1
|
Jiang Z, He Q, Wezeman J, Darvas M, Ladiges W. A cocktail of rapamycin, acarbose, and phenylbutyrate prevents age-related cognitive decline in mice by targeting multiple aging pathways. GeroScience 2024; 46:4855-4868. [PMID: 38755466 PMCID: PMC11336069 DOI: 10.1007/s11357-024-01198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Aging is a primary risk factor for cognitive impairment and exacerbates multiple biological processes in the brain, including but not limited to nutrient sensing, insulin signaling, and histone deacetylation activity. Therefore, a pharmaceutical intervention of aging that targets distinct but overlapping pathways provides a basis for testing combinations of drugs as a cocktail. Our previous study showed that middle-aged mice treated with a cocktail of rapamycin, acarbose, and phenylbutyrate for 3 months had increased resilience to age-related cognitive decline. This finding provided the rationale to investigate the transcriptomic and molecular changes within the brains of mice that received this cocktail treatment or control treatment. Transcriptomic profiles were generated through ribonucleic acid (RNA) sequencing, and pathway analysis was performed by gene set enrichment analysis to evaluate the overall RNA message effect of the drug cocktail. Molecular endpoints representing aging pathways were measured using immunohistochemistry to further validate the attenuation of brain aging in the hippocampus of mice that received the cocktail treatment, each individual drug or control. Results showed that biological processes that enhance aging were suppressed, with an increased trend of autophagy in the brains of mice given the drug cocktail. The molecular endpoint assessments indicated that treatment with the drug cocktail was overall more effective than any of the individual drugs for relieving cognitive impairment by targeting multiple aging pathways.
Collapse
Affiliation(s)
- Zhou Jiang
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Qianpei He
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Jackson Wezeman
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Martin Darvas
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Juarez D, Handal-Silva A, Morán-Perales JL, Torres-Cifuentes DM, Flores G, Treviño S, Moreno-Rodriguez A, Guevara J, Diaz A. New insights into sodium phenylbutyrate as a pharmacotherapeutic option for neurological disorders. Synapse 2024; 78:e22301. [PMID: 38819491 DOI: 10.1002/syn.22301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/01/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Neurological disorders (NDs) are diseases of the central and peripheral nervous systems that affect more than one billion people worldwide. The risk of developing an ND increases with age due to the vulnerability of the different organs and systems to genetic, environmental, and social changes that consequently cause motor and cognitive deficits that disable the person from their daily activities and individual and social productivity. Intrinsic factors (genetic factors, age, gender) and extrinsic factors (addictions, infections, or lifestyle) favor the persistence of systemic inflammatory processes that contribute to the evolution of NDs. Neuroinflammation is recognized as a common etiopathogenic factor of ND. The study of new pharmacological options for the treatment of ND should focus on improving the characteristic symptoms and attacking specific molecular targets that allow the delay of damage processes such as neuroinflammation, oxidative stress, cellular metabolic dysfunction, and deregulation of transcriptional processes. In this review, we describe the possible role of sodium phenylbutyrate (NaPB) in the pathogenesis of Alzheimer's disease, hepatic encephalopathy, aging, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis; in addition, we describe the mechanism of action of NaPB and its beneficial effects that have been shown in various in vivo and in vitro studies to delay the evolution of any ND.
Collapse
Affiliation(s)
- Daniel Juarez
- Faculty of Chemical Sciences, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Anabella Handal-Silva
- Department of Reproductive Biology and Toxicology, Institute of Sciences. Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Jose Luis Morán-Perales
- Department of Reproductive Biology and Toxicology, Institute of Sciences. Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Diana M Torres-Cifuentes
- Faculty of Chemical Sciences, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Gonzalo Flores
- Institute of Physiology, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Samuel Treviño
- Institute of Physiology, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Albino Moreno-Rodriguez
- Faculty of Chemical Sciences, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Jorge Guevara
- Faculty of Medicine, Department of Biochemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alfonso Diaz
- Institute of Physiology, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| |
Collapse
|
3
|
Abd Elkader HTAE, Hussein MM, Mohammed NA, Abdou HM. The protective role of L-carnitine on oxidative stress, neurotransmitter perturbations, astrogliosis, and apoptosis induced by thiamethoxam in the brains of male rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4365-4379. [PMID: 38099937 PMCID: PMC11111572 DOI: 10.1007/s00210-023-02887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/04/2023] [Indexed: 05/23/2024]
Abstract
Synthetic organic insecticides such as pyrethroids, organophosphates, neonicotinoids, and others have the potential to disrupt ecosystems and are often toxic to humans. Thiamethoxam (TMX), a neonicotinoid insecticide , is a widely used insecticide with neurotoxic potential. L-Carnitine (LC) is regarded as the "gatekeeper" in charge of allowing long-chain fatty acids into cell mitochondria. LC is an endogenous chemical that is renowned for its prospective biological activity in addition to its role in energy metabolism. This study investigated the protective effects of LC against TMX-induced neurotoxicity in male Wistar rats. For 28 days, animals were divided into four groups and treated daily with either LC (300 mg/kg), TMX (100 mg/kg), or both at the aforementioned doses. Our results revealed marked serum lipid profile and electrolyte changes, declines in brain antioxidants and neurotransmitters (acetylcholine, dopamine, and serotonin levels) with elevations in thiobarbituric acid reactive substances and proinflammatory cytokine levels, as well as acetylcholinesterase and monoamine oxidase brain activity in TMX-treated rats. TMX also increased the expression of caspase-3 and glial fibrillary acidic protein. In contrast, pretreatment with LC attenuated TMX-induced brain injury by suppressing oxidative stress and proinflammatory cytokines and modulating neurotransmitter levels. It also ameliorated the expression of apoptotic and astrogliosis markers. It could be concluded that LC has antioxidant, anti-inflammatory, anti-astrogliosis, and anti-apoptotic potential against TMX neurotoxicity.
Collapse
Affiliation(s)
| | | | - Nema A Mohammed
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Heba M Abdou
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Wei RM, Zhang YM, Zhang KX, Liu GX, Li XY, Zhang JY, Lun WZ, Liu XC, Chen GH. An enriched environment ameliorates maternal sleep deprivation-induced cognitive impairment in aged mice by improving mitochondrial function via the Sirt1/PGC-1α pathway. Aging (Albany NY) 2024; 16:1128-1144. [PMID: 38231482 PMCID: PMC10866428 DOI: 10.18632/aging.205385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Early life stress can cause cognitive impairment in aged offspring. Environmental enrichment (EE) is considered to be an effective non-pharmacological treatment for improving cognitive decline. The aim of this research was to evaluate the effect of EE, on cognitive impairment in aged offspring induced by maternal sleep deprivation (MSD) and the underlying mechanisms involved to investigate its potential value in clinical practice. METHODS CD-1 damns were subjected or not to sleep deprivation during late gestation. Twenty-one days after birth, the offspring were assigned to standard or EE cages. At 18 months-old, the learning and memory function of the offspring mice was evaluated using Morris water maze. The hippocampal and prefrontal cortical levels of protein, gene, proinflammation cytokines, and oxidative stress indicators was examined by Western blot, real-time polymerase chain reaction, enzyme linked immunosorbent assay, and biochemical assays. RESULTS Offspring in MSD group exhibited declined learning and memory abilities compared with control animals. Moreover, the hippocampal and prefrontal cortical levels of Sirtuin1 (Sirt1), peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α), postsynaptic density protein-95, and synaptophysin were lower and those of proinflammation cytokines higher in the MSD group; meanwhile, the superoxide dismutase content was higher and the malondialdehyde and reactive oxygen species contents were lower. However, these deleterious changes were ameliorated by exposure to EE. CONCLUSIONS EE attenuates MSD-induced cognitive impairment, oxidative stress, and neuroinflammation and reverses the reduction in synaptic protein levels in aged offspring mice via the Sirt1/PGC-1α pathway.
Collapse
Affiliation(s)
- Ru-Meng Wei
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Kai-Xuan Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Gao-Xia Liu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Jing-Ya Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Wei-Zhong Lun
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Xue-Chun Liu
- Department of Neurology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei 230011, Anhui, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| |
Collapse
|
5
|
Aguilar-Hernández L, Vázquez-Hernández AJ, de-Lima-Mar DF, Vázquez-Roque RA, Tendilla-Beltrán H, Flores G. Memory and dendritic spines loss, and dynamic dendritic spines changes are age-dependent in the rat. J Chem Neuroanat 2020; 110:101858. [PMID: 32950615 DOI: 10.1016/j.jchemneu.2020.101858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/16/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022]
Abstract
Brain aging is a widely studied process, but due to its complexity, much of its progress is unknown. There are many studies linking memory loss and reduced interneuronal communication with brain aging. However, only a few studies compare young and old animals. In the present study, in male rats aged 3, 6, and 18 months, we analyzed the locomotor activity and also short and long-term memory using the novel object recognition test (NORT), in addition to evaluating the dendritic length and the number of dendritic spines in the prefrontal cortex (PFC) and in the CA1, CA3 and DG regions of the dorsal hippocampus using Golgi-Cox staining. We also analyzed the types of dendritic spines in the aforementioned regions. 6- and 18-month old animals showed a reduction in locomotor activity, while long-term memory deficit was observed in 18-month old rats. At 18 months old, the dendritic length was reduced in all the studied regions. The dendritic spine number was also reduced in layer 5 of the PFC, and the CA1 and CA3 of the hippocampus. The dynamics of dendritic spines changed with age, with a reduction of the mushroom spines in all the studied regions, with an increase of the stubby spines in all the studied regions except from the CA3 region, that showed a reduction. Our data suggest that age causes changes in behavior, which may be the result of morphological changes at the dendrite level, both in their length and in the dynamics of their spines.
Collapse
Affiliation(s)
- Leonardo Aguilar-Hernández
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico; Laboratorio de Fisiología de la Conducta, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, 07738, Mexico
| | - Andrea Judith Vázquez-Hernández
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico; Laboratorio de Fisiología de la Conducta, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, 07738, Mexico
| | - Diana Frida de-Lima-Mar
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico
| | - Rubén Antonio Vázquez-Roque
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico; Laboratorio de Fisiología de la Conducta, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, 07738, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico.
| |
Collapse
|