1
|
Cheng JH, Zhang X, Ma J, Sun DW. Fluorescent polythymidine-templated copper nanoclusters aptasensor for sensitive detection of tropomyosin in processed shrimp products. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123271. [PMID: 37714106 DOI: 10.1016/j.saa.2023.123271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023]
Abstract
Tropomyosin (TM) is the main allergen in shellfish. Developing a novel, simple and accurate method to track and detect TM in food products is necessary. In this work, a label-free fluorescent aptasensor based on polythymidine (poly(T))-templated copper nanoclusters (CuNCs) was designed for sensitive detection of TM in processed shrimp products. Magnetic beads (MBs), aptamer and cDNA were used to construct an MBs-aptamer@cDNA complex as a detection probe, and with the presence of TM, the poly(T)-templated CuNCs attached at the end of the cDNA as the fluorescent signal was released from the complex to turn on the fluorescence. Under optimal conditions, the poly(T)-templated CuNCs aptasensor achieved a linear range from 0.1 to 50 μg/mL (R2 = 0.9980), a low limit of detection of 0.0489 μg/mL and an excellent recovery percentage of 105.29%-108.91% in the complex food matrix, providing a new approach for food safety assurance.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Xinxue Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
2
|
El Aamri M, Mohammadi H, Amine A. A highly sensitive colorimetric DNA sensor for MicroRNA-155 detection: leveraging the peroxidase-like activity of copper nanoparticles in a double amplification strategy. Mikrochim Acta 2023; 191:32. [PMID: 38102528 DOI: 10.1007/s00604-023-06087-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023]
Abstract
A novel and highly sensitive colorimetric DNA sensor for determination of miRNA-155 at attomolar levelsis presented that combines the peroxidase-like activity of copper nanoparticles (CuNPs) with the hybridization chain reaction (HCR) . The utilization of CuNPs offers advantages such as strong interaction with double-stranded DNA, excellent molecular recognition, and mimic catalytic activity. Herein, a capture probe DNA (P1) was immobilized on carboxylated magnetic beads (MBs), allowing for amplified immobilization due to the 3D surface. Subsequently, the presence of the target microRNA-155 led to the formation of a sandwich structure (P2/microRNA-155/P1/MBs) when P2 was introduced to the modified P1/MBs. The HCR reaction was then triggered by adding H1 and H2 to create a super sandwich (H1/H2)n. Following this, Cu2+ ions were attracted to the negatively charged phosphate groups of the (H1/H2)n and reduced by ascorbic acid, resulting in the formation of CuNPs, which were embedded into the grooves of the (H1/H2)n. The peroxidase-like activity of CuNPs catalyzed the oxidation reaction of 3,3',5,5'-Tetramethylbenzidine (TMB), resulting in a distinct blue color measured at 630 nm. Under optimal conditions, the colorimetric biosensor exhibited a linear response to microRNA-155 concentrations ranging from 80 to 500 aM, with a detection limit of 22 aM, and discriminate against other microRNAs. It was also successfully applied to the determination of microRNA-155 levels in spiked human serum.
Collapse
Affiliation(s)
- Maliana El Aamri
- Faculty of Sciences and Techniques, Laboratory of Process Engineering and Environment, Chemical Analysis and Biosensors Group, Hassan II University of Casablanca, P.A 146, Mohammedia, Morocco
| | - Hasna Mohammadi
- Faculty of Sciences and Techniques, Laboratory of Process Engineering and Environment, Chemical Analysis and Biosensors Group, Hassan II University of Casablanca, P.A 146, Mohammedia, Morocco
| | - Aziz Amine
- Faculty of Sciences and Techniques, Laboratory of Process Engineering and Environment, Chemical Analysis and Biosensors Group, Hassan II University of Casablanca, P.A 146, Mohammedia, Morocco.
| |
Collapse
|
3
|
Lin X, Tang J, Zhu C, Wang L, Yang Y, Wu R, Fan H, Liu C, Huang J. Solvent-mediated precipitating synthesis and optical properties of polyhydrido Cu 13 nanoclusters with four vertex-sharing tetrahedrons. Chem Sci 2023; 14:994-1002. [PMID: 36755712 PMCID: PMC9890966 DOI: 10.1039/d2sc06099j] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Structurally defined metal nanoclusters facilitate mechanism studies and promote functional applications. However, precisely constructing copper nanoclusters remains a long-standing challenge in nanoscience. Developing new efficient synthetic strategies for Cu nanoclusters is highly desirable. Here, we propose a solvent-mediated precipitating synthesis (SMPS) to prepare Cu13H10(SR)3(PPh3)7 nanoclusters (H-SR = 2-chloro-4-fluorobenzenethiol). The obtained Cu13 nanoclusters are high purity and high yield (39.5%, based on Cu atom), proving the superiority of the SMPS method. The Cu13 nanoclusters were comprehensively studied via a series of characterizations. Single crystal X-ray crystallography shows that the Cu13 nanoclusters contain a threefold symmetry axis and the Cu13 kernel is protected by a monolayer of ligands, including PPh3 and thiolates. Unprecedentedly, the aesthetic Cu13 kernel is composed of four vertex-sharing tetrahedrons, rather than the common icosahedral or cuboctahedral M13. The intramolecular π⋯π interactions between thiolates and PPh3 on the surface contribute to the stable configuration. Furthermore, electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) revealed the existence of ten hydrides, including four types of hydrides. Density functional theory (DFT) calculations without simplifying the ligands simulated the location of the 10 hydrides in the crystal structure. Additionally, the steady-state ultraviolet-visible absorption and fluorescence spectra of the Cu13 nanoclusters exhibit unique optical absorbance and photoluminescence. The ultrafast relaxation dynamics were also studied via transient absorption spectroscopy, and the three decay components are attributed to the relaxation pathways of internal conversion, structural relaxation and radiative relaxation. This work provides not only a novel SMPS strategy to efficiently synthesize Cu13 nanoclusters, but also a better insight into the structural characteristics and optical properties of the Cu nanoclusters.
Collapse
Affiliation(s)
- Xinzhang Lin
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jie Tang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chenyu Zhu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Li Wang
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Yang Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ren'an Wu
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Chao Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Jiahui Huang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
4
|
Li T, Hu Z, Yu S, Liu Z, Zhou X, Liu R, Liu S, Deng Y, Li S, Chen H, Chen Z. DNA Templated Silver Nanoclusters for Bioanalytical Applications: A Review. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Due to their unique programmability, biocompatibility, photostability and high fluorescent quantum yield, DNA templated silver nanoclusters (DNA Ag NCs) have attracted increasing attention for bioanalytical application. This review summarizes the recent developments in fluorescence
properties of DNA templated Ag NCs, as well as their applications in bioanalysis. Finally, we herein discuss some current challenges in bioanalytical applications, to promote developments of DNA Ag NCs in biochemical analysis.
Collapse
Affiliation(s)
- Taotao Li
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Zhiyuan Hu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Songlin Yu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Zhanjun Liu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Xiaohong Zhou
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Rong Liu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Shiquan Liu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
5
|
Zhan S, Jiang J, Zeng Z, Wang Y, Cui H. DNA-templated coinage metal nanostructures and their applications in bioanalysis and biomedicine. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Wang X, Hu A, Du K, Feng F. Biomimetic Polymer-Templated Copper Nanoparticles Stabilize a Temozolomide Intermediate for Chemotherapy against Glioblastoma Multiforme. ACS APPLIED BIO MATERIALS 2021; 4:8004-8012. [DOI: 10.1021/acsabm.1c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xia Wang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Andi Hu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ke Du
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Chen CA, Huang YJ, Yi-Ju Ho N, Huang TH, Tsai TT. Smartphone-assisted fluorescent analysis of polyT-Cu-nanoprobes using nucleic acid amplification test for the diagnosis of tuberculosis. Anal Biochem 2021; 630:114340. [PMID: 34411550 DOI: 10.1016/j.ab.2021.114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
Tuberculosis is one of devastating infectious diseases in the world, and early diagnosis and treatment can help overcome this global burden. In this work, a new detection platform combining smartphone-assisted fluorescent analysis and highly sensitive fluorescent copper nanoprobes (CuNPs) in a specific nucleic acid amplification test (NAAT) for the diagnosis of tuberculosis (TB) was demonstrated and validated using clinical samples. To enhance the precision and accuracy of detection, polymerase chain reaction (PCR), padlock probe (PLP) ligation, and rolling circle amplification (RCA) were combined. Long poly(thymine) (polyT) single-stranded DNA was synthesized through RCA, and polyT-CuNPs were formed by adding copper(II) ions and sodium ascorbate as reducing agents; subsequently, the results were visualized through the excitation from a UV transilluminator and quantified with just a smartphone. After optimization, this proposed platform was validated by testing 18 residual DNA samples after TB PCR, including 8 TB-negative and 10 TB-positive samples, and exhibited a detection limit of 5 fg/μL. The findings indicate the potential of this platform for practical application, where it can be combined with a smartphone for image analysis to achieve accurate on-site detection of TB, especially in resource-limited settings.
Collapse
Affiliation(s)
- Chung-An Chen
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University College of Medicine, Taoyuan 333, Taiwan, R.O.C
| | - Yu-Jui Huang
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University College of Medicine, Taoyuan 333, Taiwan, R.O.C
| | - Natalie Yi-Ju Ho
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University College of Medicine, Taoyuan 333, Taiwan, R.O.C
| | - Tse-Hao Huang
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University College of Medicine, Taoyuan 333, Taiwan, R.O.C
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University College of Medicine, Taoyuan 333, Taiwan, R.O.C..
| |
Collapse
|
8
|
Baghdasaryan A, Bürgi T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. NANOSCALE 2021; 13:6283-6340. [PMID: 33885518 DOI: 10.1039/d0nr08489a] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atomically precise metal nanoclusters (MNCs) have gained tremendous research interest in recent years due to their extraordinary properties. The molecular-like properties that originate from the quantized electronic states provide novel opportunities for the construction of unique nanomaterials possessing rich molecular-like absorption, luminescence, and magnetic properties. The field of monolayer-protected metal nanoclusters, especially copper, with well-defined molecular structures and compositions, is relatively new, about two to three decades old. Nevertheless, the massive progress in the field illustrates the importance of such nanoobjects as promising materials for various applications. In this respect, nanocluster-based catalysts have become very popular, showing high efficiencies and activities for the catalytic conversion of chemical compounds. Biomedical applications of clusters are an active research field aimed at finding better fluorescent contrast agents, therapeutic pharmaceuticals for the treatment and prevention of diseases, the early diagnosis of cancers and other potent diseases, especially at early stages. A huge library of structures and the compositions of copper nanoclusters (CuNCs) with atomic precisions have already been discovered during last few decades; however, there are many concerns to be addressed and questions to be answered. Hopefully, in future, with the combined efforts of material scientists, inorganic chemists, and computational scientists, a thorough understanding of the unique molecular-like properties of metal nanoclusters will be achieved. This, on the other hand, will allow the interdisciplinary researchers to design novel catalysts, biosensors, or therapeutic agents using highly structured, atomically precise, and stable CuNCs. Thus, we hope this review will guide the reader through the field of CuNCs, while discussing the main achievements and improvements, along with challenges and drawbacks that one needs to face and overcome.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|