, the present chapter will review different experimental models of mouse anxiety and discuss their utility for testing anxiolytic and anxiogenic drugs. Detailed protocols will be provided for these paradigms, and possible confounds will be addressed accordingly.
Collapse
|
18
|
Intranasal delivery of dopamine to the striatum using glycol chitosan/sulfobutylether-β-cyclodextrin based nanoparticles. Eur J Pharm Biopharm 2015; 94:180-93. [PMID: 26032293 DOI: 10.1016/j.ejpb.2015.05.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/23/2015] [Accepted: 05/09/2015] [Indexed: 12/13/2022]
Abstract
The aim of this study was to evaluate chitosan (CS)-, glycol chitosan (GCS)- and corresponding thiomer-based nanoparticles (NPs) for delivering dopamine (DA) to the brain by nasal route. Thus, the polyanions tripolyphosphate and sulfobutylether-β-cyclodextrin (SBE-β-CD), respectively, were used as polycation crosslinking agents and SBE-β-CD also in order to enhance the DA stability. The most interesting formulation, containing GCS and SBE-β-CD, was denoted as DA GCS/DA-CD NPs. NMR spectroscopy demonstrated an inclusion complex formation between SBE-β-CD and DA. X-ray photoelectron spectroscopy analysis revealed the presence of DA on the external surface of NPs. DA GCS/DA-CD NPs showed cytotoxic effect toward Olfactory Ensheathing Cells only at higher dosage. Acute administration of DA GCS/DA-CD NPs into the right nostril of rats did not modify the levels of the neurotransmitter in both right and left striatum. Conversely, repeated intranasal administration of DA GCS/DA-CD NPs into the right nostril significantly increased DA in the ipsilateral striatum. Fluorescent microscopy of olfactory bulb after acute administration of DA fluorescent-labeled GCS/DA-CD NPs into the right nostril showed the presence of NPs only in the right olfactory bulb and no morphological tissue damage occurred. Thus, these GCS based NPs could be potentially used as carriers for nose-to-brain DA delivery for the Parkinson's disease treatment.
Collapse
|
19
|
Trossbach SV, de Souza Silva MA, Huston JP, Korth C, Mattern C. Intranasal dopamine treatment reinstates object-place memory in aged rats. Neurobiol Learn Mem 2014; 114:231-5. [PMID: 25062646 DOI: 10.1016/j.nlm.2014.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 07/15/2014] [Accepted: 07/15/2014] [Indexed: 11/16/2022]
Abstract
Following oral or IV administration, dopamine (DA) cannot cross the blood-brain barrier to a significant extent, but can enter the brain when administered via the nasal passages. Intranasal administration of DA was shown to increase extracellular DA in the striatum, to have antidepressant action and to improve attention and working memory in rats. Here we show that aged (22-24 months old) rats are deficient in an object-place learning task, but that this learning/memory is intact and comparable with that of adult rats upon pre-trial administration of 0.3 mg/kg DA gel into the nasal passages. This result raises the possibility of the therapeutic application of intranasal DA treatment for age-related cognitive disorders.
Collapse
Affiliation(s)
- S V Trossbach
- Department Neuropathology, Heinrich-Heine University Düsseldorf, Moorenstr. 5, Düsseldorf 40225, Germany.
| | - M A de Souza Silva
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, Düsseldorf 40225, Germany.
| | - J P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, Düsseldorf 40225, Germany.
| | - C Korth
- Department Neuropathology, Heinrich-Heine University Düsseldorf, Moorenstr. 5, Düsseldorf 40225, Germany.
| | - C Mattern
- M et P Pharma AG, 6376 Emmetten, Switzerland; Oceanographic Center, Nova Southeastern University, Fort Lauderdale, FL 33314, USA.
| |
Collapse
|
20
|
Prepuberal intranasal dopamine treatment in an animal model of ADHD ameliorates deficient spatial attention, working memory, amino acid transmitters and synaptic markers in prefrontal cortex, ventral and dorsal striatum. Amino Acids 2014; 46:2105-22. [DOI: 10.1007/s00726-014-1753-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/11/2022]
|
21
|
Kashiwayanagi M. [Characteristics of olfactory epithelium and manipulations of neural functions in the brain by the intranasal administration]. YAKUGAKU ZASSHI 2014; 132:1247-53. [PMID: 23123715 DOI: 10.1248/yakushi.12-00229-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Olfactory cells receive numerous odorants including toxic substances. To avoid complete loss of the olfactory function by toxic odorants, continuous neurogenesis of olfactory cells occurs even at adulthood. Newly generated olfactory neurons extend their axons to the olfactory bulb. Various molecules including polypeptides, proteins, polynucleotides, virus, and cells administrated intranasally have been reported to move from the olfactory epithelium to the brain tissue via the olfactory epithelium-olfactory bulb pathway. I discuss the pathway of substances intranasally administrated to the brain from the view point of characteristics of the olfactory epithelium.
Collapse
Affiliation(s)
- Makoto Kashiwayanagi
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.
| |
Collapse
|
22
|
Gruden MA, Davydova TV, Narkevich VB, Fomina VG, Wang C, Kudrin VS, Morozova-Roche LA, Sewell RDE. Intranasal administration of alpha-synuclein aggregates: a Parkinson's disease model with behavioral and neurochemical correlates. Behav Brain Res 2014; 263:158-68. [PMID: 24480422 DOI: 10.1016/j.bbr.2014.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/11/2014] [Accepted: 01/17/2014] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder in which both alpha-synuclein (α-syn) and dopamine (DA) have a critical role. Our previous studies instigated a novel PD model based on nasal inoculation with α-syn aggregates which expressed parkinsonian-like behavioral and immunological features. The current study in mice substantiated the robustness of the amyloid nasal vector model by examining behavioral consequences with respect to DA-ergic neurochemical corollaries. In vitro generated α-syn oligomers and fibrils were characterized using atomic force microscopy and the thioflavin T binding assay. These toxic oligomers or fibrils administered alone (0.48 mg/kg) or their 50:50 combination (total dose of 0.48 mg/kg) were given intranasally for 14 days and "open-field" behavior was tested on days 0, 15 and 28 of the protocol. Behavioral deficits at the end of the 14-day dosing regime and on day 28 (i.e., 14 days after treatment completion) induced rigidity, hypokinesia and immobility. This was accompanied by elevated nigral but not striatal DA, DOPAC and HVA concentrations in response to dual administration of α-syn oligomers plus fibrils but not the oligomers by themselves. α-Syn fibrils intensified not only the hypokinesia and immobility 14 days post treatment, but also reduced vertical rearing and enhanced DA levels in the substantia nigra. Only nigral DA turnover (DOPAC/DA but not HVA/DA ratio) was augmented in response to fibril treatment but there were no changes in the striatum. Compilation of these novel behavioral and neurochemical findings substantiate the validity of the α-syn nasal vector model for investigating parkinsonian-like symptoms.
Collapse
Affiliation(s)
- Marina A Gruden
- P.K. Anokhin Institute of Normal Physiology, Russian Academy of Medical Science, Moscow, Russia
| | - Tatiana V Davydova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Science, Moscow, Russia
| | - Victor B Narkevich
- Institute of Pharmacology, Russian Academy of Medical Science, Moscow, Russia
| | - Valentina G Fomina
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Science, Moscow, Russia
| | - Chao Wang
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-90187, Sweden
| | - Vladimir S Kudrin
- Institute of Pharmacology, Russian Academy of Medical Science, Moscow, Russia
| | | | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK.
| |
Collapse
|
23
|
Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F, Sitruk-Ware R, De Nicola AF, Guennoun R. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 2013; 113:6-39. [PMID: 24172649 DOI: 10.1016/j.pneurobio.2013.09.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/15/2013] [Accepted: 09/21/2013] [Indexed: 02/08/2023]
Abstract
Progesterone is commonly considered as a female reproductive hormone and is well-known for its role in pregnancy. It is less well appreciated that progesterone and its metabolite allopregnanolone are also male hormones, as they are produced in both sexes by the adrenal glands. In addition, they are synthesized within the nervous system. Progesterone and allopregnanolone are associated with adaptation to stress, and increased production of progesterone within the brain may be part of the response of neural cells to injury. Progesterone receptors (PR) are widely distributed throughout the brain, but their study has been mainly limited to the hypothalamus and reproductive functions, and the extra-hypothalamic receptors have been neglected. This lack of information about brain functions of PR is unexpected, as the protective and trophic effects of progesterone are much investigated, and as the therapeutic potential of progesterone as a neuroprotective and promyelinating agent is currently being assessed in clinical trials. The little attention devoted to the brain functions of PR may relate to the widely accepted assumption that non-reproductive actions of progesterone may be mainly mediated by allopregnanolone, which does not bind to PR, but acts as a potent positive modulator of γ-aminobutyric acid type A (GABA(A) receptors. The aim of this review is to critically discuss effects of progesterone on the nervous system via PR, and of allopregnanolone via its modulation of GABA(A) receptors, with main focus on the brain.
Collapse
Affiliation(s)
- M Schumacher
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France.
| | - C Mattern
- M et P Pharma AG, Emmetten, Switzerland
| | - A Ghoumari
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - J P Oudinet
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - P Liere
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - F Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Sitruk-Ware
- Population Council and Rockefeller University, New York, USA
| | - A F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Guennoun
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| |
Collapse
|
24
|
Kholodar AV, Amikishieva AV, Anisimov MP. Effects of Intranasal Administration of Dopamine on Anxiety and Locomotor Activity in Two Mouse Strains. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11055-013-9747-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Chao OY, Mattern C, De Souza Silva AM, Weßler J, Ruocco LA, Nikolaus S, Huston JP, Pum ME. Intranasally applied l-DOPA alleviates parkinsonian symptoms in rats with unilateral nigro-striatal 6-OHDA lesions. Brain Res Bull 2012; 87:340-5. [DOI: 10.1016/j.brainresbull.2011.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/31/2011] [Accepted: 11/07/2011] [Indexed: 10/15/2022]
|
26
|
Improved muscle strength and mobility in the dy(2J)/dy(2J) mouse with merosin deficient congenital muscular dystrophy treated with Glatiramer acetate. Neuromuscul Disord 2010; 20:267-72. [PMID: 20304648 DOI: 10.1016/j.nmd.2010.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 01/01/2023]
Abstract
The therapeutic effect of Glatiramer acetate, an immune modulating agent, was evaluated in the dy(2J)/dy(2J) mouse with merosin deficient congenital muscular dystrophy, which is a milder variant of the dy/dy mouse. The treated mice showed significant improvement in hind limb muscle strength measured by electronic grip strength meter and in motor performance quantified by video detection software. Glatiramer acetate treatment was associated with significantly increased expression of regeneration transcription factors MyoD and myogenin, and attenuation of the fibrosis markers vimentin and fibronectin. No effective treatment is currently available in congenital muscular dystrophy and Glatiramer acetate may present a new potential treatment for this disorder.
Collapse
|
27
|
Hart PC, Bergner CL, Smolinsky AN, Dufour BD, Egan RJ, Laporte JL, Kalueff AV. Experimental models of anxiety for drug discovery and brain research. Methods Mol Biol 2010; 602:299-321. [PMID: 20012406 DOI: 10.1007/978-1-60761-058-8_18] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Animal models have been vital to recent advances in experimental neuroscience, including the modeling of common human brain disorders such as anxiety, depression, and schizophrenia. As mice express robust anxiety-like behaviors when exposed to stressors (e.g., novelty, bright light, or social confrontation), these phenotypes have clear utility in testing the effects of psychotropic drugs. Of specific interest is the extent to which mouse models can be used for the screening of new anxiolytic drugs and verification of their possible applications in humans. To address this problem, the present chapter will review different experimental models of mouse anxiety and discuss their utility for testing anxiolytic and anxiogenic drugs. Detailed protocols will be provided for these paradigms, and possible confounds will be addressed accordingly.
Collapse
Affiliation(s)
- Peter C Hart
- Department of Physiology, Georgetown University Medical School, Washington, DC, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Pum ME, Schäble S, Harooni HE, Topic B, De Souza Silva MA, Li JS, Huston JP, Mattern C. Effects of intranasally applied dopamine on behavioral asymmetries in rats with unilateral 6-hydroxydopamine lesions of the nigro-striatal tract. Neuroscience 2009; 162:174-83. [PMID: 19401223 DOI: 10.1016/j.neuroscience.2009.04.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 11/18/2022]
Abstract
Due to its lipophobic properties, dopamine is unable to cross the blood-brain barrier following systemic application. However, recently it has been demonstrated that, when applied directly via the nasal passages in the rat, dopamine exerts neurochemical and behavioural action, including increases of dopamine in striatal subregions, antidepressive-like action, and increased behavioral activity. These effects could potentially be mediated by exogenous dopamine acting as a direct agonist at postsynaptic dopamine receptors. However, it is also possible that intranasally applied dopamine acts indirectly via the modulation of the activity of dopaminergic cell bodies. To approach this question, the present study used rats with unilateral 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal tract, as these lesions lead to pharmacologically stimulated behavioural asymmetries which are specific for direct and indirect dopamine agonists. We found that 7 days of repeated treatment with intranasal dopamine induced a sensitization of the turning response to amphetamine, but not to apomorphine. Furthermore, intranasal dopamine dose-dependently increased the use of the forepaw ipsilateral to the 6-OHDA-lesioned side of the brain. These results suggest that intranasally administered dopamine acts via an indirect mechanism of action, putatively by increasing the release of endogenous dopamine in the brain.
Collapse
Affiliation(s)
- M E Pum
- Institute of Physiological Psychology and Center for Biological and Medical Research, University of Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Attenuating effects of testosterone on depressive-like behavior in the forced swim test in healthy male rats. Brain Res Bull 2009; 79:182-6. [DOI: 10.1016/j.brainresbull.2009.02.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/09/2009] [Accepted: 02/24/2009] [Indexed: 11/19/2022]
|
31
|
de Souza Silva MA, Mattern C, Topic B, Buddenberg TE, Huston JP. Dopaminergic and serotonergic activity in neostriatum and nucleus accumbens enhanced by intranasal administration of testosterone. Eur Neuropsychopharmacol 2009; 19:53-63. [PMID: 18818056 DOI: 10.1016/j.euroneuro.2008.08.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/01/2008] [Accepted: 08/12/2008] [Indexed: 12/01/2022]
Abstract
Testosterone was administered intranasally in anesthetized male rats, and its effects on the activity of dopaminergic and serotonergic neurons in the neostriatum and nucleus accumbens were assessed by means of microdialysis and HPLC. The treatment (0.5, 1.0 or 2.0 mg/kg of testosterone or vehicle, 10 microl volume) was applied in both nostrils, half (5 microl) into each. Subcutaneous injections of testosterone (2.0, 4.0 or 8.0 mg/kg) or vehicle were tested in other subjects. Samples were collected for 5 h. In the neostriatum, an increase of dopamine occurred after 2.0 mg/kg. Serotonin levels increased after 1.0 mg/kg dose. In the nucleus accumbens, dopamine and serotonin increased after 1.0 mg/kg and 2.0 mg/kg doses. Subcutaneous administration of 8.0 mg/kg testosterone increased dopamine and serotonin in the neostriatum only. We conclude that intranasal administration of testosterone is a more efficacious way for targeting the brain than the subcutaneous route, and may be considered as a means to activate central dopaminergic and serotonergic systems.
Collapse
Affiliation(s)
- M A de Souza Silva
- Institute of Physiological Psychology and Center for Biological and Medical Research, University of Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
32
|
de Souza Silva MA, Topic B, Huston JP, Mattern C. Intranasal administration of progesterone increases dopaminergic activity in amygdala and neostriatum of male rats. Neuroscience 2008; 157:196-203. [PMID: 18824215 DOI: 10.1016/j.neuroscience.2008.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 11/29/2022]
Abstract
We evaluated the effects of intranasal administration of progesterone (PROG) on the activity of dopaminergic neurons in the brain of anesthetized rats by means of microdialysis. Male Wistar rats were implanted with guide cannulae in the basolateral amygdala and neostriatum. Three to 5 days later, they were anesthetized with urethane, and dialysis probes were inserted. After a stabilization period of 2 h, four 30-min samples were collected. Thereafter, the treatment (0.5, 1.0 or 2.0 mg/kg of PROG dissolved in a viscous castor oil mixture, or vehicle) was applied into the nose in a volume of 10 microl (5 microl in each nostril). In other animals, an s.c. injection of PROG (1.0, 2.0 or 4.0 mg/kg) or vehicle was given. Samples of both application ways were collected at 30-min interval for 4 h after the treatment and immediately analyzed with high performance liquid chromatography and electrochemical detection. Intranasal administration of 2 mg/kg of PROG led to an immediate (within 30 min after the treatment) significant increase in the basolateral amygdala dopamine levels. In the neostriatum, the 2 mg/kg dose led to a delayed significant increase in dopamine. S.c. administration of 4 mg/kg of PROG was followed by a delayed significant increase in dopamine, both, in the basolateral amygdala and neostriatum, but smaller in magnitude in comparison to the intranasal treatment. This is the first study to demonstrate dopamine-enhancing effects of PROG, not only in the neostriatum, but also in the basolateral amygdala. Our results indicate that the intranasal route of administration of PROG is a more efficacious way for targeting the brain than the s.c. route.
Collapse
Affiliation(s)
- M A de Souza Silva
- Institute of Physiological Psychology and Center for Biological and Medical Research, University of Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|