1
|
Antidepressant-Like Properties of Intrastriatal Botulinum Neurotoxin-A Injection in a Unilateral 6-OHDA Rat Model of Parkinson's Disease. Toxins (Basel) 2021; 13:toxins13070505. [PMID: 34357977 PMCID: PMC8310221 DOI: 10.3390/toxins13070505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s patients often suffer from depression and anxiety, for which there are no optimal treatments. Hemiparkinsonian (hemi-PD) rats were used to test whether intrastriatal Botulinum neurotoxin-A (BoNT-A) application could also have antidepressant-like properties in addition to the known improvement of motor performance. To quantify depression- and anxiety-like behavior, the forced swim test, tail suspension test, open field test, and elevated plus maze test were applied to hemi-PD rats injected with BoNT-A or vehicle. Furthermore, we correlated the results in the forced swim test, open field test, and elevated plus maze test with the rotational behavior induced by apomorphine and amphetamine. Hemi-PD rats did not show significant anxiety-like behavior as compared with Sham 6-OHDA- + Sham BoNT-A-injected as well as with non-injected rats. However, hemi-PD rats demonstrated increased depression-like behaviors compared with Sham- or non-injected rats; this was seen by increased struggling frequency and increased immobility frequency. Hemi-PD rats intrastriatally injected with BoNT-A exhibited reduced depression-like behavior compared with the respective vehicle-receiving hemi-PD animals. The significant effects of intrastriatally applied BoNT-A seen in the forced swim test are reminiscent of those found after various antidepressant drug therapies. Our data correspond with the efficacy of BoNT-A treatment of glabellar frown lines in treating patients with major depression and suggest that also intrastriatal injected BoNT-A may have some antidepressant-like effect on hemi-PD.
Collapse
|
2
|
Mann T, Zilles K, Dikow H, Hellfritsch A, Cremer M, Piel M, Rösch F, Hawlitschka A, Schmitt O, Wree A. Dopamine, Noradrenaline and Serotonin Receptor Densities in the Striatum of Hemiparkinsonian Rats following Botulinum Neurotoxin-A Injection. Neuroscience 2018; 374:187-204. [PMID: 29421436 DOI: 10.1016/j.neuroscience.2018.01.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is characterized by a degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) that causes a dopamine (DA) deficit in the caudate-putamen (CPu) accompanied by compensatory changes in other neurotransmitter systems. These changes result in severe motor and non-motor symptoms. To disclose the role of various receptor binding sites for DA, noradrenaline, and serotonin in the hemiparkinsonian (hemi-PD) rat model induced by unilateral 6-hydroxydopamine (6-OHDA) injection, the densities of D1, D2/D3, α1, α2, and 5HT2A receptors were longitudinally visualized and measured in the CPu of hemi-PD rats by quantitative in vitro receptor autoradiography. We found a moderate increase in D1 receptor density 3 weeks post lesion that decreased during longer survival times, a significant increase of D2/D3 receptor density, and 50% reduction in 5HT2A receptor density. α1 receptor density remained unaltered in hemi-PD and α2 receptors demonstrated a slight right-left difference increasing with post lesion survival. In a second step, the possible role of receptors on the known reduction of apomorphine-induced rotations in hemi-PD rats by intrastriatally injected Botulinum neurotoxin-A (BoNT-A) was analyzed by measuring the receptor densities after BoNT-A injection. The application of this neurotoxin reduced D2/D3 receptor density, whereas the other receptors mainly remained unaltered. Our results provide novel data for an understanding of the postlesional plasticity of dopaminergic, noradrenergic and serotonergic receptors in the hemi-PD rat model. The results further suggest a therapeutic effect of BoNT-A on the impaired motor behavior of hemi-PD rats by reducing the interhemispheric imbalance in D2/D3 receptor density.
Collapse
Affiliation(s)
- T Mann
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany
| | - K Zilles
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, D-52425 Jülich, Germany; JARA - Translational Brain Medicine, and Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, D-52062 Aachen, Germany
| | - H Dikow
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany
| | - A Hellfritsch
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany
| | - M Cremer
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, D-52425 Jülich, Germany
| | - M Piel
- Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| | - F Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| | - A Hawlitschka
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany
| | - O Schmitt
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany
| | - A Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany.
| |
Collapse
|
3
|
Blesa J, Trigo-Damas I, Dileone M, Del Rey NLG, Hernandez LF, Obeso JA. Compensatory mechanisms in Parkinson's disease: Circuits adaptations and role in disease modification. Exp Neurol 2017; 298:148-161. [PMID: 28987461 DOI: 10.1016/j.expneurol.2017.10.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022]
Abstract
The motor features of Parkinson's disease (PD) are well known to manifest only when striatal dopaminergic deficit reaches 60-70%. Thus, PD has a long pre-symptomatic and pre-motor evolution during which compensatory mechanisms take place to delay the clinical onset of disabling manifestations. Classic compensatory mechanisms have been attributed to changes and adjustments in the nigro-striatal system, such as increased neuronal activity in the substantia nigra pars compacta and enhanced dopamine synthesis and release in the striatum. However, it is not so clear currently that such changes occur early enough to account for the pre-symptomatic period. Other possible mechanisms relate to changes in basal ganglia and motor cortical circuits including the cerebellum. However, data from early PD patients are difficult to obtain as most studies have been carried out once the diagnosis and treatments have been established. Likewise, putative compensatory mechanisms taking place throughout disease evolution are nearly impossible to distinguish by themselves. Here, we review the evidence for the role of the best known and other possible compensatory mechanisms in PD. We also discuss the possibility that, although beneficial in practical terms, compensation could also play a deleterious role in disease progression.
Collapse
Affiliation(s)
- Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| | - Inés Trigo-Damas
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Michele Dileone
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Natalia Lopez-Gonzalez Del Rey
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Ledia F Hernandez
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - José A Obeso
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Lewis MM, Sterling NW, Du G, Lee EY, Shyu G, Goldenberg M, Allen T, Stetter C, Kong L, Snipes SA, Jones BC, Chen H, Mailman RB, Huang X. Lateralized Basal Ganglia Vulnerability to Pesticide Exposure in Asymptomatic Agricultural Workers. Toxicol Sci 2017; 159:170-178. [PMID: 28633499 PMCID: PMC5837257 DOI: 10.1093/toxsci/kfx126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pesticide exposure is linked to Parkinson's disease, a neurodegenerative disorder marked by dopamine cell loss in the substantia nigra of the basal ganglia (BG) that often presents asymmetrically. We previously reported that pesticide-exposed agricultural workers (AW) have nigral diffusion tensor imaging (DTI) changes. The current study sought to confirm this finding, and explore its hemisphere and regional specificity within BG structures using an independent sample population. Pesticide exposure history, standard neurological exam, high-resolution magnetic resonance imaging (T1/T2-weighted and DTI), and [123I]ioflupane SPECT images (to quantify striatal dopamine transporters) were obtained from 20 AW with chronic pesticide exposure and 11 controls. Based on median cumulative days of pesticide exposure, AW were subdivided into high (AWHi, n = 10) and low (AWLo, n = 10) exposure groups. BG (nigra, putamen, caudate, and globus pallidus [GP]) fractional anisotropy (FA), mean diffusivity (MD), and striatal [123I]ioflupane binding in each hemisphere were quantified, and compared across exposure groups using analysis of variance. Left, but not right, nigral and GP FA were significantly lower in AW compared with controls (p's < .029). None of the striatal (putamen and caudate) DTI or [123I]ioflupane binding measurements differed between AW and controls. Subgroup analyses indicated that significant left nigral and GP DTI changes were present only in the AWHi (p ≤ .037) but not the AWLo subgroup. AW, especially those with higher pesticide exposure history, demonstrate lateralized microstructural changes in the nigra and GP, whereas striatal areas appear relatively unaffected. Future studies should elucidate how environmental toxicants cause differential lateralized- and regionally specific brain vulnerability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas Allen
- Department of Radiology, and Department of Public Health Sciences, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033
| | - Christy Stetter
- Department of Radiology, and Department of Public Health Sciences, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033
| | - Lan Kong
- Department of Radiology, and Department of Public Health Sciences, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033
| | - Shedra Amy Snipes
- Department of Biobehavioral Health, Pennsylvania State University University Park, Pennsylvania 16802
| | - Byron C Jones
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan 48824
| | | | - Xuemei Huang
- Department of Neurology
- Department of Pharmacology
- Department of Radiology, and Department of Public Health Sciences, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033
| |
Collapse
|
5
|
Antipova VA, Holzmann C, Schmitt O, Wree A, Hawlitschka A. Botulinum Neurotoxin A Injected Ipsilaterally or Contralaterally into the Striatum in the Rat 6-OHDA Model of Unilateral Parkinson's Disease Differently Affects Behavior. Front Behav Neurosci 2017; 11:119. [PMID: 28680396 PMCID: PMC5478737 DOI: 10.3389/fnbeh.2017.00119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/06/2017] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD) is one of the most frequent neurodegenerative disorders. The loss of dopaminergic neurons in the substantia nigra leads to a disinhibition of cholinergic interneurons in the striatum. Pharmacotherapeutical strategies of PD-related hypercholinism have numerous adverse side effects. We previously showed that ipsilateral intrastriatal injections of 1 ng in unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats inhibit apomorphine-induced rotation behavior significantly up to 6 months. In this study, we extended the behavioral testing of ipsilateral botulinum neurotoxin A (BoNT-A)-injection and additionally investigated the impact of intrastriatal BoNT-A-injections contralateral to the 6-OHDA-lesioned hemisphere on the basal ganglia circuity and motor functions. We hypothesized that the interhemispheric differences of acetylcholine (ACh) concentration seen in unilateral hemi-PD should be differentially and temporally influenced by the ipsilateral or contralateral injection of BoNT-A. Hemi-PD rats were injected with 1 ng BoNT-A or vehicle substance into either the ipsilateral or contralateral striatum 6 weeks after 6-OHDA-lesion and various behaviors were tested. In hemi-PD rats intrastriatal ipsilateral BoNT-A-injections significantly reduced apomorphine-induced rotations and increased amphetamine-induced rotations, but showed no significant improvement of forelimb usage and akinesia, lateralized sensorimotor integration and also no effect on spontaneous locomotor activity. However, intrastriatal BoNT-A-injections contralateral to the lesion led to a significant increase of the apomorphine-induced turning rate only 2 weeks after the treatment. The apomorphine-induced rotation rate decreases thereafter to a value below the initial rotation rate. Amphetamine-induced rotations were not significantly changed after BoNT-A-application in comparison to sham-treated animals. Forelimb usage was temporally improved by contralateral BoNT-A-injection at 2 weeks after BoNT-A. Akinesia and lateralized sensorimotor integration were also improved, but contralateral BoNT-A-injection had no significant effect on spontaneous locomotor activity. These long-ranging and different effects suggest that intrastriatally applied BoNT-A acts not only as an inhibitor of ACh release but also has long-lasting impact on transmitter expression and thereby on the basal ganglia circuitry. Evaluation of changes of transmitter receptors is subject of ongoing studies of our group.
Collapse
Affiliation(s)
- Veronica A. Antipova
- Institute of Anatomy, Rostock University Medical CenterRostock, Germany
- Institute of Macroscopic and Clinical Anatomy, Medical University of GrazGraz, Austria
| | - Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical CenterRostock, Germany
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical CenterRostock, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical CenterRostock, Germany
| | | |
Collapse
|
6
|
K B, V T, N P, M M, N M, F A. Increased sensitivity in the interaction of the dopaminergic/adenosinergic system at the level of the adenylate cyclase activity in the striatum of the "weaver" mouse. Neurochem Int 2016; 99:233-238. [PMID: 27498335 DOI: 10.1016/j.neuint.2016.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Abstract
The specific antagonistic interaction between dopamine D1 and adenosine A1 receptors (D1/A1), as well as between dopamine D2 and adenosine A2a receptors (D2/A2a) exist not only at the receptor/receptor level, but also at the level of the secondary messengers. In this study, we examined the possible changes in these interactions at the level of cAMP formation in membrane preparation from "weaver" mouse striatum (a genetic model of Parkinson disease), by using specific agonists of these receptors. We also examined in the striatum of the "weaver" mouse the interaction between D1 and D2 dopamine receptors. Our results showed that in the striatum of "weaver" mice: a) the cAMP synthesis induced by D1 receptor activation (SKF 38393), was significantly reduced compared to control mice, while A1 receptor activation (L-PIA) leaded to a more intense inhibition of the D1-induced cAMP-formation compared to the controls, b) the cAMP synthesis which was induced by A2a receptor activation (CGS 21680), was significantly increased compared to the control mice. The specific D2 receptor agonist Quinpirole, added in low concentrations, caused a significant reduction of the A2a-induced cAMP formation, which was not observed in the control mouse. Furthermore, the D1 receptor induced cAMP synthesis was significantly higher in control compared to "weaver" striatum, which was more efficiently downregulated by D2 receptor agonist Quinpirole. These results suggest that the sensitivity to D1 and A2a receptor agonists is altered and that the interaction between D1/A1 and D2/A2a receptors is enhanced in the striatum of the "weaver" mutation, while an uncoupling between D1 and D2 receptors was observed. Since the adenylate cyclase basal activity did not differ between "weaver" and control striatum, the above-mentioned changes seem to be due to alterations in the function of the adenosine/dopamine receptors and their coupling to the G-proteins.
Collapse
Affiliation(s)
- Botsakis K
- Laboratory of Physiology, Medical School, Department of Biology, University of Patras, 26500 Patras, Greece
| | - Tondikidou V
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, 26500 Patras, Greece
| | - Panagopoulos N
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, 26500 Patras, Greece
| | - Margariti M
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, 26500 Patras, Greece
| | - Matsokis N
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, 26500 Patras, Greece
| | - Angelatou F
- Laboratory of Physiology, Medical School, Department of Biology, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
7
|
Mackovski N, Liao J, Weng R, Wei X, Wang R, Chen Z, Liu X, Yu Y, Meyer BJ, Xia Y, Deng C, Huang XF, Wang Q. Reversal effect of simvastatin on the decrease in cannabinoid receptor 1 density in 6-hydroxydopamine lesioned rat brains. Life Sci 2016; 155:123-32. [DOI: 10.1016/j.lfs.2016.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 04/25/2016] [Accepted: 05/01/2016] [Indexed: 01/07/2023]
|
8
|
Molochnikov I, Cohen D. Hemispheric differences in the mesostriatal dopaminergic system. Front Syst Neurosci 2014; 8:110. [PMID: 24966817 PMCID: PMC4052732 DOI: 10.3389/fnsys.2014.00110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 05/24/2014] [Indexed: 11/20/2022] Open
Abstract
The mesostriatal dopaminergic system, which comprises the mesolimbic and the nigrostriatal pathways, plays a major role in neural processing underlying motor and limbic functions. Multiple reports suggest that these processes are influenced by hemispheric differences in striatal dopamine (DA) levels, DA turnover and its receptor activity. Here, we review studies which measured the concentration of DA and its metabolites to examine the relationship between DA imbalance and animal behavior under different conditions. Specifically, we assess evidence in support of endogenous, inter-hemispheric DA imbalance; determine whether the known anatomy provides a suitable substrate for this imbalance; examine the relationship between DA imbalance and animal behavior; and characterize the symmetry of the observed inter-hemispheric laterality in the nigrostriatal and the mesolimbic DA systems. We conclude that many studies provide supporting evidence for the occurrence of experience-dependent endogenous DA imbalance which is controlled by a dedicated regulatory/compensatory mechanism. Additionally, it seems that the link between DA imbalance and animal behavior is better characterized in the nigrostriatal than in the mesolimbic system. Nonetheless, a variety of brain and behavioral manipulations demonstrate that the nigrostriatal system displays symmetrical laterality whereas the mesolimbic system displays asymmetrical laterality which supports hemispheric specialization in rodents. The reciprocity of the relationship between DA imbalance and animal behavior (i.e., the capacity of animal training to alter DA imbalance for prolonged time periods) remains controversial, however, if confirmed, it may provide a valuable non-invasive therapeutic means for treating abnormal DA imbalance.
Collapse
Affiliation(s)
- Ilana Molochnikov
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| | - Dana Cohen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| |
Collapse
|
9
|
Laloux C, Petrault M, Lecointe C, Devos D, Bordet R. Differential susceptibility to the PPAR-γ agonist pioglitazone in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine rodent models of Parkinson's disease. Pharmacol Res 2012; 65:514-22. [DOI: 10.1016/j.phrs.2012.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/08/2012] [Accepted: 02/23/2012] [Indexed: 12/27/2022]
|
10
|
The interhemispheric connections of the striatum: Implications for Parkinson's disease and drug-induced dyskinesias. Brain Res Bull 2011; 87:1-9. [PMID: 21963946 DOI: 10.1016/j.brainresbull.2011.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 11/20/2022]
Abstract
Parkinson's disease (PD) is characterized by loss of nigrostriatal neurons and depletion of dopamine. This pathological feature leads to alterations to basal ganglia circuitry and subsequent motor disability. Pharmacological dopamine replacement therapy with medications such as levodopa ameliorates the symptoms of PD but can lead to motor complications known as drug-induced dyskinesias. We have recently shown that clinically hemiparkinsonian rhesus monkeys do not develop levodopa-induced dyskinesias despite chronic intermittent exposure and significant unilateral loss of nigrostriatal neurons and dopamine. It is currently unclear what mechanisms prevent the onset of dyskinesias in these animals. Based on our study and results from previous lesioning studies in both the rat and monkey models of PD, we hypothesize that one potential mechanism that may prevent the genesis of dyskinesias in these animals is interhemispheric neuromodulation. Two potential interhemispheric connections that may modulate dyskinesias are the interhemispheric nigrostriatal and corticostriatal pathways. Few investigators have examined the interhemispheric nigrostriatal and corticostriatal connections and the functional role they may play in drug-induced dyskinesias in PD. Therefore, in the following review, we assess the neuroanatomical, electrophysiological and behavioral properties of these interhemispheric connections. Future studies evaluating these interhemispheric striatal pathways and the pathophysiological changes that occur to these pathways in the dyskinetic state are warranted to further develop treatments that prevent or mitigate drug-induced dyskinesias in PD.
Collapse
|
11
|
Morris JK, Zhang H, Gupte AA, Bomhoff GL, Stanford JA, Geiger PC. Measures of striatal insulin resistance in a 6-hydroxydopamine model of Parkinson's disease. Brain Res 2008; 1240:185-95. [PMID: 18805403 DOI: 10.1016/j.brainres.2008.08.089] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 08/26/2008] [Accepted: 08/28/2008] [Indexed: 01/26/2023]
Abstract
Clinical evidence has shown a correlation between Parkinson's disease (PD) and Type 2 Diabetes (T2D), as abnormal glucose tolerance has been reported in >50% of PD patients. The development of insulin resistance and the degeneration of nigrostriatal dopamine (DA) neurons are both mediated by oxidative mechanisms, and oxidative stress is likely a mechanistic link between these pathologies. Although glucose uptake in neuronal tissues is primarily non-insulin dependent, proteins involved in insulin signaling, such as insulin receptor substrate 2 (IRS2) and glucose transporter 4 (GLUT4), are present in the basal ganglia. The purpose of this study was to determine whether nigrostriatal DA depletion affects measures of insulin resistance in the striatum. Six weeks after 6-hydroxydopamine (6-OHDA) infusion into the medial forebrain bundle, rats were classified as having either partial (20-65%) or severe (90-99%) striatal DA depletion. Increased IRS2 serine phosphorylation, a marker of insulin resistance, was observed in the DA-depleted striatum. Additionally, severe depletion resulted in decreased total IRS2, indicating possible degradation of the protein. Decreased phosphorylation of AKT and expression of the kinase glycogen synthase kinase-3 alpha (GSK3-alpha) was also measured in the striatum of severely DA-depleted animals. Finally, expression of heat shock protein 25 (Hsp25), which is protective against oxidative damage and can decrease stress kinase activity, was decreased in the striatum of lesioned rats. Together, these results support the hypothesis that nigrostriatal DA depletion impairs insulin signaling in the basal ganglia.
Collapse
Affiliation(s)
- J K Morris
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
12
|
Bhattacharjee AK, Chang L, Lee HJ, Bazinet RP, Seemann R, Rapoport SI. D2 but not D1 dopamine receptor stimulation augments brain signaling involving arachidonic acid in unanesthetized rats. Psychopharmacology (Berl) 2005; 180:735-42. [PMID: 16163535 DOI: 10.1007/s00213-005-2208-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 01/18/2005] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES Signal transduction involving the activation of phospholipase A2 (PLA2) to release arachidonic acid (AA) from membrane phospholipids, when coupled to dopamine D1- and D2-type receptors, can be imaged in rats having a chronic unilateral lesion of the substantia nigra. It is not known, however, if the signaling responses occur in the absence of a lesion. To determine this, we used our in vivo fatty acid method to measure signaling in response to D1 and D2 receptor agonists given acutely to unanesthetized rats. METHODS [1-(14)C]AA was injected intravenously in unanesthetized rats, and incorporation coefficients k* for AA (brain radioactivity/integrated plasma radioactivity) were measured using quantitative autoradiography in 61 brain regions. The animals were administered i.v. the D2 receptor agonist, quinpirole (1 mg kg(-1), i.v.), the D1 receptor agonist SKF-38393 (5 mg kg(-1), i.v.), or vehicle/saline. RESULTS Quinpirole increased k* significantly in multiple brain regions rich in D2-type receptors, whereas SKF-38393 did not change k* significantly in any of the 61 regions examined. CONCLUSIONS In the intact rat brain, D2 but not D1 receptors are coupled to the activation of PLA2 and the release of AA.
Collapse
Affiliation(s)
- Abesh Kumar Bhattacharjee
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg. 9, Room 1S128, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Basselin M, Chang L, Bell JM, Rapoport SI. Chronic lithium chloride administration to unanesthetized rats attenuates brain dopamine D2-like receptor-initiated signaling via arachidonic acid. Neuropsychopharmacology 2005; 30:1064-75. [PMID: 15812572 DOI: 10.1038/sj.npp.1300671] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We studied the effect of lithium chloride on dopaminergic neurotransmission via D2-like receptors coupled to phospholipase A2 (PLA2). In unanesthetized rats injected i.v. with radiolabeled arachidonic acid (AA, 20:4 n-6), regional PLA2 activation was imaged by measuring regional incorporation coefficients k* of AA (brain radioactivity divided by integrated plasma radioactivity) using quantitative autoradiography, following administration of the D2-like receptor agonist, quinpirole. In rats fed a control diet, quinpirole at 1 mg/kg i.v. increased k* for AA significantly in 17 regions with high densities of D2-like receptors, of 61 regions examined. Increases in k* were found in the prefrontal cortex, frontal cortex, accumbens nucleus, caudate-putamen, substantia nigra, and ventral tegmental area. Quinpirole, 0.25 mg/kg i.v. enhanced k* significantly only in the caudate-putamen. In rats fed LiCl for 6 weeks to produce a therapeutically relevant brain lithium concentration, neither 0.25 mg/kg nor 1 mg/kg quinpirole increased k* significantly in any region. Orofacial movements following quinpirole were modified but not abolished by LiCl feeding. The results suggest that downregulation by lithium of D2-like receptor signaling involving PLA2 and AA may contribute to lithium's therapeutic efficacy in bipolar disorder.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
14
|
González-Hernández T, Barroso-Chinea P, Rodríguez M. Response of the GABAergic and dopaminergic mesostriatal projections to the lesion of the contralateral dopaminergic mesostriatal pathway in the rat. Mov Disord 2004; 19:1029-1042. [PMID: 15372592 DOI: 10.1002/mds.20206] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although dopamine is the main neurotransmitter in the mesostriatal system, recent studies indicate the existence of two nigrostriatal GABAergic projections: one arising from neurons immunoreactive for GABA, glutamic acid decarboxylase (GAD67), and parvalbumin (PV) lying in the substantia nigra pars reticulata (nigrostriatal GABA cells) and the other arising from a subpopulation of dopaminergic neurons lying in the substantia nigra pars compacta and ventral tegmental area, which under normal conditions, contains mRNA for GAD65 (one of the two isoforms of glutamic acid decarboxylase), but which is not immunoreactive for GABA and GAD65 (nigrostriatal dopaminergic [DA]/GABA cells). With the aim of improving our knowledge about the interaction between the nigrostriatal system of both brain hemispheres, we have studied the response of these three components of the mesostriatal system (GABA, DA/GABA, and DA) to the lesion of the contralateral mesostriatal DA pathway, by using morphological and neurophysiological techniques. Our findings show that, in the side contralateral to the lesion, (1) the number of nigrostriatal GABA cells increases from 6% to 17% with respect to the total number of nigrostriatal cells, (2) the soma of DA/GABA cells becomes immunoreactive for GABA and GAD65, and (3) there is an increase in the firing rate and burst activity of DA-neurons, except in those projecting to the striatum, which may be under the action of the GABA hyperactivity. Taken together, our results suggest that the GABAergic components of the mesostriatal projection play a regulatory role on the DA component, activated or upregulated after contralateral DA lesion and are probably addressed to restoring the functional symmetry in basal ganglia and to slowing down the contralateral progression of DA-cell degeneration in Parkinson's disease.
Collapse
|
15
|
Schwartz RA, Greenwald ER, Fletcher PJ, Houle S, DaSilva JN. Up-regulated dopamine D1 receptor binding can be detected in vivo following repeated SCH 23390, but not SKF 81297 or 6-hydroxydopamine, treatments. Eur J Pharmacol 2003; 459:195-201. [PMID: 12524146 DOI: 10.1016/s0014-2999(02)02850-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three different pharmacological treatments, previously shown to cause dopamine D1 receptor supersensitivity in rats, were studied for changes in the binding of R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SCH 23390) labeled with carbon-11. Rats treated subchronically with the full dopamine D1 receptor agonist R/S-(+/-)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF 81297) showed no significant difference in dopamine D1 receptor binding. Similarly, unilateral 6-hydroxydopamine lesioning, followed by apomorphine screening for contralateral rotation, failed to cause significant differences in the rat brain distribution of [11C]SCH 23390 in the lesioned versus the nonlesioned striatal sides. In contrast, repeated exposure with the dopamine D1 receptor antagonist SCH 23390 significantly enhanced the uptake of [11C]SCH 23390 in the dopamine D1 receptor-rich striatum and olfactory tubercles. These results demonstrate that [11C]SCH 23390 can significantly detect enhanced binding in rat brain regions expected to have up-regulated dopamine D1 receptors. The failure of [11C]SCH 23390 to reveal any differences after subchronic agonist or 6-hydroxydopamine treatments suggests that the behavioural supersensitization induced by these treatments is possibly due to changes to the high-affinity state or to components downstream of dopamine D1 receptors in the signal transduction pathway. The present study has implications for studies imaging dopamine D1 receptors in neuropsychiatric disorders with abnormal dopamine stimulation using positron emission tomography.
Collapse
Affiliation(s)
- Robert A Schwartz
- PET Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
16
|
Boksa P, Zhang Y, Bestawros A. Dopamine D1 receptor changes due to caesarean section birth: effects of anesthesia, developmental time course, and functional consequences. Exp Neurol 2002; 175:388-97. [PMID: 12061868 DOI: 10.1006/exnr.2002.7896] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is an epidemiological association between increased obstetric complications and disorders involving CNS dopamine dysregulation, such as schizophrenia. In light of this, a rat model of global hypoxia during Caesarean section (C-section) birth has been used to directly test if birth complications can produce long-term dopaminergic dysregulation. Previous studies have shown that, compared to vaginal birth, C-section birth alone (without additional global hypoxia) is sufficient to increase D1-like receptor binding in rat brain at adulthood. The current study examined (1) the developmental time course of changes in D1-like or D2-like receptors following C-section birth; (2) whether C-section birth from isoflurane-anesthetized dams also results in altered D1-like receptor levels, as does C-section from decapitated dams; and (3) behavioral responses to D1 and D2 agonists in rats born vaginally compared to C-section. Increases in nucleus accumbens D1-like receptor binding due to C-section birth were observed only at adulthood (3 months) but not prepubertally (1 month or 2 weeks). D2-like receptor binding levels were unaffected by C-section birth across the three developmental time points. Compared to vaginal birth, D1-like receptors were increased following C-section birth from isoflurane-anesthetized dams, as well as from decapitated dams. Adult rats that had been born by C-section showed enhanced D1 potentiation of D2-induced locomotor behavior. These studies indicate that C-section birth, from either anesthetized or unanesthetized dams, results in postpubertal increases in D1-like receptor binding and enhanced functional responses to D1 receptor activation.
Collapse
Affiliation(s)
- Patricia Boksa
- Department of Psychiatry, McGill University, Douglas Hospital Research Centre, 6875 LaSalle Boulevard, Verdun, Quebec H4H 1R3, Canada.
| | | | | |
Collapse
|
17
|
Lopez-Martin E, Rozas G, Guerra MJ, Labandeira-Garcia JL. Recovery after nigral grafting in 6-hydroxydopamine lesioned rats is due to graft function and not significantly influenced by the remaining ipsilateral or contralateral host dopaminergic system. Brain Res 1999; 842:119-31. [PMID: 10526102 DOI: 10.1016/s0006-8993(99)01853-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to evaluate whether the recovery observed after grafting of fetal nigral cells in 6-hydroxydopamine lesioned rats is due to the graft itself, and whether the participation of the remaining host dopaminergic system is necessary. The effects of unilateral 6-hydroxydopamine lesion on rotational behavior were not significantly affected by sham grafting or by sham grafting plus repeat ipsilateral lesion, but were suppressed by nigral grafting, and by contralateral lesion. Immunohistochemical and in situ hybridization study of right striata of rats subjected to right-side lesion then right-side sham-grafting, and of right and left striata from rats subjected to right-side lesion then right-side sham-grafting then repeat right-side lesion then left-side lesion, revealed (a) no significant amphetamine-induced Fos activation, (b) marked increases in preproenkephalin mRNA levels, and (c) decreases in preprotachykinin levels, with no significant differences in any of these variables among these three types of striata. After nigral grafting, however, intense Fos expression was observed in the striatum, and preproenkephalin and preproenkephalin mRNA levels returned to normal. This recovery was maintained after subsequent repeat ipsilateral 6-hydroxydopamine lesion followed by contralateral lesion. The results demonstrate that, after dopaminergic denervation, the nigral graft itself is able to induce recovery in the assessed parameters, and that these effects of grafting into striata with maximal unilateral 6-hydroxydopamine lesion are due to graft function, and are not significantly influenced by the remaining ipsilateral or contralateral host dopaminergic system. Additionally, it is interesting to note that bilateral denervation led to changes in striatal preproenkephalin and preproenkephalin mRNA levels similar to those observed after unilateral lesion.
Collapse
Affiliation(s)
- E Lopez-Martin
- Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, E-15705, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
18
|
Lyons D, Porrino LJ. Dopamine depletion in the rostral nucleus accumbens alters the cerebral metabolic response to cocaine in the rat. Brain Res 1997; 753:69-79. [PMID: 9125433 DOI: 10.1016/s0006-8993(96)01493-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The functional consequences of dopamine depletion in the rostral nucleus accumbens were examined using the quantitative 2-[14C]deoxyglucose method for determining rates of local cerebral glucose utilization. Cerebral metabolism was determined in 35 brain structures of Sprague-Dawley rats with unilateral 6-hydroxydopamine or sham lesions of the rostral accumbens. The effect of the lesion was assessed in cocaine-naive animals treated systemically with cocaine or saline. In saline-treated animals, the lesion increased cerebral metabolism in typical basal ganglia regions, such as the globus pallidus and entopeduncular nucleus, as well as portions of the extended amygdala that included the bed nucleus of the stria terminalis and the hypothalamic preoptic area. Cerebral metabolism was affected bilaterally in a subset of all affected structures which demonstrated that the functional consequences of the lesion extended beyond the primary monosynaptic output zones of the rostral accumbens. The lesion also changed the topography of the normal cocaine response such that cocaine effects were blunted in the shell of the nucleus accumbens, globus pallidus and the medial ventral pallidum. Thus, the present study describes functional evidence of the link between the rostral accumbens and the extended amygdala and demonstrates that dopamine in the rostral accumbens plays an important role in the central response to cocaine.
Collapse
Affiliation(s)
- D Lyons
- Department of Physiology and Pharmacology, Bowman Gray School of Medicine, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
19
|
Salin P, Hajji MD, Kerkerian-le Goff L. Bilateral 6-hydroxydopamine-induced lesion of the nigrostriatal dopamine pathway reproduces the effects of unilateral lesion on substance P but not on enkephalin expression in rat basal ganglia. Eur J Neurosci 1996; 8:1746-57. [PMID: 8921265 DOI: 10.1111/j.1460-9568.1996.tb01318.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study compared the effects of unilateral and bilateral 6-hydroxydopamine-induced lesions of the nigrostriatal dopaminergic neurons on substance P and enkephalin expression in the rat striatum and its main target structures by means of quantitative in situ hybridization and immunocytochemistry. In animals with bilateral lesion, substance P mRNA levels were decreased in the striatum, and this was matched by parallel reductions in substance P immunoreactivity in the striatum and in the striatonigral terminals at substantia nigra level in both hemispheres. These changes were similar to those observed ipsilaterally to unilateral lesion. In contrast, whereas increased striatal enkephalin immunoreactivity and mRNA levels and decreased immunoreactivity in the globus pallidus were observed on the lesioned side after unilateral lesion, no significant change in these enkephalin markers occurred in animals with bilateral lesion. These data suggest that the effects of dopamine deafferentation on substance P expression in the striatonigral system may be due primarily to removal of direct dopamine influence, whereas the effects on enkephalin expression in the striatopallidal system may involve complex interhemispheric adaptive mechanisms. The present finding that bilateral dopamine lesion does not simply reproduce the effects of unilateral lesion but creates a new functional state may have a critical bearing on the understanding and treatment of Parkinson's disease.
Collapse
Affiliation(s)
- P Salin
- Laboratoire de Neurobiologie Cellulaire et Fonctionnelle, CNRS, Marseille, France
| | | | | |
Collapse
|
20
|
Schwarting RK, Huston JP. Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Prog Neurobiol 1996; 49:215-66. [PMID: 8878304 DOI: 10.1016/s0301-0082(96)00015-9] [Citation(s) in RCA: 257] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One of the primary approaches in experimental brain research is to investigate the effects of specific destruction of its parts. Here, several neurotoxins are available which can be used to eliminate neurons of a certain neurochemical type or family. With respect to the study of dopamine neurons in the brain, especially within the basal ganglia, the neurotoxin 6-hydroxydopamine (6-OHDA) provides an important tool. The most common version of lesion induced with this toxin is the unilateral lesion placed in the area of mesencephalic dopamine somata or their ascending fibers, which leads to a lateralized loss of striatal dopamine. This approach has contributed to neuroscientific knowledge at the basic and clinical levels, since it has been used to clarify the neuroanatomy, neurochemistry, and electrophysiology of mesencephalic dopamine neurons and their relationships with the basal ganglia. Furthermore, unilateral 6-OHDA lesions have been used to investigate the role of these dopamine neurons with respect to behavior, and to examine the brain's capacity to recover from or compensate for specific neurochemical depletions. Finally, in clinically-oriented research, the lesion has been used to model aspects of Parkinson's disease, a human neurodegenerative disease which is neuronally characterized by a severe loss of the meso-striatal dopamine neurons. In the present review, which is the first of two, the lesion's effects on physiological parameters are being dealt with, including histological manifestations, effects on dopaminergic measures, other neurotransmitters (e.g. GABA, acetylcholine, glutamate), neuromodulators (e.g. neuropeptides, neurotrophins), electrophysiological activity, and measures of energy consumption. The findings are being discussed especially in relation to time after lesion and in relation to lesion severeness, that is, the differential role of total versus partial depletions of dopamine and the possible mechanisms of compensation. Finally, the advantages and possible drawbacks of such a lateralized lesion model are discussed.
Collapse
Affiliation(s)
- R K Schwarting
- Institute of Physiological Psychology I, Heinrich-Heine University of Düsseldorf, Germany
| | | |
Collapse
|