1
|
Kuwabara J, Kanbara T. Synthesis of Organic Optoelectronic Materials Using Direct C-H Functionalization. Chempluschem 2024; 89:e202300400. [PMID: 37823322 DOI: 10.1002/cplu.202300400] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/13/2023]
Abstract
Small molecules and polymers with conjugated structures can be used as organic optoelectronic materials. These molecules have conventionally been synthesized by cross-coupling reactions; however, in recent years, direct functionalization of C-H bonds has been used to synthesize organic optoelectronic materials. Representative reactions include direct arylation reactions (C-H/C-X couplings, with X being halogen or pseudo-halogen) and cross-dehydrogenative coupling (C-H/C-H cross-coupling) reactions. Although these reactions are convenient for short-step synthesis, they require regioselectivity in the C-H bonds and suppression of undesired homo-coupling side reactions. This review introduces examples of the synthesis of organic optoelectronic materials using two types of direct C-H functionalization reactions. In addition, we summarize our recent activities in the development of direct C-H functionalization reactions using fluorobenzenes as substrates. This review covers the reaction mechanism and material properties of the resulting products.
Collapse
Affiliation(s)
- Junpei Kuwabara
- Tsukuba Research Center for Energy Materials Science (TREMS), Institute of Pure and Applied Sciences, University of Tsukuba, 1 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- Institute of Pure and Applied Sciences, University of Tsukuba, 1 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Takaki Kanbara
- Institute of Pure and Applied Sciences, University of Tsukuba, 1 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
2
|
Liu C, Liu J, Duan X, Sun Y. Green-Processed Non-Fullerene Organic Solar Cells Based on Y-Series Acceptors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303842. [PMID: 37526335 PMCID: PMC10558702 DOI: 10.1002/advs.202303842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/28/2023] [Indexed: 08/02/2023]
Abstract
The development of environmentally friendly and sustainable processes for the production of high-performance organic solar cells (OSCs) has become a critical research area. Currently, Y-series electron acceptors are widely used in high-performance OSCs, achieving power conversion efficiencies above 19%. However, these acceptors have large fused conjugated backbones that are well-soluble in halogenated solvents, such as chloroform and chlorobenzene, but have poor solubility in non-halogenated green solvents. To overcome this challenge, recent studies have focused on developing green-processed OSCs that use non-chlorinated and non-aromatic solvents to dissolve bulk-heterojunction photoactive layers based on Y-series electron acceptors, enabling environmentally friendly fabrication. In this comprehensive review, an overview of recent progress in green-processed OSCs based on Y-series acceptors is provided, covering the determination of Hansen solubility parameters, the use of non-chlorinated solvents, and the dispersion of conjugated nanoparticles in water/alcohol. It is hoped that the timely review will inspire researchers to develop new ideas and approaches in this important field, ultimately leading to the practical application of OSCs.
Collapse
Affiliation(s)
- Chunhui Liu
- School of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Jinfeng Liu
- School of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Xiaopeng Duan
- School of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Yanming Sun
- School of ChemistryBeihang UniversityBeijing100191P. R. China
| |
Collapse
|
3
|
Kukhta NA, Luscombe CK. Gaining control over conjugated polymer morphology to improve the performance of organic electronics. Chem Commun (Camb) 2022; 58:6982-6997. [PMID: 35604084 DOI: 10.1039/d2cc01430k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated polymers (CPs) are widely used in various domains of organic electronics. However, the performance of organic electronic devices can be variable due to the lack of precise predictive control over the polymer microstructure. While the chemical structure of CPs is important, CP microstructure also plays an important role in determining the charge-transport, optical and mechanical properties suitable for a target device. Understanding the interplay between CP microstructure and the resulting properties, as well as predicting and targeting specific polymer morphologies, would allow current comprehension of organic electronic device performance to be improved and potentially enable more facile device optimization and fabrication. In this Feature Article, we highlight the importance of investigating CP microstructure, discuss previous developments in the field, and provide an overview of the key aspects of the CP microstructure-property relationship, carried out in our group over recent years.
Collapse
Affiliation(s)
- Nadzeya A Kukhta
- Materials Science and Engineering Department, University of Washington, Seattle, Washington 98195-2120, USA
| | - Christine K Luscombe
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
| |
Collapse
|
4
|
Song X, Zhang K, Guo R, Sun K, Zhou Z, Huang S, Huber L, Reus M, Zhou J, Schwartzkopf M, Roth SV, Liu W, Liu Y, Zhu W, Müller-Buschbaum P. Process-Aid Solid Engineering Triggers Delicately Modulation of Y-Series Non-Fullerene Acceptor for Efficient Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200907. [PMID: 35315132 DOI: 10.1002/adma.202200907] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Volatile solids with symmetric π-backbone are intensively implemented on manipulating the nanomorphology for improving the operability and stability of organic solar cells. However, due to the isotropic stacking, the announced solids with symmetric geometry cannot modify the microscopic phase separation and component distribution collaboratively, which will constrain the promotion of exciton splitting and charge collection efficiency. Inspired by the superiorities of asymmetric configuration, a novel process-aid solid (PAS) engineering is proposed. By coupling with BTP core unit in Y-series molecule, an asymmetric, volatile 1,3-dibromo-5-chlorobenzene solid can induce the anisotropic dipole direction, elevated dipole moment, and interlaminar interaction spontaneously. Due to the synergetic effects on the favorable phase separation and desired component distribution, the PAS-treated devices feature the evident improvement of exciton splitting, charge transport, and collection, accompanied by the suppressed trap-assisted recombination. Consequently, an impressive fill factor of 80.2% with maximum power conversion efficiency (PCE) of 18.5% in the PAS-treated device is achieved. More strikingly, the PAS-treated devices demonstrate a promising thickness-tolerance character, where a record PCE of 17.0% is yielded in PAS devices with a 300 nm thickness photoactive layer, which represents the highest PCE for thick-film organic solar cells.
Collapse
Affiliation(s)
- Xin Song
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Kai Zhang
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Renjun Guo
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, 85748, Garching, Germany
| | - Kun Sun
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, 85748, Garching, Germany
| | - Zhongxin Zhou
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Shenglei Huang
- Research Center for New Energy Technology (RCNET), Shanghai Institute of Microsystem and Information technology (SIMIT), Chinese Academy of Science (CAS), Jiading, Shanghai, 201800, China
| | - Linus Huber
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, 85748, Garching, Germany
| | - Manuel Reus
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, 85748, Garching, Germany
| | - Jungui Zhou
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, 85748, Garching, Germany
| | | | - Stephan V Roth
- Deutsches Elektronen-Synchrotron (DESY), 22607, Hamburg, Germany
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Wenzhu Liu
- Research Center for New Energy Technology (RCNET), Shanghai Institute of Microsystem and Information technology (SIMIT), Chinese Academy of Science (CAS), Jiading, Shanghai, 201800, China
| | - Yu Liu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, 85748, Garching, Germany
- Heinz Maier-Leibnitz-Zentrum, Technische Universität München, 85748, Garching, Germany
| |
Collapse
|
5
|
Marlow P, Manger F, Fischer K, Sprau C, Colsmann A. Eco-friendly fabrication of organic solar cells: electrostatic stabilization of surfactant-free organic nanoparticle dispersions by illumination. NANOSCALE 2022; 14:5569-5578. [PMID: 35343987 DOI: 10.1039/d2nr00095d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Earlier reports have discussed the manifold opportunities that arise from the use of eco-friendly organic semiconductor dispersions as inks for printed electronics and, in particular, organic photovoltaics. To date, poly(3-hexylthiophene) (P3HT) plays an outstanding role since it has been the only organic semiconductor that formed nanoparticle dispersions with sufficient stability and concentration without the use of surfactants. This work elucidates the underlying mechanisms that lead to the formation of intrinsically stable P3HT dispersions and reveals prevailing electrostatic effects to rule the nanoparticle growth. The electrostatic dispersion stability can be enhanced by photo-generation of additional charges, depending on the light intensity and its wavelength. This facile, additive-free process provides a universal handle to also stabilize surfactant-free dispersions of other semiconducting polymers, which are frequently used to fabricate organic solar cells or other optoelectronic thin-film devices. The more generalized process understanding paves the way towards a universal synthesis route for organic nanoparticle dispersions.
Collapse
Affiliation(s)
- Philipp Marlow
- Material Research Center for Energy Systems, Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131 Karlsruhe, Germany.
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Felix Manger
- Material Research Center for Energy Systems, Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131 Karlsruhe, Germany.
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Karen Fischer
- Material Research Center for Energy Systems, Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131 Karlsruhe, Germany.
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Christian Sprau
- Material Research Center for Energy Systems, Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131 Karlsruhe, Germany.
| | - Alexander Colsmann
- Material Research Center for Energy Systems, Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131 Karlsruhe, Germany.
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany
| |
Collapse
|
6
|
Xue P, Cheng P, Han RPS, Zhan X. Printing fabrication of large-area non-fullerene organic solar cells. MATERIALS HORIZONS 2022; 9:194-219. [PMID: 34679154 DOI: 10.1039/d1mh01317c] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic solar cells (OSCs) based on a bulk heterojunction structure exhibit inherent advantages, such as low cost, light weight, mechanical flexibility, and easy processing, and they are emerging as a potential renewable energy technology. However, most studies are focused on lab-scale, small-area (<1 cm2) devices. Large-area (>1 cm2) OSCs still exhibit considerable efficiency loss during upscaling from small-area to large-area, which is a big challenge. In recent years, along with the rapid development of high-performance non-fullerene acceptors, many researchers have focused on developing large-area non-fullerene-based devices and modules. There are three essential issues in upscaling OSCs from small-area to large-area: fabrication technology, equipment development, and device component processing strategy. In this review, the challenges and solutions in fabricating high-performance large-area OSCs are discussed in terms of the abovementioned three aspects. In addition, the recent progress of large-area OSCs based on non-fullerene electron acceptors is summarized.
Collapse
Affiliation(s)
- Peiyao Xue
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Pei Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ray P S Han
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Xiaowei Zhan
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China.
| |
Collapse
|
7
|
Designing benzothiadiazole based highly efficient non-fullerene acceptor molecules for organic solar cells. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124405] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Iwamori R, Sato R, Kuwabara J, Kanbara T. Nonstoichiometric hydroarylation polyaddition for synthesis of pyrrole-based poly(arylenevinylene)s. Polym Chem 2022. [DOI: 10.1039/d1py01425k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nonstoichiometric polyaddition via the Co-catalyzed hydroarylation of diyne monomers with excess 1-(2-pyrimidinyl)pyrrole was demonstrated.
Collapse
Affiliation(s)
- Ryota Iwamori
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Ryota Sato
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Junpei Kuwabara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Takaki Kanbara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
9
|
Iwamori R, Sato R, Kuwabara J, Yasuda T, Kanbara T. Synthesis of Pyrrole-Based Poly(arylenevinylene)s via Co-Catalyzed Hydroarylation of Alkynes. Macromol Rapid Commun 2021; 42:e2100283. [PMID: 34142404 DOI: 10.1002/marc.202100283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Indexed: 12/20/2022]
Abstract
Polyaddition via the Co-catalyzed hydroarylation of 1-(2-pyrimidinyl)pyrrole with aromatic diynes affords poly(arylenevinylene)s under mild conditions. This reaction avoids production of stoichiometric amounts of by-products. Although structural analysis of the obtained polymers reveals the presence of 1,1-vinylidene unit, switching the counter anion of the Co catalyst and steric hindrance of the diyne monomers improves the regioselectivity of the polymers. When a catalyst with bulky counter anions is used for the reaction of less hindered diyne monomers, 1,2-vinylene linkages are formed dominantly over 1,1-vinylidene linkages (93:7). The effect of the regioselectivity of the polymer on the optical and semiconducting properties is also evaluated.
Collapse
Affiliation(s)
- Ryota Iwamori
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Ryota Sato
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Junpei Kuwabara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Takeshi Yasuda
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Takaki Kanbara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
10
|
Huang Y, Elder DL, Kwiram AL, Jenekhe SA, Jen AKY, Dalton LR, Luscombe CK. Organic Semiconductors at the University of Washington: Advancements in Materials Design and Synthesis and toward Industrial Scale Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e1904239. [PMID: 31576634 DOI: 10.1002/adma.201904239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Research at the University of Washington regarding organic semiconductors is reviewed, covering four major topics: electro-optics, organic light emitting diodes, organic field-effect transistors, and organic solar cells. Underlying principles of materials design are demonstrated along with efforts toward unlocking the full potential of organic semiconductors. Finally, opinions on future research directions are presented, with a focus on commercial competency, environmental sustainability, and scalability of organic-semiconductor-based devices.
Collapse
Affiliation(s)
- Yunping Huang
- Materials Science and Engineering Department, University of Washington, Seattle, WA, 98195, USA
| | - Delwin L Elder
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Alvin L Kwiram
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Samson A Jenekhe
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Alex K Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Larry R Dalton
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Christine K Luscombe
- Materials Science and Engineering Department, University of Washington, Seattle, WA, 98195, USA
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
11
|
Xing Z, Zhao C, Wu S, Zhang C, Liu H, Fan Y. Hydrogel-based therapeutic angiogenesis: An alternative treatment strategy for critical limb ischemia. Biomaterials 2021; 274:120872. [PMID: 33991951 DOI: 10.1016/j.biomaterials.2021.120872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/24/2021] [Accepted: 05/02/2021] [Indexed: 02/08/2023]
Abstract
Critical limb ischemia (CLI) is the most severe clinical manifestation of peripheral arterial disease (PAD), resulting in the total or partial loss of limb function. Although the conventional treatment strategy of CLI (e.g., medical treatment and surgery) can improve blood perfusion and restore limb function, many patients are unsuitable for these strategies and they still face the threats of amputation or death. Therapeutic angiogenesis, as a potential solution for these problems, attempts to manipulate blood vessel growth in vivo for augment perfusion without the help of extra pharmaceutics and surgery. With the rise of interdisciplinary research, regenerative medicine strategies provide new possibilities for treating many clinical diseases. Hydrogel, as an excellent biocompatibility material, is an ideal candidate for delivering bioactive molecules and cells for therapeutic angiogenesis. Besides, hydrogel could precisely deliver, control release, and keep the bioactivity of cargos, making hydrogel-based therapeutic angiogenesis a new strategy for CLI therapy. In this review, we comprehensively discuss the approaches of hydrogel-based strategy for CLI treatment as well as their challenges, and future directions.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China
| | - Chen Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Siwen Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Chunchen Zhang
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, 310027, PR China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, PR China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China.
| |
Collapse
|
12
|
Lee S, Jeong D, Kim C, Lee C, Kang H, Woo HY, Kim BJ. Eco-Friendly Polymer Solar Cells: Advances in Green-Solvent Processing and Material Design. ACS NANO 2020; 14:14493-14527. [PMID: 33103903 DOI: 10.1021/acsnano.0c07488] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the recent breakthroughs of polymer solar cells (PSCs) exhibiting a power conversion efficiency of over 17%, toxic and hazardous organic solvents such as chloroform and chlorobenzene are still commonly used in their fabrication, which impedes the practical application of PSCs. Thus, the development of eco-friendly processing methods suitable for industrial-scale production is now considered an imperative research focus. This Review provides a roadmap for the design of efficient photoactive materials that are compatible with non-halogenated green solvents (e.g., xylenes, toluene, and tetrahydrofuran). We summarize the recent development of green processing solvents and the processing methods to match with the efficient photoactive materials used in non-fullerene solar cells. We further review progress in the use of more eco-friendly solvents (i.e., water or alcohol) for achieving truly sustainable and eco-friendly PSC fabrication. For example, the concept of water- or alcohol-dispersed nanoparticles made of conjugated materials is introduced. Also, recent important progress and strategies to develop water/alcohol-soluble photoactive materials that completely eliminate the use of conventional toxic solvents are discussed. Finally, we provide our perspectives on the challenges facing the current green processing methods and materials, such as large-area coating techniques and long-term stability. We believe this Review will inform the development of PSCs that are truly clean and renewable energy sources.
Collapse
Affiliation(s)
- Seungjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dahyun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Changkyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Changyeon Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hyunbum Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
13
|
Rahmanudin A, Marcial‐Hernandez R, Zamhuri A, Walton AS, Tate DJ, Khan RU, Aphichatpanichakul S, Foster AB, Broll S, Turner ML. Organic Semiconductors Processed from Synthesis-to-Device in Water. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002010. [PMID: 33173736 PMCID: PMC7610335 DOI: 10.1002/advs.202002010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Organic semiconductors (OSCs) promise to deliver next-generation electronic and energy devices that are flexible, scalable and printable. Unfortunately, realizing this opportunity is hampered by increasing concerns about the use of volatile organic compounds (VOCs), particularly toxic halogenated solvents that are detrimental to the environment and human health. Here, a cradle-to-grave process is reported to achieve high performance p- and n-type OSC devices based on indacenodithiophene and diketopyrrolopyrrole semiconducting polymers that utilizes aqueous-processes, fewer steps, lower reaction temperatures, a significant reduction in VOCs (>99%) and avoids all halogenated solvents. The process involves an aqueous mini-emulsion polymerization that generates a surfactant-stabilized aqueous dispersion of OSC nanoparticles at sufficient concentration to permit direct aqueous processing into thin films for use in organic field-effect transistors. Promisingly, the performance of these devices is comparable to those prepared using conventional synthesis and processing procedures optimized for large amounts of VOCs and halogenated solvents. Ultimately, the holistic approach reported addresses the environmental issues and enables a viable guideline for the delivery of future OSC devices using only aqueous media for synthesis, purification and thin-film processing.
Collapse
Affiliation(s)
- Aiman Rahmanudin
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Raymundo Marcial‐Hernandez
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Adibah Zamhuri
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Alex S. Walton
- Photon Science Institute and the Department of ChemistryAlan Turing BuildingUniversity of ManchesterOxford RoadManchesterM13 9PYUK
| | - Daniel J. Tate
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Raja U. Khan
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Suphaluk Aphichatpanichakul
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Andrew B. Foster
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Sebastian Broll
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Michael L. Turner
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
14
|
Facile access to conjugated polymers under aerobic conditions via Pd-Catalyzed direct arylation and aryl amination polycondensation. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Sousa KRDA, Benatto L, Wouk L, Roman LS, Koehler M. Effects of non-halogenated solvent on the main properties of a solution-processed polymeric thin film for photovoltaic applications: a computational study. Phys Chem Chem Phys 2020; 22:9693-9702. [PMID: 32329493 DOI: 10.1039/d0cp01303j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic photovoltaic (OPV) devices have reached high power conversion efficiencies, but they are usually processed using halogenated toxic solvents. Hence, before OPV devices can be mass-produced by industrial processing, it would be desirable to replace those solvents with eco-friendly ones. Theoretical tools may be then a powerful ally in the search for those new solvents. In order to better understand the mechanisms behind the interaction between solvent and polymer, classical molecular dynamics (MD) calculations were used to produce a thin film of poly(4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl) (PTB7-Th), processed using two different solvents. PTB7-Th is widely applied as a donor material in OPVs. The first solvent is ortho-dichlorobenzene (o-DCB), which is a highly toxic solvent widely used in lab-scale studies. The second solvent is ortho-methylanisole (o-MA), which is an eco-friendly solvent for organic photovoltaic (OPV) manufacturing. Here we use a solvent evaporation protocol to simulate the formation of the PTB7-Th film. We demonstrate that our theoretical MD calculations were able to capture some differences in the macroscopic properties of thin films formed by o-DCB or o-MA evaporation. We found that the interaction of the halogenated solvent with the polymer tends to break the bonds between the lateral thiophenediyl groups and the main chain. We show that those defects may create traps that can affect the charge transport and also can be responsible for a blue shift in the absorption spectrum. Using the Monte Carlo method, we also verified the influence of the resulting MD morphology on the mobility of holes. Our theoretical results showed good agreement with the experimental measurements and both demonstrate that o-MA can be used to make polymer thin films without any loss of key properties for the device performance. The findings here highlight the importance of theoretical results as a guide to the morphological optimization of green processed polymeric films.
Collapse
|
16
|
Mayhugh AL, Luscombe CK. Room-temperature Pd/Ag direct arylation enabled by a radical pathway. Beilstein J Org Chem 2020; 16:384-390. [PMID: 32256854 PMCID: PMC7082708 DOI: 10.3762/bjoc.16.36] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/05/2020] [Indexed: 02/01/2023] Open
Abstract
Direct arylation is an appealing method for preparing π-conjugated materials, avoiding the prefunctionalization required for traditional cross-coupling methods. A major effort in organic electronic materials development is improving the environmental and economic impact of production; direct arylation polymerization (DArP) is an effective method to achieve these goals. Room-temperature polymerization would further improve the cost and energy efficiencies required to prepare these materials. Reported herein is new mechanistic work studying the underlying mechanism of room temperature direct arylation between iodobenzene and indole. Results indicate that room-temperature, Pd/Ag-catalyzed direct arylation systems are radical-mediated. This is in contrast to the commonly proposed two-electron mechanisms for direct arylation and appears to extend to other substrates such as benzo[b]thiophene and pentafluorobenzene.
Collapse
Affiliation(s)
- Amy L Mayhugh
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Christine K Luscombe
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Phan S, Luscombe CK. Recent Advances in the Green, Sustainable Synthesis of Semiconducting Polymers. TRENDS IN CHEMISTRY 2019. [DOI: 10.1016/j.trechm.2019.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|