1
|
Bisio C, Brendlé J, Cahen S, Feng Y, Hwang SJ, Nocchetti M, O'Hare D, Rabu P, Melanova K, Leroux F. Recent advances and perspectives for intercalation layered compounds. Part 2: applications in the field of catalysis, environment and health. Dalton Trans 2024; 53:14551-14581. [PMID: 39046465 DOI: 10.1039/d4dt00757c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Intercalation compounds represent a unique class of materials that can be anisotropic (1D and 2D-based topology) or isotropic (3D) through their guest/host superlattice repetitive organisation. Intercalation refers to the reversible introduction of guest species with variable natures into a crystalline host lattice. Different host lattice structures have been used for the preparation of intercalation compounds, and many examples are produced by exploiting the flexibility and the ability of 2D-based hosts to accommodate different guest species, ranging from ions to complex molecules. This reaction is then carried out to allow systematic control and fine tuning of the final properties of the derived compounds, thus allowing them to be used for various applications. This review mainly focuses on the recent applications of intercalation layered compounds (ILCs) based on layered clays, zirconium phosphates, layered double hydroxides and graphene as heterogeneous catalysts, for environmental and health purposes, aiming at collecting and discussing how intercalation processes can be exploited for the selected applications.
Collapse
Affiliation(s)
- Chiara Bisio
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, AL, Italy.
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Via C. Golgi 19, 20133 Milano, MI, Italy
| | - Jocelyne Brendlé
- Institut de Science des Matériaux de Mulhouse CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, 3b rue Alfred Werner, 68093 Mulhouse CEDEX, France.
| | - Sébastien Cahen
- Institut Jean Lamour - UMR 7198 CNRS-Université de Lorraine, Groupe Matériaux Carbonés, Campus ARTEM - 2 Allée André Guinier, B.P. 50840, F54011, NancyCedex, France
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Morena Nocchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | - Dermot O'Hare
- Chemistry Research Laboratory, University of Oxford Department of Chemistry, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Pierre Rabu
- Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS - Université de Strasbourg, UMR7504, 23 rue du Loess, BP43, 67034 Strasbourg cedex 2, France
| | - Klara Melanova
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic.
| | - Fabrice Leroux
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, UMR CNRS 6296, Clermont Auvergne INP, 24 av Blaise Pascal, BP 80026, 63171 Aubière cedex, France.
| |
Collapse
|
2
|
de Araújo MA, Dos Santos Júnior ED, Dos Santos BP, Dos Santos YDR, Paulino PAT, Dos Santos EC, Souza TPM, Anhezini L, Bassi ÊJ, Duzzioni M, de Castro OW, de Andrade TG, Dornelas CB, Gitaí DLG. Layered double hydroxides (LDHs) as efficient and safe carriers for miRNA inhibitors: In vitro and in vivo assessment of biocompatibility. Chem Biol Interact 2024; 391:110874. [PMID: 38311162 DOI: 10.1016/j.cbi.2024.110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 02/10/2024]
Abstract
Layered double hydroxides (LDHs) have been employed as nano-sized carriers for therapeutic/bio-active molecules, including small interfering RNAs (siRNAs). However, the potential of LDHs nanoparticles for an efficient and safe antisense oligonucleotide (AMO) delivery still requires studies. In this research, we have tested the suitability of a Mg-Al-LDH-based nanocarrier loaded with a miRNA-196b-5p inhibitor. LDHs (and LDH-Oligo complex) were synthesized by the coprecipitation method followed by physicochemical characterization as hydrodynamic size, surface charge, crystallinity, and chemical groups. Thymic endothelial cell line (tEnd.1) were transfected with LDH-Oligo and were evaluated for i. cell viability by MTT, trypan blue, and propidium iodide assays; ii. transfection efficiency by flow cytometry, and iii. depletion of miRNA-196b-5p by RT-qPCR. In addition, Drosophila melanogaster larvae were fed LDHs and evaluated for: i. larval motility; ii. pupation rate; iii. larval-pupal transition; iv. lethality, and v. emergence rate. We demonstrated that LDHs nanoparticles are stable in aqueous solutions and exhibit a regular hexagonal shape. The LDH-AMO complex showed a transfection efficiency of 93.95 ± 2.15 % and induced a significant depletion of miRNA-196b-5p 48h after transfection. No cytotoxic effects were detected in tEnd.1 cells at concentrations up to 50 μg/ml, as well as in Drosophila exposed up to 500 μg of LDH. In conclusion, our data suggest that LDHs are biocompatible and efficient carriers for miRNA inhibitors and can be used as a viable and effective tool in functional miRNA inhibition assays.
Collapse
Affiliation(s)
- Mykaella Andrade de Araújo
- Laboratory of Cellular and Molecular Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil.
| | - Erivaldo Davi Dos Santos Júnior
- Laboratory of Cellular and Molecular Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Bruna Priscila Dos Santos
- Laboratory of Cellular and Molecular Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Ygor Daniel Ramos Dos Santos
- Laboratory of Cellular and Molecular Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Pedro Augusto Tibúrcio Paulino
- Laboratory of Cellular and Molecular Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Elane Conceição Dos Santos
- Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Tayhana Priscila Medeiros Souza
- Laboratory of Cellular and Molecular Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Lucas Anhezini
- Laboratory for in Vivo Analysis of Toxicity and Neurodegenerative Diseases, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Ênio José Bassi
- Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Marcelo Duzzioni
- Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Olagide Wagner de Castro
- Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Tiago Gomes de Andrade
- Circadian Medicine Center, Faculty of Medicine, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Camila Braga Dornelas
- Laboratory for Active Substance Carrier Nanosystems Technology, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Daniel Leite Góes Gitaí
- Laboratory of Cellular and Molecular Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil.
| |
Collapse
|
3
|
Cao Z, Bian Y, Hu T, Yang Y, Cui Z, Wang T, Yang S, Weng X, Liang R, Tan C. Recent advances in two-dimensional nanomaterials for bone tissue engineering. JOURNAL OF MATERIOMICS 2023; 9:930-958. [DOI: 10.1016/j.jmat.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Bian Y, Cai X, Lv Z, Xu Y, Wang H, Tan C, Liang R, Weng X. Layered Double Hydroxides: A Novel Promising 2D Nanomaterial for Bone Diseases Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301806. [PMID: 37329200 PMCID: PMC10460877 DOI: 10.1002/advs.202301806] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/07/2023] [Indexed: 06/18/2023]
Abstract
Bone diseases including bone defects, bone infections, osteoarthritis, and bone tumors seriously affect life quality of the patient and bring serious economic burdens to social health management, for which the current clinical treatments bear dissatisfactory therapeutic effects. Biomaterial-based strategies have been widely applied in the treatment of orthopedic diseases but are still plagued by deficient bioreactivity. With the development of nanotechnology, layered double hydroxides (LDHs) with adjustable metal ion composition and alterable interlayer structure possessing charming physicochemical characteristics, versatile bioactive properties, and excellent drug loading and delivery capabilities arise widespread attention and have achieved considerable achievements for bone disease treatment in the last decade. However, to the authors' best knowledge, no review has comprehensively summarized the advances of LDHs in treating bone disease so far. Herein, the advantages of LDHs for orthopedic disorders treatment are outlined and the corresponding state-of-the-art achievements are summarized for the first time. The potential of LDHs-based nanocomposites for extended therapeutics for bone diseases is highlighted and perspectives for LDHs-based scaffold design are proposed for facilitated clinical translation.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Xuejie Cai
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Zehui Lv
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Yiming Xu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Han Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Chaoliang Tan
- Department of Chemistry and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongKowloonHong KongP. R. China
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Xisheng Weng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| |
Collapse
|
5
|
Ibanescu A, Olariu DI, Lutic D, Hulea V, Dragoi B. Engineering the Morphostructural Properties and Drug Loading Degree of Organic-Inorganic Fluorouracil-MgAl LDH Nanohybrids by Rational Control of Hydrothermal Treatment. ACS OMEGA 2023; 8:26102-26121. [PMID: 37521604 PMCID: PMC10372945 DOI: 10.1021/acsomega.3c02288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/13/2023] [Indexed: 08/01/2023]
Abstract
Layered double hydroxides (LDHs) or hydrotalcite-like compounds have attracted great attention for the delivery of anticancer drugs due to their 2D structure, exhibiting a high surface-to-volume ratio and a high chemical versatility. The drug is protected between the layers from which it is slowly released, thus increasing the therapeutic effect and minimizing the side effects associated to nonspecific targeting. This work aimed to design LDHs with Mg and Al (molar ratio of 2/1) in brucite-like layers, which retained fluorouracil (5-FU; 5-FU/Al = 1, molar ratio) in the interlayer gallery as the layers grow during the co-precipitation step of the synthesis. To rationally control the physicochemical properties, particularly the size of the crystallites, the aging step following the co-precipitation was performed under carefully controlled conditions by changing the time and temperature (i.e., 25 °C for 16 h, 100 °C for 16 h, and 120 °C for 24 h). The results revealed the achievement of the control of the size of the crystals, which are gathered in three different agglomeration systems, from tight to loose, as well as the loading degree of the drug in the final organic-inorganic hybrid nanomaterials. The role played by the factors and parameters affecting the drug-controlled release was highlighted by assessing the release behavior of 5-FU by changing the pH, solid mass/volume ratio, and ionic strength. The results showed a pH-dependent behavior but not necessarily in a direct proportionality. After a certain limit, the mass of the solid diminishes the rate of release, whereas the ionic strength is essential for the payload discharge.
Collapse
Affiliation(s)
- Alina Ibanescu
- TRANSCEND
Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot, 700483 Iasi, Romania
- Faculty
of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Bvd., 700050 Iasi, Romania
| | - Dragos-Ioan Olariu
- TRANSCEND
Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot, 700483 Iasi, Romania
- Faculty
of Chemistry, Al. I. Cuza University, 11-Carol I Bvd., 700506 Iasi, Romania
| | - Doina Lutic
- TRANSCEND
Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot, 700483 Iasi, Romania
- Faculty
of Chemistry, Al. I. Cuza University, 11-Carol I Bvd., 700506 Iasi, Romania
| | - Vasile Hulea
- Institut
Charles Gerhardt Montpellier, UMR 5253, CNRS-UM-ENSCM,Montpellier 34296, France
| | - Brindusa Dragoi
- TRANSCEND
Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot, 700483 Iasi, Romania
- Faculty
of Chemistry, Al. I. Cuza University, 11-Carol I Bvd., 700506 Iasi, Romania
| |
Collapse
|
6
|
Yu S, Choi G, Choy JH. Multifunctional Layered Double Hydroxides for Drug Delivery and Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1102. [PMID: 36985996 PMCID: PMC10058705 DOI: 10.3390/nano13061102] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional nanomaterials, particularly layered double hydroxides (LDHs), have been widely applied in the biomedical field owing to their biocompatibility, biodegradability, controllable drug release/loading ability, and enhanced cellular permeability. Since the first study analyzing intercalative LDHs in 1999, numerous studies have investigated their biomedical applications, including drug delivery and imaging; recent research has focused on the design and development of multifunctional LDHs. This review summarizes the synthetic strategies and in-vivo and in-vitro therapeutic actions and targeting properties of single-function LDH-based nanohybrids and recently reported (from 2019 to 2023) multifunctional systems developed for drug delivery and/or bio-imaging.
Collapse
Affiliation(s)
- Seungjin Yu
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
| | - Goeun Choi
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Division of Natural Sciences, The National Academy of Sciences, Seoul 06579, Republic of Korea
- Department of Pre-Medical Course, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- International Research Frontier Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
7
|
Constantino VRL, Figueiredo MP, Magri VR, Eulálio D, Cunha VRR, Alcântara ACS, Perotti GF. Biomaterials Based on Organic Polymers and Layered Double Hydroxides Nanocomposites: Drug Delivery and Tissue Engineering. Pharmaceutics 2023; 15:pharmaceutics15020413. [PMID: 36839735 PMCID: PMC9961265 DOI: 10.3390/pharmaceutics15020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
The development of biomaterials has a substantial role in pharmaceutical and medical strategies for the enhancement of life quality. This review work focused on versatile biomaterials based on nanocomposites comprising organic polymers and a class of layered inorganic nanoparticles, aiming for drug delivery (oral, transdermal, and ocular delivery) and tissue engineering (skin and bone therapies). Layered double hydroxides (LDHs) are 2D nanomaterials that can intercalate anionic bioactive species between the layers. The layers can hold metal cations that confer intrinsic biological activity to LDHs as well as biocompatibility. The intercalation of bioactive species between the layers allows the formation of drug delivery systems with elevated loading capacity and modified release profiles promoted by ion exchange and/or solubilization. The capacity of tissue integration, antigenicity, and stimulation of collagen formation, among other beneficial characteristics of LDH, have been observed by in vivo assays. The association between the properties of biocompatible polymers and LDH-drug nanohybrids produces multifunctional nanocomposites compatible with living matter. Such nanocomposites are stimuli-responsive, show appropriate mechanical properties, and can be prepared by creative methods that allow a fine-tuning of drug release. They are processed in the end form of films, beads, gels, monoliths etc., to reach orientated therapeutic applications. Several studies attest to the higher performance of polymer/LDH-drug nanocomposite compared to the LDH-drug hybrid or the free drug.
Collapse
Affiliation(s)
- Vera Regina Leopoldo Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
- Correspondence: ; Tel.: +55-11-3091-9152
| | - Mariana Pires Figueiredo
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Vagner Roberto Magri
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Denise Eulálio
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Vanessa Roberta Rodrigues Cunha
- Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso (IFMT), Linha J, s/n–Zona Rural, Juína 78320-000, MT, Brazil
| | | | - Gustavo Frigi Perotti
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Itacoatiara 69103-128, AM, Brazil
| |
Collapse
|
8
|
Lee J, Seo HS, Park W, Park CG, Jeon Y, Park DH. Biofunctional Layered Double Hydroxide Nanohybrids for Cancer Therapy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7977. [PMID: 36431465 PMCID: PMC9694224 DOI: 10.3390/ma15227977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Layered double hydroxides (LDHs) with two-dimensional nanostructure are inorganic materials that have attractive advantages such as biocompatibility, facile preparation, and high drug loading capacity for therapeutic bioapplications. Since the intercalation chemistry of DNA molecules into the LDH materials were reported, various LDH nanohybrids have been developed for biomedical drug delivery system. For these reasons, LDHs hybridized with numerous therapeutic agents have a significant role in cancer imaging and therapy with targeting functions. In this review, we summarized the recent advances in the preparation of LDH nanohybrids for cancer therapeutic strategies including gene therapy, chemotherapy, immunotherapy, and combination therapy.
Collapse
Affiliation(s)
- Joonghak Lee
- Department of Engineering Chemistry, College of Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Synchrotron Radiation Science and Technology, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Hee Seung Seo
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Gyeonggi, Republic of Korea
- Institute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Gyeonggi, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Gyeonggi, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Gyeonggi, Republic of Korea
| | - Yukwon Jeon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Gangwondo, Republic of Korea
| | - Dae-Hwan Park
- Department of Engineering Chemistry, College of Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Synchrotron Radiation Science and Technology, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
9
|
Pires Figueiredo M, Diaz Suarez E, M. Petrilli H, Leroux F, Taviot-Guého C, Leopoldo Constantino VR. Limiting content of trivalent iron to form organic-inorganic single-phase layered double hydroxides hybrids by coprecipitation. APPLIED CLAY SCIENCE 2022; 228:106642. [DOI: 10.1016/j.clay.2022.106642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
10
|
Hu T, Gu Z, Williams GR, Strimaite M, Zha J, Zhou Z, Zhang X, Tan C, Liang R. Layered double hydroxide-based nanomaterials for biomedical applications. Chem Soc Rev 2022; 51:6126-6176. [PMID: 35792076 DOI: 10.1039/d2cs00236a] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Against the backdrop of increased public health awareness, inorganic nanomaterials have been widely explored as promising nanoagents for various kinds of biomedical applications. Layered double hydroxides (LDHs), with versatile physicochemical advantages including excellent biocompatibility, pH-sensitive biodegradability, highly tunable chemical composition and structure, and ease of composite formation with other materials, have shown great promise in biomedical applications. In this review, we comprehensively summarize the recent advances in LDH-based nanomaterials for biomedical applications. Firstly, the material categories and advantages of LDH-based nanomaterials are discussed. The preparation and surface modification of LDH-based nanomaterials, including pristine LDHs, LDH-based nanocomposites and LDH-derived nanomaterials, are then described. Thereafter, we systematically describe the great potential of LDHs in biomedical applications including drug/gene delivery, bioimaging diagnosis, cancer therapy, biosensing, tissue engineering, and anti-bacteria. Finally, on the basis of the current state of the art, we conclude with insights on the remaining challenges and future prospects in this rapidly emerging field.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW 2052, Australia
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Margarita Strimaite
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jiajia Zha
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.,School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong. .,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
11
|
Karmakar AK, Hasan MS, Sreemani A, Das Jayanta A, Hasan MM, Tithe NA, Biswas P. A review on the current progress of layered double hydroxide application in biomedical sectors. THE EUROPEAN PHYSICAL JOURNAL PLUS 2022; 137:801. [DOI: 10.1140/epjp/s13360-022-02993-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/22/2022] [Indexed: 01/06/2025]
|
12
|
Ceccarini MR, Puccetti M, Pagano C, Nocchetti M, Beccari T, di Michele A, Ricci M, Perioli L. MgAl and ZnAl-Hydrotalcites as Materials for Cosmetic and Pharmaceutical Formulations: Study of Their Cytotoxicity on Different Cell Lines. Pharmaceuticals (Basel) 2022; 15:ph15070784. [PMID: 35890082 PMCID: PMC9315929 DOI: 10.3390/ph15070784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
The knowledge about the effect of hydrotalcites (HTlcs), largely used in pharmaceutics, on non-malignant cell lines is limited. The effect of MgAl-HTlc-and ZnAl-HTlc- (NO3−/Cl−/CO32−) on the cell viability of HaCat, fibroblasts and HepG2 was studied by MTT assay. Cells were incubated either with HTlc suspensions in the culture media and with the supernatant obtained from the suspension being centrifuged. MgAl-HTlcs suspensions resulted in being cytotoxic. As SEM and TEM analyses showed the presence of sub-micrometric particles in all the MgAl-HTlc examined, it could be hypothesized that this fraction can be internalized into cells reducing the viability. MgAl-HTlc-NO3 is the most cytotoxic probably due to the additional effect of NO3− anions. ZnAl-HTlcs are cytotoxic, especially for HaCat and HepG2 cells (viability <60% at all the concentrations assayed). The effect is attributable both to the sub-micrometric fraction (identified by TEM) and to the high Zn2+ levels found in the culture medium by ICP-OES analysis, suggesting that ZnAl-HTlcs are less stable than MgAl-HTlc in the used media. The obtained results suggest that it is very important to perform ad hoc studies in order to evaluate HTlc safety before to be introduced in a formulation.
Collapse
Affiliation(s)
- Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.P.); (M.N.); (T.B.); (M.R.); (L.P.)
| | - Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.P.); (M.N.); (T.B.); (M.R.); (L.P.)
| | - Cinzia Pagano
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.P.); (M.N.); (T.B.); (M.R.); (L.P.)
- Correspondence:
| | - Morena Nocchetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.P.); (M.N.); (T.B.); (M.R.); (L.P.)
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.P.); (M.N.); (T.B.); (M.R.); (L.P.)
| | | | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.P.); (M.N.); (T.B.); (M.R.); (L.P.)
| | - Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.P.); (M.N.); (T.B.); (M.R.); (L.P.)
| |
Collapse
|
13
|
Kim D, Kim G, Han J, Jung O. Advances in
2D
coordination networks for single‐crystal‐to‐single crystal applications beyond confined pores. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dongwon Kim
- Department of Chemistry Pusan National University Pusan Korea
| | - Gyeongwoo Kim
- Department of Chemistry Pusan National University Pusan Korea
| | - Jihun Han
- Department of Chemistry Pusan National University Pusan Korea
| | - Ok‐Sang Jung
- Department of Chemistry Pusan National University Pusan Korea
| |
Collapse
|
14
|
Arumugam B, Ramaraj SK. Insights into the Design and Electrocatalytic Activity of Magnesium Aluminum Layered Double Hydroxides: Application to Nonenzymatic Catechol Sensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4848-4858. [PMID: 35413192 DOI: 10.1021/acs.langmuir.1c03494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The design of an efficient electrocatalyst for effective trace level determinations of noxious synthetic and or biological compounds is the unceasingly noteworthy conceptual approach for rapid technology. In this work, we designed a magnesium-aluminum layered double hydroxides (Mg-Al LDHs) nanocatalyst and applied it to the electrocatalytic determination of an extremely carcinogenic catechol sensor. A coprecipitation method was employed for synthesizing the nanocatalyst, and the structure, porous nature, and morphology were confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, N2 adsorption-desorption isotherm, field emission-scanning electron microscopy, and transmission electron microscopy. The elemental composition was observed by energy dispersive X-ray analysis. The electrochemical studies were investigated with the help of cyclic voltammetry and differential pulse voltammetry techniques. The Mg-Al LDHs-based electrocatalyst was used to detect catechol by electrochemical measurements with different parameters. The proposed catechol sensor shows a wide dynamic range (0.007-200 μM) with a lower level of detection (2.3 nm) and sensitivity (3.57 μA μM-1 cm-2). The excellent sensor performance is attributed to the high surface area, fast electron transfer, more active sites, and excellent flexibility. This study depicts the proposed sensor as probable to practical in a scientific investigation. In addition, the modified electrode showed greater selectivity and was used in the detection of fatal contaminants in instant treatment strategies. Moreover, the Mg-Al LDHs confirmed auspicious real sample scrutiny with noteworthy retrieval outcomes in lake water samples which exposed improved consequences.
Collapse
Affiliation(s)
- Balamurugan Arumugam
- PG & Research Department of Chemistry, Thiagarajar College, Madurai - 625009, Tamil Nadu India
| | - Sayee Kannan Ramaraj
- PG & Research Department of Chemistry, Thiagarajar College, Madurai - 625009, Tamil Nadu India
| |
Collapse
|
15
|
Zhang Z, Wang Y, Rizk MM, Liang R, Wells CJ, Gurnani P, Zhou F, Davies GL, Williams GR. Thermo-responsive nano-in-micro particles for MRI-guided chemotherapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112716. [DOI: 10.1016/j.msec.2022.112716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/12/2022] [Accepted: 02/09/2022] [Indexed: 12/19/2022]
|
16
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
17
|
Wang L, Yan Y. A Review of pH-Responsive Organic-Inorganic Hybrid Nanoparticles for RNAi-Based Therapeutics. Macromol Biosci 2021; 21:e2100183. [PMID: 34160896 DOI: 10.1002/mabi.202100183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Indexed: 12/13/2022]
Abstract
RNA interference (RNAi) shows great potential in the treatment of varying cancer and genetic disorders. The lack of safe and effective delivery methods is an ongoing challenge to realize the full potential of RNAi-based therapeutics. pH-responsive hybrid nanoparticle is a promising non-virus platform for small interfering RNA (siRNA) delivery with unique properties including the robust response to the acidic microenvironment and the capability of theranostic and combined therapeutics. The mechanism of RNAi and the delivery barriers for RNAi-based therapeutics are first discussed. Then, the general patterns of pH-response and the typical construction of hybrid nanoparticles are demonstrated. The recent advances in pH-responsive organic-inorganic hybrid nanoparticles for siRNA delivery are highlighted, in particular, how pH-response of ionizable groups, acid-labile bonds, and decomposition of inorganic components affect the physicochemical properties of hybrid nanoparticles and benefit the cellular uptake and intracellular trafficking of siRNA payloads are discussed. At last, the remaining problems and the prospects for pH-responsive hybrid nanoparticles for siRNA delivery are analyzed.
Collapse
Affiliation(s)
- Lu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
18
|
Prevot V, Touati S, Mousty C. Confined Growth of NiAl-Layered Double Hydroxide Nanoparticles Within Alginate Gel: Influence on Electrochemical Properties. Front Chem 2020; 8:561975. [PMID: 33344412 PMCID: PMC7738438 DOI: 10.3389/fchem.2020.561975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/12/2020] [Indexed: 11/13/2022] Open
Abstract
NiAl Layered Double Hydroxide (LDH) alginate bionanocomposites were synthesized by confined coprecipitation within alginate beads. The NiAl based bionanocomposites were prepared either by impregnation by divalent and trivalent metal cations of pre-formed calcium cross-linked alginate beads or by using the metal cations (Ni2+, Al3+) as crosslinking cationic agents for the biopolymer network. The impregnation step was systematically followed by a soaking in NaOH solution to induce the LDH coprecipitation. Powder x-ray diffraction (PXRD), infrared spectroscopy (FTIR), energy dispersive X-ray analysis (EDX), thermogravimetry analysis (TGA), electron microscopies (SEM and TEM) confirmed the biotemplated coprecipitation of LDH nanoparticles ranging from 75 to 150 nm for both strategies. The drying of the LDH@alginate beads by supercritical CO2 drying process led to porous bionanocomposite aerogels when Ca2+ cross-linked alginate beads were used. Such confined preparation of NiAl LDH was extended to bionanocomposite films leading to similar results. The permeability and the electrochemical behavior of these NiAl@alginate bionanocomposites, as thin films coated on indium tin oxide (ITO) electrodes, were investigated by cyclic voltammetry, demonstrating an efficient diffusion of the K4Fe(CN)6 redox probe through the LDH@alginate based films and the improvement of the electrochemical accessibility of the Ni sites.
Collapse
Affiliation(s)
- Vanessa Prevot
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, Clermont-Ferrand, France
| | - Souad Touati
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, Clermont-Ferrand, France
| | - Christine Mousty
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, Clermont-Ferrand, France
| |
Collapse
|
19
|
Choi G, Choy JH. Recent progress in layered double hydroxides as a cancer theranostic nanoplatform. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1679. [PMID: 33140557 DOI: 10.1002/wnan.1679] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022]
Abstract
Layered double hydroxide (LDH) has been a big challenge in exploring new hybrid materials by intercalating inorganic, organic, or bio molecules into their lamellar lattice, those which often showed dual functions from each other or new mutative properties. Recently, nano-bio convergence technology becomes one of the most extensively studied research fields in the view point of developing advanced drugs and diagnostic agents to fight against disease and eventually to improve the lives of human beings. Therefore, LDH as one of the nanomaterials have been intensively investigated not only as biocompatible drug delivery vehicle for cancer chemotherapy but also as diagnostic and imaging agents. In the present review, we have attempted to summarize theranostic functions of drug-LDH hybrid nanoparticles including their synthetic methods, physico-chemical and biological properties, and their unique mechanism overcoming drug resistance, and targeting properties based on in vitro and finally in vivo results. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,College of Science and Technology, Dankook University, Cheonan, Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
20
|
Ren M, Zeng W, Li Z, Cao S, Liu C, Ouyang S, Zhang T, Cui Y, Yuan H. CoAl-layered double hydroxide nanosheet-based fluorescence assay for fast DNA detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118618. [PMID: 32599482 DOI: 10.1016/j.saa.2020.118618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
In the study, CoAl-layered double hydroxide (CoAl-LDH) was prepared as a fluorescence quenching agent to detect DNA molecules. Because of its simple preparation for a large scale, excellent surface effect, good biocompatibility and high fluorescence quenching capability, the effective, rapid, and sensitive DNA detection was realized. The fluorescence quenching efficiency of LDH to 5(6)-carboxyfluorescein attached to single stranded DNA (FAM-ssDNA) was as high as 88%, and after FAM-ssDNA hybridized with the complementary DNA oligonucleotide, that to FAM-dsDNA was about 33%. The quenching mechanisms of LDH for ssDNA and dsDNA were discussed. Phosphate exposed of ssDNA played an important role in quenching effect. Compared to dsDNA, more exposed phosphate groups in ssDNA resulted in the stronger electrostatic interaction between ssDNA and LDH, and thus the higher quenching efficiency. Under optimal conditions, the linear equation was y = 38.26 + 3.37x in a linear relationship of 1-50 nM, and the correlation coefficient R2 corresponded to 0.999, and the limit of detection was calculated to be 0.79 nM (3σ). Cytotoxicity studies have shown that LDH has good biocompatibility. The study provides an effective, sensitive and safe approach for DNA detection and gives an insight for the design of LDH-based biosensing materials.
Collapse
Affiliation(s)
- Mengli Ren
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Weili Zeng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zhenhua Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shiqin Cao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shuxin Ouyang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yanfang Cui
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Hong Yuan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
21
|
Ranjan P, Lee JM, Kumar P, Vinu A. Borophene: New Sensation in Flatland. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000531. [PMID: 32666554 DOI: 10.1002/adma.202000531] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/29/2020] [Indexed: 05/09/2023]
Abstract
Borophene, a 2D allotrope of boron and the lightest elemental Dirac material, is the latest very promising 2D material owing to its unique structural and electronic characteristics of the X3 and β12 phases. The high atomic density on ridgelines of the β12 phase of borophene provides a substantial orbital overlap, which leads to an excellent electron density in the conduction level and thus to a highly metallic behavior. These unique structural characteristics and electronic properties of borophene attract significant scientific interest. Herein, approaches for crystal growth/synthesis of these unique nanostructures and their potential technological applications are discussed. Various substrate-supported ultrahigh-vacuum growth techniques for borophene, such as molecular beam epitaxy, atomic layer deposition, and chemical vapor deposition, along with their challenges, are also summarized. The sonochemical exfoliation and modified Hummer's technique for the synthesis of free-standing borophene are also discussed. Solution-phase exfoliation seems to address the scalability issues and expands the applications of these unique materials to various fields, including renewable energy devices and ultrafast sensors. Furthermore, the electronic, optical, thermal, and elastic properties of borophene are thoroughly discussed and are compared with those of graphene and its "cousins." Numerous frontline applications are envisaged and an outlook is presented.
Collapse
Affiliation(s)
- Pranay Ranjan
- Department of Physics, Indian Institute of Technology Patna, Bihta, Patna, Bihar, 801103, India
- Department of Physics, UAE University, Al-Ain, Abu Dhabi, 15551, United Arab Emirates
| | - Jang Mee Lee
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Prashant Kumar
- Department of Physics, Indian Institute of Technology Patna, Bihta, Patna, Bihar, 801103, India
- Birck Nanotechnology Centre, Purdue University, West Lafayette, IN, 47907, USA
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
22
|
|
23
|
Fusco L, Gazzi A, Peng G, Shin Y, Vranic S, Bedognetti D, Vitale F, Yilmazer A, Feng X, Fadeel B, Casiraghi C, Delogu LG. Graphene and other 2D materials: a multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics 2020; 10:5435-5488. [PMID: 32373222 PMCID: PMC7196289 DOI: 10.7150/thno.40068] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer represents one of the main causes of death in the world; hence the development of more specific approaches for its diagnosis and treatment is urgently needed in clinical practice. Here we aim at providing a comprehensive review on the use of 2-dimensional materials (2DMs) in cancer theranostics. In particular, we focus on graphene-related materials (GRMs), graphene hybrids, and graphdiyne (GDY), as well as other emerging 2DMs, such as MXene, tungsten disulfide (WS2), molybdenum disulfide (MoS2), hexagonal boron nitride (h-BN), black phosphorus (BP), silicene, antimonene (AM), germanene, biotite (black mica), metal organic frameworks (MOFs), and others. The results reported in the scientific literature in the last ten years (>200 papers) are dissected here with respect to the wide variety of combinations of imaging methodologies and therapeutic approaches, including drug/gene delivery, photothermal/photodynamic therapy, sonodynamic therapy, and immunotherapy. We provide a unique multidisciplinary approach in discussing the literature, which also includes a detailed section on the characterization methods used to analyze the material properties, highlighting the merits and limitations of the different approaches. The aim of this review is to show the strong potential of 2DMs for use as cancer theranostics, as well as to highlight issues that prevent the clinical translation of these materials. Overall, we hope to shed light on the hidden potential of the vast panorama of new and emerging 2DMs as clinical cancer theranostics.
Collapse
Affiliation(s)
- Laura Fusco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, Padua, Italy
- Cancer Program, Sidra Medicine, Doha, Qatar
| | - Arianna Gazzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, Padua, Italy
| | - Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yuyoung Shin
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Sandra Vranic
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Flavia Vitale
- Department of Neurology, Bioengineering, Physical Medicine & Rehabilitation, Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - Acelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Xinliang Feng
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Lucia Gemma Delogu
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, Padua, Italy
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
24
|
Abstract
Biocompatible hydrotalcite nanohybrids, i.e., layered double hydroxide (LDH) based nanohybrids have attracted significant attention for biomedical functions. Benefiting from good biocompatibility, tailored drug incorporation, high drug loading capacity, targeted cellular delivery and natural pH-responsive biodegradability, hydrotalcite nanohybrids have shown great potential in drug/gene delivery, cancer therapy and bio-imaging. This review aims to summarize recent progress of hydrotalcite nanohybrids, including the history of the hydrotalcite-like compounds for application in the medical field, synthesis, functionalization, physicochemical properties, cytotoxicity, cellular uptake mechanism, as well as their related applications in biomedicine. The potential and challenges will also be discussed for further development of LDHs both as drug delivery carriers and diagnostic agents.
Collapse
|
25
|
Alcântara ACS, Darder M, Aranda P, Ruiz-Hitzky E. Zein-layered hydroxide biohybrids: strategies of synthesis and characterization. MATERIALS 2020; 13:ma13040825. [PMID: 32054135 PMCID: PMC7079599 DOI: 10.3390/ma13040825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 12/30/2022]
Abstract
This work constitutes a basic study about the first exploration on the preparation of biohybrids based on the corn protein zein and layered metal hydroxides, such as layered double hydroxides (LDH) and layered single hydroxides (LSHs). For this purpose, MgAl layered double hydroxide and the Co2(OH)3 layered single hydroxide were selected as hosts, and various synthetic approaches were explored to achieve the formation of the zein-layered hydroxide biohybrids, profiting from the presence of negatively charged groups in zein in basic medium. Zein-based layered hydroxide biohybrids were characterized by diverse physicochemical techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis/differential thermal analysis (TG/DTA), solid state 13C cross-polarization magical angle spinning nuclear magnetic resonance (CP-MAS NMR), field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), etc., which suggest that the different synthesis procedures employed and the anion located in the interlayer region of the inorganic host material seem to have a strong influence on the final features of the biohybrids, resulting in mixed, single intercalated, or highly exfoliated intercalated phases. Thus, the resulting biohybrids based on zein and layered hydroxides could have interest in applications in biomedicine, biosensing, materials for electronic devices, catalysis, and photocatalysis.
Collapse
|
26
|
Eom S, Choi G, Nakamura H, Choy JH. 2-Dimensional Nanomaterials with Imaging and Diagnostic Functions for Nanomedicine; A Review. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190270] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sairan Eom
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
27
|
Cunha VRR, Petersen PAD, Souza RB, Martins AMCRPF, Leroux F, Taviot-Gueho C, Petrilli HM, Koh IHJ, Constantino VRL. Phytochemical species intercalated into layered double hydroxides: structural investigation and biocompatibility assays. NEW J CHEM 2020. [DOI: 10.1039/d0nj00238k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The compound p-coumaric acid (HCou) is found in many foods and presents action in the suppression of chronic diseases and protective effects on neurodegenerative disorders.
Collapse
Affiliation(s)
- Vanessa R. R. Cunha
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- USP
- São Paulo
| | - Philippe A. D. Petersen
- Departamento de Física dos Materiais e Mecânica
- Instituto de Física
- Universidade de São Paulo
- USP
- São Paulo
| | - Rodrigo B. Souza
- Departamento de Morfologia e Genética
- Universidade Federal de São Paulo – UNIFESP
- São Paulo
- Brazil
| | | | - Fabrice Leroux
- Institut de Chimie de Clermont-Ferrand ICCF
- CNRS
- Université Clermont Auvergne
- F-63000 Clermont-Ferrand
- France
| | - Christine Taviot-Gueho
- Institut de Chimie de Clermont-Ferrand ICCF
- CNRS
- Université Clermont Auvergne
- F-63000 Clermont-Ferrand
- France
| | - Helena M. Petrilli
- Departamento de Física dos Materiais e Mecânica
- Instituto de Física
- Universidade de São Paulo
- USP
- São Paulo
| | - Ivan H. J. Koh
- Departamento de Cirurgia
- Universidade Federal de São Paulo – UNIFESP
- São Paulo
- Brazil
| | - Vera R. L. Constantino
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- USP
- São Paulo
| |
Collapse
|
28
|
Jin W, Park DH. Functional Layered Double Hydroxide Nanohybrids for Biomedical Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1404. [PMID: 31581689 PMCID: PMC6835322 DOI: 10.3390/nano9101404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 01/15/2023]
Abstract
Biomedical investigations using layered double hydroxide (LDH) nanoparticles have attracted tremendous attentions due to their advantages such as biocompatibility, variable-chemical compositions, anion-exchange capacity, host-guest interactions, and crystallization-dissolution characters. Bio-imaging becomes more and more important since it allows theranostics to combine therapy and diagnosis, which is a concept of next-generation medicine. Based on the unique features mentioned above, LDHs create novel opportunities for bio-imaging and simultaneous therapy with LDHs-based nanohybrids. This review aims to explore the recent advances in multifunctional LDH nanohybrids ranging from synthesis to practical applications for various bio-imaging with therapeutic functions. Furthermore, their potential both as diagnostic agents and drug delivery carriers will be discussed with the improvement in noninvasive bio-imaging techniques.
Collapse
Affiliation(s)
- Wenji Jin
- Department of Nano Materials Science and Engineering, Kyungnam University, Changwon, Gyeongsangnamdo 51767, Korea.
- College of Chemistry and Environmental Engineering, Jiujiang University, Jiujiang, Jiangxi 332005, China.
| | - Dae-Hwan Park
- Department of Nano Materials Science and Engineering, Kyungnam University, Changwon, Gyeongsangnamdo 51767, Korea.
| |
Collapse
|
29
|
Yasaei M, Khakbiz M, Zamanian A, Ghasemi E. Synthesis and characterization of Zn/Al-LDH@SiO2 nanohybrid: Intercalation and release behavior of vitamin C. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109816. [DOI: 10.1016/j.msec.2019.109816] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/06/2019] [Accepted: 05/27/2019] [Indexed: 02/03/2023]
|
30
|
Abstract
Layered double hydroxides (LDHs) are an emergent class of biocompatible inorganic lamellar nanomaterials that have attracted significant research interest owing to their high surface-to-volume ratio, the capability to accumulate specific molecules, and the timely release to targets. Their unique properties have been employed for applications in organic catalysis, photocatalysis, sensors, drug delivery, and cell biology. Given the widespread contemporary interest in these topics, time-to-time it urges to review the recent progresses. This review aims to summarize the most recent cutting-edge reports appearing in the last years. It firstly focuses on the application of LDHs as catalysts in relevant chemical reactions and as photocatalysts for organic molecule degradation, water splitting reaction, CO2 conversion, and reduction. Subsequently, the emerging role of these materials in biological applications is discussed, specifically focusing on their use as biosensors, DNA, RNA, and drug delivery, finally elucidating their suitability as contrast agents and for cellular differentiation. Concluding remarks and future prospects deal with future applications of LDHs, encouraging researches in better understanding the fundamental mechanisms involved in catalytic and photocatalytic processes, and the molecular pathways that are activated by the interaction of LDHs with cells in terms of both uptake mechanisms and nanotoxicology effects.
Collapse
|
31
|
Choi G, Piao H, Eom S, Choy JH. Vectorized Clay Nanoparticles in Therapy and Diagnosis. CLAYS AND CLAY MINERALS 2019; 67:25-43. [DOI: 10.1007/s42860-019-0009-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractOver the past several decades, clay minerals have been applied in various bio-fields such as drug and drug additives, animal medicine and feed additives, cosmetics, biosensors, etc. Among various research areas, however, the medical application of clay minerals is an emerging field not only in academia but also in industry. In particular, cationic and anionic clays have long been considered as drug delivery vehicles for developing advanced drug delivery systems (DDSs), which is the most important of the various research fields including new drugs and medicines, in vitro and in vivo diagnostics, implants, biocompatible materials, etc., in nanomedicine. These applications are obviously related to global issues such as improvements in welfare and quality of life with life expectancy increasing. Many scientists, therefore, in various disciplines, such as clay mineralogy, material chemistry, molecular biology, pharmacology, and medical science, have been endeavoring to find solutions to such global issues. One of the strategic approaches is probably to explore new drugs possessing intrinsic therapeutic effects or to develop advanced materials with theranostic functions. With this is mind, discussions of examples of cationic and anionic clays with bio- and medical applications based on nanomedicine are relevant. In this tutorial review, nanomedicine based on clay minerals are described in terms of synthetic strategies of clay nanohybrids, in vitro and in vivo toxicity, biocompatibility, oral and injectable medications, diagnostics, theranosis, etc.
Collapse
|
32
|
Piao H, Kim MH, Cui M, Choi G, Choy JH. Alendronate-Anionic Clay Nanohybrid for Enhanced Osteogenic Proliferation and Differentiation. J Korean Med Sci 2019; 34:e37. [PMID: 30718990 PMCID: PMC6356027 DOI: 10.3346/jkms.2019.34.e37] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/13/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alendronate (AL), a drug for inhibiting osteoclast-mediated bone-resorption, was intercalated into an inorganic drug delivery nanovehicle, layered double hydroxide (LDH), to form a new nanohybrid, AL-LDH, with 1:1 heterostructure along the crystallographic C-axis. Based on the intercalation reaction strategy, the present AL-LDH drug delivery system (DDS) was realized with an enhanced drug efficacy of AL, which was confirmed by the improved proliferation and osteogenic differentiation of osteoblast-like cells (MG63). METHODS The AL-LDH nanohybrid was synthesized by conventional ion-exchange reaction and characterized by powder X-ray diffraction (PXRD), high-resolution transmission electron microscopy (HR-TEM), and Fourier transform infrared (FT-IR) spectroscopy. Additionally, in vitro efficacy tests, such as cell proliferation and alkaline phosphatase (ALP) activity, were analyzed. RESULTS The AL was successfully intercalated into LDH via ion-exchange reaction, and thus prepared AL-LDH DDS was X-ray single phasic and chemically well defined. The accumulated AL content in MG63 cells treated with the AL-LDH DDS nanoparticles was determined to be 10.6-fold higher than that within those treated with the intact AL after incubation for 1 hour, suggesting that intercellular permeation of AL was facilitated thanks to the hybridization with drug delivery vehicle, LDH. Furthermore, both in vitro proliferation level and ALP activity of MG63 treated with the present hybrid drug, AL-LDH, were found to be much more enhanced than those treated with the intact AL. This is surely due to the fact that LDH could deliver AL drug very efficiently, although LDH itself does not show any effect on proliferation and osteogenic differentiation of MG63 cells. CONCLUSION The present AL-LDH could be considered as a promising DDS for improving efficacy of AL.
Collapse
Affiliation(s)
- Huiyan Piao
- Department of Chemistry and Nanoscience, Center for Intelligent Nano-Bio Materials, Ewha Womans University, Seoul, Korea
| | - Myung Hun Kim
- Department of Chemistry and Nanoscience, Center for Intelligent Nano-Bio Materials, Ewha Womans University, Seoul, Korea
| | - Meiling Cui
- Department of Chemistry and Nanoscience, Center for Intelligent Nano-Bio Materials, Ewha Womans University, Seoul, Korea
| | - Goeun Choi
- Department of Chemistry and Nanoscience, Center for Intelligent Nano-Bio Materials, Ewha Womans University, Seoul, Korea
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Korea
| | - Jin-Ho Choy
- Department of Chemistry and Nanoscience, Center for Intelligent Nano-Bio Materials, Ewha Womans University, Seoul, Korea
| |
Collapse
|
33
|
Rebitski EP, Darder M, Aranda P. Layered double hydroxide/sepiolite hybrid nanoarchitectures for the controlled release of herbicides. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1679-1690. [PMID: 31467829 PMCID: PMC6693401 DOI: 10.3762/bjnano.10.163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/25/2019] [Indexed: 05/20/2023]
Abstract
In this work, organic-inorganic hybrid nanoarchitectures were prepared in a single coprecipitation step by assembling magnesium-aluminum layered double hydroxides (MgAl-LDH) and a sepiolite fibrous clay, with the simultaneous encapsulation of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA) as the MgAl-LDH retains its ion exchange properties. The synthetic procedure was advantageous in comparison to the incorporation of MCPA by ion exchange after the formation of the LDH/sepiolite nanoarchitecture in a previous step, as it was less time consuming and gave rise to a higher loading of MCPA. The resulting MCPA-LDH/sepiolite nanoarchitectures were characterized by various physicochemical techniques (XRD, FTIR and 29Si NMR spectroscopies, CHN analysis and SEM) that revealed interactions of LDH with the sepiolite fibers through the silanol groups present on the outer surface of sepiolite, together with the intercalation of MCPA in the LDH confirmed by the increase in the basal spacing from 0.77 nm for the pristine LDH to 2.32 nm for the prepared materials. The amount of herbicide incorporated in the hybrid nanoarchitectures prepared by the single-step coprecipitation method surpassed the CEC of LDH (ca. 330 mEq/100 g), with values reaching 445 mEq/100 g LDH for certain compositions. This suggests a synergy between the inorganic solids that allows the nanoarchitecture to exhibit better adsorption properties than the separate components. Additionally, in the release assays, the herbicide incorporated in the hybrid nanoarchitectures could be completely released, which confirms its suitability for agricultural applications. In order to achieve a more controlled release of the herbicide and to act for several days on the surface of the soil, the hybrid nanoarchitectures were encapsulated in a biopolymer matrix of alginate/zein and shaped into spheres. In in vitro tests carried out in bidistilled water, a continuous release of MCPA from the bionanocomposite beads was achieved for more than a week, while the non-encapsulated materials released the 100% of MCPA in 48 h. Besides, the encapsulation may allow for better handling and transport of the herbicide.
Collapse
Affiliation(s)
- Ediana Paula Rebitski
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Margarita Darder
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Pilar Aranda
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
34
|
Sun W, Wu FG. Two-Dimensional Materials for Antimicrobial Applications: Graphene Materials and Beyond. Chem Asian J 2018; 13:3378-3410. [DOI: 10.1002/asia.201800851] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/14/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| |
Collapse
|