1
|
Wu X, Turnell-Ritson RC, Han P, Schmidt JC, Piveteau L, Yan N, Dyson PJ. Carbamate-bond breaking on bulk oxides realizes highly efficient polyurethane depolymerization. Nat Commun 2025; 16:4322. [PMID: 40346089 PMCID: PMC12064708 DOI: 10.1038/s41467-025-59688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 04/30/2025] [Indexed: 05/11/2025] Open
Abstract
Polyurethane is a versatile plastic finding applications across diverse sectors ranging from construction to household products. Recently, there is growing interest in the chemical recycling of polyurethane via catalytic hydrogenation to recover anilines and polyols. However, examples of heterogeneous catalysts are lacking despite their practicality for scale-up to a commercially relevant level. Herein, the conversion of model carbamate compounds is investigated using different metal-oxide catalysts, with CeO2 exhibiting the best activity and achieving the highest yield of aniline products (up to 100% conversion and 92% yield of anilines). A volcanic correlation is found between the acidity of the metal-oxide catalysts and their activity in cleaving the carbamate bond. The high activity of CeO2 may be primarily attributed to a low oxygen vacancy formation energy and highly redox active Ce3+/Ce4+ pairs. Based on control reactions under different conditions and in situ NMR studies, a mechanism for carbamate bond dissociation on CeO2 was proposed. Notably, both solvent-free hydrogenation and hydrogen-free transfer hydrogenation approaches may be utilized to depolymerize various commonly encountered polyurethane (thermoplastic and thermoset) products using CeO2.
Collapse
Affiliation(s)
- Xinbang Wu
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Roland C Turnell-Ritson
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Peijie Han
- Department of Chemical Engineering, National University of Singapore, Singapore, Singapore
| | - Jaques-Christopher Schmidt
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laura Piveteau
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ning Yan
- Department of Chemical Engineering, National University of Singapore, Singapore, Singapore.
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
2
|
Endo T, Ikeda T, Muraoka K, Kita Y, Tamura M, Nakayama A. Lattice oxygen insertion mechanism in CeO 2-catalyzed reactions in water: nitrile hydration reaction. Chem Sci 2025; 16:939-951. [PMID: 39660288 PMCID: PMC11627105 DOI: 10.1039/d4sc06294a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/30/2024] [Indexed: 12/12/2024] Open
Abstract
Cerium oxide (CeO2) exhibits prominent catalytic activity in various organic reactions owing to its unique acid-base and redox properties. One of the most interesting applications of pure CeO2-catalyzed organic reactions is the hydration of nitriles in water. The experimental results showed that the hydration of 2-cyanopyridine to picolinamide in water using CeO2 catalysts proceeds readily at low temperatures (30-100 °C) in high yields and that this reaction occurs exclusively on CeO2 among various metal-oxide catalysts. To elucidate the unique catalytic activity of CeO2, the reaction mechanism is dissected using the density functional theory-based molecular dynamics (DFT-MD) simulations. Based on the free energy analysis, it is demonstrated that the reaction proceeds with the involvement of the surface lattice oxygen, where the lattice oxygen atom is inserted into picolinamide. The involvement of the surface lattice oxygen is notably uncommon given the low temperatures of the reaction, and this computational prediction is verified by the two experiments using H2 18O solvent and 18O-exchanged CeO2 catalyst, where the introduction of surface lattice oxygen into picolinamide is confirmed. The inherent flexibility of the surface lattice oxygen and the unique acid-base properties of CeO2, which can favorably bind and activate both nitrile and water molecules, are key factors in the high reactivity for various organic reactions, which characterizes the outstanding catalytic activity of CeO2.
Collapse
Affiliation(s)
- Takaaki Endo
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| | - Tatsushi Ikeda
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| | - Koki Muraoka
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| | - Yusuke Kita
- Department of Chemistry and Bioengineering, School of Engineering, Osaka Metropolitan University 3-3-138, Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Masazumi Tamura
- Department of Chemistry and Bioengineering, School of Engineering, Osaka Metropolitan University 3-3-138, Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Akira Nakayama
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| |
Collapse
|
3
|
Natongchai W, Crespy D, D'Elia V. CO 2 fixation: cycloaddition of CO 2 to epoxides using practical metal-free recyclable catalysts. Chem Commun (Camb) 2025; 61:419-440. [PMID: 39635881 DOI: 10.1039/d4cc05291a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The conversion of CO2 into valuable chemicals is a crucial field of research. Cyclic organic carbonates have attracted great interest because they can be prepared under mild conditions and because of their structural versatility which enables a large variety of applications. Therefore, there is a need for potent and yet practical catalysts for the cycloaddition of CO2 to cyclic carbonates that are able to combine availability, low cost and an adequate performance. We review here several recyclable catalytic systems that are readily available, easy to prepare, and inexpensive with an eye to the future development of more efficient practical catalysts through the provided guidelines.
Collapse
Affiliation(s)
- Wuttichai Natongchai
- Department of Materials Science and Engineering, VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Vidyasirimedhi Institute of Science and Technology, (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand
| | - Valerio D'Elia
- Department of Materials Science and Engineering, VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Vidyasirimedhi Institute of Science and Technology, (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
4
|
Mihara S, Yabushita M, Nakagawa Y, Tomishige K. Direct Esterification of Alkylcarbamic Acids with Alcohols over CeO 2 Catalyst. CHEMSUSCHEM 2024; 17:e202301436. [PMID: 38116909 DOI: 10.1002/cssc.202301436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Alkylcarbamic acids, which are easily produced via chemical absorption of CO2 into amines, have a great potential to be substrates for producing value-added chemicals. In this research, the esterification of various alkylcarbamic acids with alcohols into alkyl N-alkylcarbamates was demonstrated by using a heterogeneous catalyst as well as the corresponding amine additives. In the model reaction, the esterification of benzylcarbamic acid (BZA-CA) and methanol (MeOH), the target product of methyl N-benzylcarbamate was obtained in 64 % CO2 -based yield at 413 K in 12 h over a CeO2 catalyst, which also exhibited good reusability. In this catalytic system, the corresponding amine additive (i. e., benzylamine for BZA-CA) had the important role in the improvement of CO2 -moiety-based balance, allowing the precise kinetic study, in contrast to the cases without such additive. The detailed kinetic study on the target catalytic system and control systems suggested that BZA-CA underwent the esterification by MeOH directly. The current catalytic system using the combination of CeO2 catalyst and corresponding amine additive was also demonstrated to be applicable to the synthesis of alkyl N-alkylcarbamates from alkylcarbamic acids and alcohols with short, linear alkyl chains (≤C3 ).
Collapse
Affiliation(s)
- Shogen Mihara
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Mizuho Yabushita
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
5
|
Sun W, Li P, Yabushita M, Nakagawa Y, Wang Y, Nakayama A, Tomishige K. Comparative Study between 2-Furonitrile and 2-Cyanopyridine as Dehydrants in Direct Synthesis of Dialkyl Carbonates from CO 2 and Alcohols over Cerium Oxide Catalyst. CHEMSUSCHEM 2023; 16:e202300768. [PMID: 37639290 DOI: 10.1002/cssc.202300768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
The shift of equilibrium by removing water with nitrile dehydrants is crucial for CeO2 -catalyzed synthesis of dialkyl carbonates from CO2 and alcohols. Two nitriles - 2-cyanopyridine and 2-furonitrile - were previously found as effective dehydrants, yet their detailed comparison as well as exploration of potential of 2-furonitrile remain insufficient. Herein, the performance of 2-cyanopyridine and 2-furonitrile was compared in the synthesis of various dialkyl carbonates. 2-furonitrile was found to be superior to 2-cyanopyridine in the synthesis of dialkyl carbonates from CO2 and bulky or long-chain (≥C3) alcohols. Namely, the yield of diisopropyl carbonate (up to 50 %) achieved using CeO2 and 2-furonitrile is comparable to or even higher than previously reported ones. Meanwhile, 2-cyanopyridine acted as a better dehydrant than 2-furonitrile in the synthesis of dimethyl carbonate and diethyl carbonate. The adsorption experiments and density functional theory calculations have indicated that the better performance of 2-furonitrile compared to 2-cyanopyridine in the synthesis of dialkyl carbonates from bulky or long-chain alcohols is due to the weaker interaction of 2-furonitrile with the CeO2 surface. Such weak interaction of 2-furonitrile offers a larger reaction field on the catalyst surface for both CO2 and alcohols.
Collapse
Affiliation(s)
- Wen Sun
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, 980-8579, Sendai, Miyagi, Japan
- School of Chemical Engineering Northwest University, 710069, Xi'an, Shaanxi, China
| | - Peilang Li
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, 980-8579, Sendai, Miyagi, Japan
| | - Mizuho Yabushita
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, 980-8579, Sendai, Miyagi, Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, 980-8579, Sendai, Miyagi, Japan
| | - Yuqi Wang
- School of Chemical Engineering Northwest University, 710069, Xi'an, Shaanxi, China
| | - Akira Nakayama
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, 980-8579, Sendai, Miyagi, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577, Sendai, Miyagi, Japan
| |
Collapse
|
6
|
Li J, Wu J, Park SW, Sasase M, Ye TN, Lu Y, Miyazaki M, Yokoyama T, Tada T, Kitano M, Hosono H. Topological insulator as an efficient catalyst for oxidative carbonylation of amines. SCIENCE ADVANCES 2023; 9:eadh9104. [PMID: 37738353 PMCID: PMC10516497 DOI: 10.1126/sciadv.adh9104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/22/2023] [Indexed: 09/24/2023]
Abstract
Topological materials have received much attention because of their robust topological surface states, which can be potentially applied in electronics and catalysis. Here, we show that the topological insulator bismuth selenide functions as an efficient catalyst for the oxidative carbonylation of amines with carbon monoxide and dioxygen to synthesize urea derivatives. For example, the carbonylation of butylamine can be completed over bismuth selenide nanoparticle catalyst in 4 hours at 20°C with a yield of 99%, whereas most noble metal-based catalysts do not function at such a low temperature. Density functional theory calculations further reveal that the topological surface states facilitate the activation of dioxygen through a triplet-to-singlet spin-conversion reaction, in which active oxygen species are formed with a barrier of 0.4 electron volts for the subsequent reactions with amine and carbon monoxide.
Collapse
Affiliation(s)
- Jiang Li
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Jiazhen Wu
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Guangdong 518055, China
| | - Sang-won Park
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemical and Materials Engineering, University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong, Gyeonggi 18323, Republic of Korea
| | - Masato Sasase
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Tian-Nan Ye
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yangfan Lu
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400030, China
| | - Masayoshi Miyazaki
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Toshiharu Yokoyama
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Tomofumi Tada
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Masaaki Kitano
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hideo Hosono
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
7
|
Koizumi H, Takeuchi K, Matsumoto K, Fukaya N, Sato K, Uchida M, Matsumoto S, Hamura S, Hirota J, Nakashige M, Choi JC. Direct Conversion of Low-Concentration CO 2 into N-Aryl and N-Alkyl Carbamic Acid Esters Using Tetramethyl Orthosilicate with Amidines as a CO 2 Capture Agent and a Catalyst. J Org Chem 2023; 88:5015-5024. [PMID: 36791400 DOI: 10.1021/acs.joc.2c02326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Herein, we report the direct conversion of low-concentration CO2 (15 vol %), equivalent to the CO2 concentration in the exhaust gas from a thermal power station, into carbamic acid esters (CAEs), which are precursors for pharmaceuticals, agrochemicals, and isocyanates. The reaction was performed using Si(OMe)4 as a nonmetallic regenerable reagent and 1,8-diazabicyclo[5.4.0]undec-7-ene as a CO2 capture agent and catalyst. This reaction system does not require the addition of metal complex catalysts or metal salt additives and is therefore simpler than our previously reported reaction system involving Ti(OR)4 and a Zn(II) catalyst. A variety of N-aryl, N-alkyl, and bis CAEs (precursors of polyurethane raw materials) were obtained in moderate to high yields (45-77% for 6 examples, 84-89% for 7 examples). In addition, bis CAEs were successfully synthesized from simulated exhaust gas containing impurities such as SO2, NO2, and CO or on a gram scale. We believe that this method can eliminate the use of toxic phosgene as the raw material for isocyanate production and mitigate CO2 emissions.
Collapse
Affiliation(s)
- Hiroki Koizumi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| | - Katsuhiko Takeuchi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| | - Kazuhiro Matsumoto
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| | - Norihisa Fukaya
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| | - Kazuhiko Sato
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| | - Masahito Uchida
- Tosoh Corporation, Advanced Materials Research Laboratory, 2743-1 Hayakawa, Ayase, Kanagawa 252-1123, Japan
| | - Seiji Matsumoto
- Tosoh Corporation, 3-8-2 Shiba, Minato-Ku, Tokyo 105-8623, Japan
| | - Satoshi Hamura
- Tosoh Corporation, 3-8-2 Shiba, Minato-Ku, Tokyo 105-8623, Japan
| | - Junya Hirota
- Tosoh Corporation, Technology Center, 4560 Kaiseicho, Shunan, Yamaguchi 746-8501, Japan
| | - Makoto Nakashige
- Tosoh Corporation, Technology Center, 4560 Kaiseicho, Shunan, Yamaguchi 746-8501, Japan
| | - Jun-Chul Choi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| |
Collapse
|
8
|
Fujii R, Yabushita M, Asada D, Tamura M, Nakagawa Y, Takahashi A, Nakayama A, Tomishige K. Continuous Flow Synthesis of 2-Imidazolidinone from Ethylenediamine Carbamate in Ethylenediamine Solvent over the CeO 2 Catalyst: Insights into Catalysis and Deactivation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ryotaro Fujii
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi980-8579, Japan
- Organic Research Laboratory, Tosoh Corporation, Shunan, Yamaguchi746-8501, Japan
| | - Mizuho Yabushita
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi980-8579, Japan
| | - Daiki Asada
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo113-8656, Japan
| | - Masazumi Tamura
- Department of Chemistry and Bioengineering, School of Engineering, Osaka Metropolitan University, Osaka558-8585, Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi980-8579, Japan
| | - Atsushi Takahashi
- Department of Chemical Engineering, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Sendai, Miyagi980-8579, Japan
| | - Akira Nakayama
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo113-8656, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi980-8579, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi980-8577, Japan
| |
Collapse
|
9
|
Chowdhury A, Bhan C, Peela NR, Golder AK. A tunable bioinspired process of SnO2 NPs synthesis for electrochemical CO2-into-formate conversion. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Triazole Appended Metal–Organic Framework for CO2 Fixation as Cyclic Carbonates Under Solvent-Free Ambient Conditions. Catal Letters 2022. [DOI: 10.1007/s10562-022-04213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Qaroush AK, Eftaiha AF, Smadi AH, Assaf KI, Al-Qaisi FM, Alsoubani F. CS 2/CO 2 Utilization Using Mukaiyama Reagent as a (Thio)carbonylating Promoter: A Proof-of-Concept Study. ACS OMEGA 2022; 7:22511-22521. [PMID: 35811893 PMCID: PMC9260919 DOI: 10.1021/acsomega.2c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
We report on the reaction of ethylene-terminated heteroatoms (C2X; X = N, O, and S) with CS2/CO2 using Mukaiyama reagent (2-chloro-1-methylpyridinium iodide, CMPI) as a promoter for the preparation of imidazolidin-2-one, oxazolidin-2-one, 1,3-dioxolan-2-one, 1,3-dithiolan-2-one, and their thione counterparts at ambient temperature and pressure. Spectroscopic measurements, viz., 1H/13C nuclear magnetic resonance (NMR) and ex situ attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy methods verified the reaction of CS2/CO2 with the ethylene-based substrates and subsequently the formation of cyclic products. The experimental data indicated the formation of the enol-form of imidazolidin-2-one and oxazolidin-2-one, while the keto-form was obtained for their thione correspondents. Furthermore, density functional theory calculations revealed the stability of the keto- over the enol-form for all reactions and pointed out the solvent effect in stabilizing the latter.
Collapse
Affiliation(s)
- Abdussalam K. Qaroush
- Department
of Chemistry, Faculty of Science, The University
of Jordan, Amman 11942, Jordan
| | - Ala’a F. Eftaiha
- Department
of Chemistry, Faculty of Science, The Hashemite
University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Amneh H. Smadi
- Department
of Chemistry, Faculty of Science, The Hashemite
University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Khaleel I. Assaf
- Department
of Chemistry, Faculty of Science, Al-Balqa
Applied University, Al-Salt 19117, Jordan
| | - Feda’a M. Al-Qaisi
- Department
of Chemistry, Faculty of Science, The Hashemite
University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Fatima Alsoubani
- Department
of Chemistry, Faculty of Science, The Hashemite
University, P.O. Box 330127, Zarqa 13133, Jordan
| |
Collapse
|
12
|
Wang L, Qi C, Xiong W, Jiang H. Recent advances in fixation of CO2 into organic carbamates through multicomponent reaction strategies. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64029-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Takeuchi K, Matsumoto K, Fukaya N, Sato K, Choi JC. Synthesis of Glycerol Carbonate from Glycerol and CO2 Using CaO as a Dehydrating Agent. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Katsuhiko Takeuchi
- National Institute of Advanced Industrial Science and Technology: Kokuritsu Kenkyu Kaihatsu Hojin Sangyo Gijutsu Sogo Kenkyujo Interdisciplinary Research Center for Catalytic Chemistry Tsukuba Central 51-1-1 Higashi 305-8565 Tsukuba JAPAN
| | - Kazuhiro Matsumoto
- National Institute of Advanced Industrial Science and Technology: Kokuritsu Kenkyu Kaihatsu Hojin Sangyo Gijutsu Sogo Kenkyujo Interdisciplinary Research Center for Catalytic Chemistry Tsukuba Central 51-1-1 Higashi 305-8565 Tsukuba JAPAN
| | - Norihisa Fukaya
- National Institute of Advanced Industrial Science and Technology: Kokuritsu Kenkyu Kaihatsu Hojin Sangyo Gijutsu Sogo Kenkyujo Interdisciplinary Research Center for Catalytic Chemistry Tsukuba Central 51-1-1 Higashi 305-8565 Tsukuba JAPAN
| | - Kazuhiko Sato
- National Institute of Advanced Industrial Science and Technology: Kokuritsu Kenkyu Kaihatsu Hojin Sangyo Gijutsu Sogo Kenkyujo Interdisciplinary Research Center for Catalytic Chemistry Tsukuba Central 51-1-1 Higashi 305-8565 Tsukuba JAPAN
| | - Jun-Chul Choi
- National Institute of Advanced Industrial Science and Technology (AIST) Interdisciplinary Research Center for Catalytic Chemistry 1-1-1 Higashi 305-8565 Tsukuba JAPAN
| |
Collapse
|
14
|
Evaluation of alternative processes of CO2 methanation: Design, optimization, control, techno-economic and environmental analysis. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Min Q, Miao P, Liu J, Ma J, Qi M, Shamsa F. SBA-15 Supported Dendritic ILs as a Green Catalysts for Synthesis of 2-Imidazolidinone from Ethylenediamine and Carbon Dioxide. Catal Letters 2022. [DOI: 10.1007/s10562-021-03728-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Xuan K, Chen S, Pu Y, Guo Y, Guo Y, Li Y, Pu C, Zhao N, Xiao F. Encapsulating phosphotungstic acid within metal-organic framework for direct synthesis of dimethyl carbonate from CO2 and methanol. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
O’Neill M, Sankar M, Hintermair U. Sustainable Synthesis of Dimethyl- and Diethyl Carbonate from CO 2 in Batch and Continuous Flow-Lessons from Thermodynamics and the Importance of Catalyst Stability. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:5243-5257. [PMID: 35493694 PMCID: PMC9044503 DOI: 10.1021/acssuschemeng.2c00291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Equilibrium conversions for the direct condensation of MeOH and EtOH with CO2 to give dimethyl- and diethyl carbonate, respectively, have been calculated over a range of experimentally relevant conditions. The validity of these calculations has been verified in both batch and continuous flow experiments over a heterogeneous CeO2 catalyst. Operating under optimized conditions of 140 °C and 200 bar CO2, record productivities of 235 mmol/L·h DMC and 241 mmol/L·h DEC have been achieved using neat alcohol dissolved in a continuous flow of supercritical CO2. Using our thermodynamic model, we show that to achieve maximum product yield, both dialkyl carbonates and water should be continuously removed from the reactor instead of the conventionally used strategy of removing water alone, which is much less efficient. Catalyst stability rather than activity emerges as the prime limiting factor and should thus become the focus of future catalyst development.
Collapse
Affiliation(s)
- Matthew
F. O’Neill
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Centre
for Sustainable and Circular Technologies, University of Bath, Bath BA2 7AY, United Kingdom
| | - Meenakshisundaram Sankar
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Ulrich Hintermair
- Centre
for Sustainable and Circular Technologies, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
18
|
Effect of flue gas impurities in carbon dioxide from power plants in the synthesis of isopropyl N-phenylcarbamate from CO2, aniline, and 2-propanol using CeO2 and 2-cyanopyridine. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Sharma K, Park YK, Nadda AK, Banerjee P, Singh P, Raizada P, Banat F, Bharath G, Jeong SM, Lam SS. Emerging chemo-biocatalytic routes for valorization of major greenhouse gases (GHG) into industrial products: A comprehensive review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Putro WS, Munakata Y, Ijima S, Shigeyasu S, Hamura S, Matsumoto S, Mishima T, Tomishige K, Choi JC, Fukaya N. Synthesis of diethyl carbonate from CO2 and orthoester promoted by a CeO2 catalyst and ethanol. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Organic compound modification of CeO2 and 2-cyanopyridine hybrid catalyst in carbonate synthesis from CO2 and alcohols. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Lazzarini A, Colaiezzi R, Gabriele F, Crucianelli M. Support-Activity Relationship in Heterogeneous Catalysis for Biomass Valorization and Fine-Chemicals Production. MATERIALS 2021; 14:ma14226796. [PMID: 34832198 PMCID: PMC8619138 DOI: 10.3390/ma14226796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
Heterogeneous catalysts are progressively expanding their field of application, from high-throughput reactions for traditional industrial chemistry with production volumes reaching millions of tons per year, a sector in which they are key players, to more niche applications for the production of fine chemicals. These novel applications require a progressive utilization reduction of fossil feedstocks, in favor of renewable ones. Biomasses are the most accessible source of organic precursors, having as advantage their low cost and even distribution across the globe. Unfortunately, they are intrinsically inhomogeneous in nature and their efficient exploitation requires novel catalysts. In this process, an accurate design of the active phase performing the reaction is important; nevertheless, we are often neglecting the importance of the support in guaranteeing stable performances and improving catalytic activity. This review has the goal of gathering and highlighting the cases in which the supports (either derived or not from biomass wastes) share the worth of performing the catalysis with the active phase, for those reactions involving the synthesis of fine chemicals starting from biomasses as feedstocks.
Collapse
|
23
|
Screening of CO2 utilization routes from process simulation: Design, optimization, environmental and techno-economic analysis. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Khan I. Strategies for Improved Electrochemical CO 2 Reduction to Value-added Products by Highly Anticipated Copper-based Nanoarchitectures. CHEM REC 2021; 22:e202100219. [PMID: 34480411 DOI: 10.1002/tcr.202100219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Uncontrolled CO2 emission from various industrial and domestic sources is a considerable threat to environmental sustainability. Scientists are trying to develop multiple approaches to not only reduce CO2 emissions but also utilize this potent pollutant to get economically feasible products. The electrochemical reduction of CO2 (ERC) is one way to effectively convert CO2 to more useful products (ranging from C1 to C5). Nevertheless, this process is kinetically hindered and less selective towards a specific product and, consequently, requires an efficient electrocatalyst with characteristics like selectivity, stability, reusability, low cost, and environmentally benign. Owing to specified commercial features, copper (Cu)-based materials are highly anticipated and widely investigated for the last two decades. However, their non-modified polycrystalline Cu forms usually lack selectivity and lower overpotential of CO2 reduction. Therefore, extensive research is in progress to induce various alterations ranging from morphological and surface chemistry tuning to structural and optoelectrical characteristics modifications. This review provides an overview of those strategies to improve the CO2 conversion efficiency through Cu-based ERC into valuable C1, C2, and higher molecular weight hydrocarbons. The thermodynamics and kinetics of CO2 reduction via Cu-based electrocatalysts are discussed in detail with the support of the first principle DFT-based models. In the last portion of the review, the reported mechanisms for various products are summarized, with a short overview of the outlook. This review is expected to provide important basics as well as advanced information for experienced as well as new researchers to develop various strategies for Cu and related materials to achieve improved ERC.
Collapse
Affiliation(s)
- Ibrahim Khan
- School of Chemical Engineering & Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
25
|
Huang X, Zhang K, Peng B, Wang G, Muhler M, Wang F. Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02443] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiubing Huang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Kaiyue Zhang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Nordrhein-Westfalen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Nordrhein-Westfalen, Germany
| | - Ge Wang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Nordrhein-Westfalen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Nordrhein-Westfalen, Germany
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| |
Collapse
|
26
|
Zhang J, Huang S, Zhao Y, Ma X, Wang S. CeO
2
hollow nanosphere for catalytic synthesis of dimethyl carbonate from CO
2
and methanol: The effect of cavity effect on catalytic performance. ASIA-PAC J CHEM ENG 2021. [DOI: 10.1002/apj.2554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jingyang Zhang
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| | - Shouying Huang
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| | - Yujun Zhao
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| | - Shengping Wang
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| |
Collapse
|
27
|
Buchmann M, Lucas M, Rose M. Catalytic CO 2 esterification with ethanol for the production of diethyl carbonate using optimized CeO 2 as catalyst. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01793k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The direct conversion of (bio)ethanol and CO2 is a promising route to diethyl carbonate (DEC) using CeO2 from optimized catalyst synthesis procedure and cheap reactants originating from renewable resources in bioethanol production.
Collapse
Affiliation(s)
- Marco Buchmann
- Technical University of Darmstadt
- Department of Chemistry
- Ernst-Berl-Institut für Technische und Makromolekulare Chemie
- 64287 Darmstadt
- Germany
| | - Martin Lucas
- Technical University of Darmstadt
- Department of Chemistry
- Ernst-Berl-Institut für Technische und Makromolekulare Chemie
- 64287 Darmstadt
- Germany
| | - Marcus Rose
- Technical University of Darmstadt
- Department of Chemistry
- Ernst-Berl-Institut für Technische und Makromolekulare Chemie
- 64287 Darmstadt
- Germany
| |
Collapse
|
28
|
Yu YC, Wang TY, Chang LH, Wu PJ, Yu BY, Yu WY. Conceptual design, environmental, and economic evaluation of direct copolymerization process of carbon dioxide and 1,4-butanediol. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Evaluating the direct CO2 to diethyl carbonate (DEC) process: Rigorous simulation, techno-economical and environmental evaluation. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Kinetic modelling of the synthesis of diethyl carbonate and propylene carbonate from ethanol and 1,2-propanediol associated with CO2. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Liu X, Zhu C, Fu T, Ma Y. Volumetric and viscometric properties of ternary solution of (piperazine +2-Amino-2-methyl-1-propanol + H2O) at T = (303.15–343.15) K. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Abstract
This work concerns recent advances (mainly in the last five years) in the challenging conversion of carbon dioxide (CO2) into fine chemicals, in particular to cyclic carbonates, as a meaningful measure to reduce CO2 emissions in the atmosphere and subsequent global warming effects. Thus, efficient catalysts and catalytic processes developed to convert CO2 into different chemicals towards a more sustainable chemical industry are addressed. Cyclic carbonates can be produced by different routes that directly, or indirectly, use carbon dioxide. Thus, recent findings on CO2 cycloaddition to epoxides as well as on its reaction with diols are reviewed. In addition, indirect sources of carbon dioxide, such as urea, considered a sustainable process with high atom economy, are also discussed. Reaction mechanisms for the transformations involved are also presented.
Collapse
|
33
|
Guo F, Zhang X. Metal–organic frameworks for the energy-related conversion of CO2 into cyclic carbonates. Dalton Trans 2020; 49:9935-9947. [DOI: 10.1039/d0dt01516d] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MOFs are promising heterogeneous catalysts for chemical fixation of CO2 and epoxides into cyclic carbonates.
Collapse
Affiliation(s)
- Feng Guo
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Xiuling Zhang
- College of Chemistry and Chemical Engineering
- Dezhou University
- Dezhou
- People's Republic of China
| |
Collapse
|
34
|
Affiliation(s)
- Kuan Chang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Haochen Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Mu-jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Recent Advances in the Chemical Fixation of Carbon Dioxide: A Green Route to Carbonylated Heterocycle Synthesis. Catalysts 2019. [DOI: 10.3390/catal9060511] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Carbon dioxide produced by human activities is one of the main contributions responsible for the greenhouse effect, which is modifying the Earth’s climate. Therefore, post-combustion CO2 capture and its conversion into high value-added chemicals are integral parts of today’s green industry. On the other hand, carbon dioxide is a ubiquitous, cheap, abundant, non-toxic, non-flammable and renewable C1 source. Among CO2 usages, this review aims to summarize and discuss the advances in the reaction of CO2, in the synthesis of cyclic carbonates, carbamates, and ureas appeared in the literature since 2017.
Collapse
|