1
|
Stocke S, Samuelsen CL. Multisensory Integration Underlies the Distinct Representation of Odor-Taste Mixtures in the Gustatory Cortex of Behaving Rats. J Neurosci 2024; 44:e0071242024. [PMID: 38548337 PMCID: PMC11097261 DOI: 10.1523/jneurosci.0071-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 05/15/2024] Open
Abstract
The perception of food relies on the integration of olfactory and gustatory signals originating from the mouth. This multisensory process generates robust associations between odors and tastes, significantly influencing the perceptual judgment of flavors. However, the specific neural substrates underlying this integrative process remain unclear. Previous electrophysiological studies identified the gustatory cortex as a site of convergent olfactory and gustatory signals, but whether neurons represent multimodal odor-taste mixtures as distinct from their unimodal odor and taste components is unknown. To investigate this, we recorded single-unit activity in the gustatory cortex of behaving female rats during the intraoral delivery of individual odors, individual tastes, and odor-taste mixtures. Our results demonstrate that chemoselective neurons in the gustatory cortex are broadly responsive to intraoral chemosensory stimuli, exhibiting time-varying multiphasic changes in activity. In a subset of these chemoselective neurons, odor-taste mixtures elicit nonlinear cross-modal responses that distinguish them from their olfactory and gustatory components. These findings provide novel insights into multimodal chemosensory processing by the gustatory cortex, highlighting the distinct representation of unimodal and multimodal intraoral chemosensory signals. Overall, our findings suggest that olfactory and gustatory signals interact nonlinearly in the gustatory cortex to enhance the identity coding of both unimodal and multimodal chemosensory stimuli.
Collapse
Affiliation(s)
- Sanaya Stocke
- Departments of Biology, University of Louisville, Louisville, Kentucky 40292
| | - Chad L Samuelsen
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
2
|
Ruikes TR, Fiorilli J, Lim J, Huis In 't Veld G, Bosman C, Pennartz CMA. Theta Phase Entrainment of Single-Cell Spiking in Rat Somatosensory Barrel Cortex and Secondary Visual Cortex Is Enhanced during Multisensory Discrimination Behavior. eNeuro 2024; 11:ENEURO.0180-23.2024. [PMID: 38621992 PMCID: PMC11055653 DOI: 10.1523/eneuro.0180-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 04/17/2024] Open
Abstract
Phase entrainment of cells by theta oscillations is thought to globally coordinate the activity of cell assemblies across different structures, such as the hippocampus and neocortex. This coordination is likely required for optimal processing of sensory input during recognition and decision-making processes. In quadruple-area ensemble recordings from male rats engaged in a multisensory discrimination task, we investigated phase entrainment of cells by theta oscillations in areas along the corticohippocampal hierarchy: somatosensory barrel cortex (S1BF), secondary visual cortex (V2L), perirhinal cortex (PER), and dorsal hippocampus (dHC). Rats discriminated between two 3D objects presented in tactile-only, visual-only, or both tactile and visual modalities. During task engagement, S1BF, V2L, PER, and dHC LFP signals showed coherent theta-band activity. We found phase entrainment of single-cell spiking activity to locally recorded as well as hippocampal theta activity in S1BF, V2L, PER, and dHC. While phase entrainment of hippocampal spikes to local theta oscillations occurred during sustained epochs of task trials and was nonselective for behavior and modality, somatosensory and visual cortical cells were only phase entrained during stimulus presentation, mainly in their preferred modality (S1BF, tactile; V2L, visual), with subsets of cells selectively phase-entrained during cross-modal stimulus presentation (S1BF: visual; V2L: tactile). This effect could not be explained by modulations of firing rate or theta amplitude. Thus, hippocampal cells are phase entrained during prolonged epochs, while sensory and perirhinal neurons are selectively entrained during sensory stimulus presentation, providing a brief time window for coordination of activity.
Collapse
Affiliation(s)
- Thijs R Ruikes
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Julien Fiorilli
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Judith Lim
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Gerjan Huis In 't Veld
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Conrado Bosman
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Cyriel M A Pennartz
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
3
|
Shi L, Liu C, Peng X, Cao Y, Levy DA, Xue G. The neural representations underlying asymmetric cross-modal prediction of words. Hum Brain Mapp 2023; 44:2418-2435. [PMID: 36715307 PMCID: PMC10028649 DOI: 10.1002/hbm.26219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Cross-modal prediction serves a crucial adaptive role in the multisensory world, yet the neural mechanisms underlying this prediction are poorly understood. The present study addressed this important question by combining a novel audiovisual sequence memory task, functional magnetic resonance imaging (fMRI), and multivariate neural representational analyses. Our behavioral results revealed a reliable asymmetric cross-modal predictive effect, with a stronger prediction from visual to auditory (VA) modality than auditory to visual (AV) modality. Mirroring the behavioral pattern, we found the superior parietal lobe (SPL) showed higher pattern similarity for VA than AV pairs, and the strength of the predictive coding in the SPL was positively correlated with the behavioral predictive effect in the VA condition. Representational connectivity analyses further revealed that the SPL mediated the neural pathway from the visual to the auditory cortex in the VA condition but was not involved in the auditory to visual cortex pathway in the AV condition. Direct neural pathways within the unimodal regions were found for the visual-to-visual and auditory-to-auditory predictions. Together, these results provide novel insights into the neural mechanisms underlying cross-modal sequence prediction.
Collapse
Affiliation(s)
- Liang Shi
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, People's Republic of China
| | - Chuqi Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, People's Republic of China
| | - Xiaojing Peng
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, People's Republic of China
| | - Yifei Cao
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, People's Republic of China
| | - Daniel A Levy
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Herzliya, Israel
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, People's Republic of China
| |
Collapse
|
4
|
Samuelsen CL, Vincis R. Cortical Hub for Flavor Sensation in Rodents. Front Syst Neurosci 2021; 15:772286. [PMID: 34867223 PMCID: PMC8636119 DOI: 10.3389/fnsys.2021.772286] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/21/2021] [Indexed: 01/05/2023] Open
Abstract
The experience of eating is inherently multimodal, combining intraoral gustatory, olfactory, and somatosensory signals into a single percept called flavor. As foods and beverages enter the mouth, movements associated with chewing and swallowing activate somatosensory receptors in the oral cavity, dissolve tastants in the saliva to activate taste receptors, and release volatile odorant molecules to retronasally activate olfactory receptors in the nasal epithelium. Human studies indicate that sensory cortical areas are important for intraoral multimodal processing, yet their circuit-level mechanisms remain unclear. Animal models allow for detailed analyses of neural circuits due to the large number of molecular tools available for tracing and neuronal manipulations. In this review, we concentrate on the anatomical and neurophysiological evidence from rodent models toward a better understanding of the circuit-level mechanisms underlying the cortical processing of flavor. While more work is needed, the emerging view pertaining to the multimodal processing of food and beverages is that the piriform, gustatory, and somatosensory cortical regions do not function solely as independent areas. Rather they act as an intraoral cortical hub, simultaneously receiving and processing multimodal sensory information from the mouth to produce the rich and complex flavor experience that guides consummatory behavior.
Collapse
Affiliation(s)
- Chad L Samuelsen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States
| | - Roberto Vincis
- Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
5
|
Siemann JK, Veenstra-VanderWeele J, Wallace MT. Approaches to Understanding Multisensory Dysfunction in Autism Spectrum Disorder. Autism Res 2020; 13:1430-1449. [PMID: 32869933 PMCID: PMC7721996 DOI: 10.1002/aur.2375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Abnormal sensory responses are a DSM-5 symptom of autism spectrum disorder (ASD), and research findings demonstrate altered sensory processing in ASD. Beyond difficulties with processing information within single sensory domains, including both hypersensitivity and hyposensitivity, difficulties in multisensory processing are becoming a core issue of focus in ASD. These difficulties may be targeted by treatment approaches such as "sensory integration," which is frequently applied in autism treatment but not yet based on clear evidence. Recently, psychophysical data have emerged to demonstrate multisensory deficits in some children with ASD. Unlike deficits in social communication, which are best understood in humans, sensory and multisensory changes offer a tractable marker of circuit dysfunction that is more easily translated into animal model systems to probe the underlying neurobiological mechanisms. Paralleling experimental paradigms that were previously applied in humans and larger mammals, we and others have demonstrated that multisensory function can also be examined behaviorally in rodents. Here, we review the sensory and multisensory difficulties commonly found in ASD, examining laboratory findings that relate these findings across species. Next, we discuss the known neurobiology of multisensory integration, drawing largely on experimental work in larger mammals, and extensions of these paradigms into rodents. Finally, we describe emerging investigations into multisensory processing in genetic mouse models related to autism risk. By detailing findings from humans to mice, we highlight the advantage of multisensory paradigms that can be easily translated across species, as well as the potential for rodent experimental systems to reveal opportunities for novel treatments. LAY SUMMARY: Sensory and multisensory deficits are commonly found in ASD and may result in cascading effects that impact social communication. By using similar experiments to those in humans, we discuss how studies in animal models may allow an understanding of the brain mechanisms that underlie difficulties in multisensory integration, with the ultimate goal of developing new treatments. Autism Res 2020, 13: 1430-1449. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin K Siemann
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, Center for Autism and the Developing Brain, New York Presbyterian Hospital, and New York State Psychiatric Institute, New York, New York, USA
| | - Mark T Wallace
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Xu X, Hanganu-Opatz IL, Bieler M. Cross-Talk of Low-Level Sensory and High-Level Cognitive Processing: Development, Mechanisms, and Relevance for Cross-Modal Abilities of the Brain. Front Neurorobot 2020; 14:7. [PMID: 32116637 PMCID: PMC7034303 DOI: 10.3389/fnbot.2020.00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of cross-modal learning capabilities requires the interaction of neural areas accounting for sensory and cognitive processing. Convergence of multiple sensory inputs is observed in low-level sensory cortices including primary somatosensory (S1), visual (V1), and auditory cortex (A1), as well as in high-level areas such as prefrontal cortex (PFC). Evidence shows that local neural activity and functional connectivity between sensory cortices participate in cross-modal processing. However, little is known about the functional interplay between neural areas underlying sensory and cognitive processing required for cross-modal learning capabilities across life. Here we review our current knowledge on the interdependence of low- and high-level cortices for the emergence of cross-modal processing in rodents. First, we summarize the mechanisms underlying the integration of multiple senses and how cross-modal processing in primary sensory cortices might be modified by top-down modulation of the PFC. Second, we examine the critical factors and developmental mechanisms that account for the interaction between neuronal networks involved in sensory and cognitive processing. Finally, we discuss the applicability and relevance of cross-modal processing for brain-inspired intelligent robotics. An in-depth understanding of the factors and mechanisms controlling cross-modal processing might inspire the refinement of robotic systems by better mimicking neural computations.
Collapse
Affiliation(s)
- Xiaxia Xu
- Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Bieler
- Laboratory for Neural Computation, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Gu J, Liu B, Li X, Wang P, Wang B. Cross-modal representations in early visual and auditory cortices revealed by multi-voxel pattern analysis. Brain Imaging Behav 2019; 14:1908-1920. [PMID: 31183774 DOI: 10.1007/s11682-019-00135-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Primary sensory cortices can respond not only to their defined sensory modality but also to cross-modal information. In addition to the observed cross-modal phenomenon, it is valuable to research further whether cross-modal information can be valuable for categorizing stimuli and what effect other factors, such as experience and imagination, may have on cross-modal processing. In this study, we researched cross-modal information processing in the early visual cortex (EVC, including the visual area 1, 2, and 3 (V1, V2, and V3)) and auditory cortex (primary (A1) and secondary (A2) auditory cortex). Images and sound clips were presented to participants separately in two experiments in which participants' imagination and expectations were restricted by an orthogonal fixation task and the data were collected by functional magnetic resonance imaging (fMRI). We successfully decoded categories of the cross-modal stimuli in the ROIs except for V1 by multi-voxel pattern analysis (MVPA). It was further shown that familiar sounds had the advantage of classification accuracies in V2 and V3 when compared with unfamiliar sounds. The results of the cross-classification analysis showed that there was no significant similarity between the activity patterns induced by different stimulus modalities. Even though the cross-modal representation is robust when considering the restriction of top-down expectations and mental imagery in our experiments, the sound experience showed effects on cross-modal representation in V2 and V3. In addition, primary sensory cortices may receive information from different modalities in different ways, so the activity patterns between two modalities were not similar enough to complete the cross-classification successfully.
Collapse
Affiliation(s)
- Jin Gu
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Baolin Liu
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Xianglin Li
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong, 264003, People's Republic of China
| | - Peiyuan Wang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264003, People's Republic of China
| | - Bin Wang
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong, 264003, People's Republic of China
| |
Collapse
|
8
|
Bieler M, Xu X, Marquardt A, Hanganu-Opatz IL. Multisensory integration in rodent tactile but not visual thalamus. Sci Rep 2018; 8:15684. [PMID: 30356135 PMCID: PMC6200796 DOI: 10.1038/s41598-018-33815-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
Behavioural performance requires a coherent perception of environmental features that address multiple senses. These diverse sensory inputs are integrated in primary sensory cortices, yet it is still largely unknown whether their convergence occurs even earlier along the sensory tract. Here we investigate the role of putatively modality-specific first-order (FO) thalamic nuclei (ventral posteromedial nucleus (VPM), dorsal lateral geniculate nucleus (dLGN)) and their interactions with primary sensory cortices (S1, V1) for multisensory integration in pigmented rats in vivo. We show that bimodal stimulation (i.e. simultaneous light flash and whisker deflection) enhances sensory evoked activity in VPM, but not dLGN. Moreover, cross-modal stimuli reset the phase of thalamic network oscillations and strengthen the coupling efficiency between VPM and S1, but not between dLGN and V1. Finally, the information flow from VPM to S1 is enhanced. Thus, FO tactile, but not visual, thalamus processes and relays sensory inputs from multiple senses, revealing a functional difference between sensory thalamic nuclei during multisensory integration.
Collapse
Affiliation(s)
- Malte Bieler
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany. .,Laboratory for Neural Computation, Department of Physiology, University of Oslo, 0372, Oslo, Norway.
| | - Xiaxia Xu
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Annette Marquardt
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
9
|
Cortical dynamics underpinning the self-other distinction of touch: A TMS-EEG study. Neuroimage 2018; 178:475-484. [DOI: 10.1016/j.neuroimage.2018.05.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/09/2018] [Accepted: 05/31/2018] [Indexed: 01/10/2023] Open
|
10
|
Henschke JU, Oelschlegel AM, Angenstein F, Ohl FW, Goldschmidt J, Kanold PO, Budinger E. Early sensory experience influences the development of multisensory thalamocortical and intracortical connections of primary sensory cortices. Brain Struct Funct 2018; 223:1165-1190. [PMID: 29094306 PMCID: PMC5871574 DOI: 10.1007/s00429-017-1549-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
Abstract
The nervous system integrates information from multiple senses. This multisensory integration already occurs in primary sensory cortices via direct thalamocortical and corticocortical connections across modalities. In humans, sensory loss from birth results in functional recruitment of the deprived cortical territory by the spared senses but the underlying circuit changes are not well known. Using tracer injections into primary auditory, somatosensory, and visual cortex within the first postnatal month of life in a rodent model (Mongolian gerbil) we show that multisensory thalamocortical connections emerge before corticocortical connections but mostly disappear during development. Early auditory, somatosensory, or visual deprivation increases multisensory connections via axonal reorganization processes mediated by non-lemniscal thalamic nuclei and the primary areas themselves. Functional single-photon emission computed tomography of regional cerebral blood flow reveals altered stimulus-induced activity and higher functional connectivity specifically between primary areas in deprived animals. Together, we show that intracortical multisensory connections are formed as a consequence of sensory-driven multisensory thalamocortical activity and that spared senses functionally recruit deprived cortical areas by an altered development of sensory thalamocortical and corticocortical connections. The functional-anatomical changes after early sensory deprivation have translational implications for the therapy of developmental hearing loss, blindness, and sensory paralysis and might also underlie developmental synesthesia.
Collapse
Affiliation(s)
- Julia U Henschke
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- German Center for Neurodegenerative Diseases Within the Helmholtz Association, Leipziger Str. 44, 39120, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Universitätsplatz 2, 39120, Magdeburg, Germany
| | - Anja M Oelschlegel
- Research Group Neuropharmacology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Institute of Anatomy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Frank Angenstein
- Functional Neuroimaging Group, German Center for Neurodegenerative Diseases Within the Helmholtz Association, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Universitätsplatz 2, 39120, Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Universitätsplatz 2, 39120, Magdeburg, Germany
| | - Jürgen Goldschmidt
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Universitätsplatz 2, 39120, Magdeburg, Germany
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Eike Budinger
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Universitätsplatz 2, 39120, Magdeburg, Germany.
| |
Collapse
|
11
|
Deolindo CS, Kunicki ACB, da Silva MI, Lima Brasil F, Moioli RC. Neuronal Assemblies Evidence Distributed Interactions within a Tactile Discrimination Task in Rats. Front Neural Circuits 2018; 11:114. [PMID: 29375324 PMCID: PMC5768614 DOI: 10.3389/fncir.2017.00114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022] Open
Abstract
Accumulating evidence suggests that neural interactions are distributed and relate to animal behavior, but many open questions remain. The neural assembly hypothesis, formulated by Hebb, states that synchronously active single neurons may transiently organize into functional neural circuits-neuronal assemblies (NAs)-and that would constitute the fundamental unit of information processing in the brain. However, the formation, vanishing, and temporal evolution of NAs are not fully understood. In particular, characterizing NAs in multiple brain regions over the course of behavioral tasks is relevant to assess the highly distributed nature of brain processing. In the context of NA characterization, active tactile discrimination tasks with rats are elucidative because they engage several cortical areas in the processing of information that are otherwise masked in passive or anesthetized scenarios. In this work, we investigate the dynamic formation of NAs within and among four different cortical regions in long-range fronto-parieto-occipital networks (primary somatosensory, primary visual, prefrontal, and posterior parietal cortices), simultaneously recorded from seven rats engaged in an active tactile discrimination task. Our results first confirm that task-related neuronal firing rate dynamics in all four regions is significantly modulated. Notably, a support vector machine decoder reveals that neural populations contain more information about the tactile stimulus than the majority of single neurons alone. Then, over the course of the task, we identify the emergence and vanishing of NAs whose participating neurons are shown to contain more information about animal behavior than randomly chosen neurons. Taken together, our results further support the role of multiple and distributed neurons as the functional unit of information processing in the brain (NA hypothesis) and their link to active animal behavior.
Collapse
Affiliation(s)
| | | | | | | | - Renan C. Moioli
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaiba, Brazil
| |
Collapse
|