1
|
Mueller A, Ulrich N, Hollmann J, Zapata Sanchez CE, Rolle-Kampczyk UE, von Bergen M. Characterization of a multianalyte GC-MS/MS procedure for detecting and quantifying polycyclic aromatic hydrocarbons (PAHs) and PAH derivatives from air particulate matter for an improved risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:112967. [PMID: 31610516 DOI: 10.1016/j.envpol.2019.112967] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
A correct description of the concentration and distribution of particle bound polycyclic aromatic hydrocarbons is important for risk assessment of atmospheric particulate matter. A new targeted GC-MS/MS method was developed for analyzing 64 PAHs including compounds with a molecular weight >300, as well as nitro-, methyl-, oxy- and hydroxyl derivatives in a single analysis. The instrumental LOD ranged between 0.03 and 0.7 pg/μL for PAHs, 0.2-7.9 pg/μL for hydroxyl and oxy PAHs, 0.1-7.4 pg/μL for nitro PAHs and 0.06-0.3 pg/μL for methyl-PAHs. As an example for the relevance of this method samples of PM10 were collected at six sampling sites in Medellin, Colombia, extracted and the concentration of 64 compounds was determined. The 16 PAHs from the EPA priority list contributed only from 54% to 69% to the sum of all analyzed compounds, PAH with high molecular weight accounted for 8.8%-18.9%. Benzo(a)pyrene equivalents (BaPeq) were calculated for the estimation of the life time cancer (LCR). The LCR according to the samples ranged from 2.75 × 10-5 to 1.4 × 10-4 by a calculation with toxic equivalent factors (TEF) and 5.7 × 10-5 to 3.8 × 10-4 with potency equivalent factor (PEF). By using the new relative potency factors (RPF) recommended by US Environmental Protection Agency (U.S.EPA) the LCR ranged from 1.3 × 10-4 to 7.2 × 10-4. Hence, it was around six times higher than the well-known TEF. The novel method enables the reliable quantification of a more comprehensive set of PAHs bound on PM and thus will facilitate and improve the risk assessment of them.
Collapse
Affiliation(s)
- Andrea Mueller
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dep. of Molecular Systems Biology, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Nadin Ulrich
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dep. of Analytical Environmental Chemistry, Permoserstr. 15, 04318 Leipzig, Germany
| | - Josef Hollmann
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dep. of Molecular Systems Biology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Carmen E Zapata Sanchez
- Universidad Nacional de Colombia, Sede Medellin, Facultad de Minas, Departamento de Geociencias y Medioambiente, Carrera 80 Nr 65-223, Bl M3, Calaire, 050041 Medellin, Colombia
| | - Ulrike E Rolle-Kampczyk
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dep. of Molecular Systems Biology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dep. of Molecular Systems Biology, Permoserstr. 15, 04318 Leipzig, Germany; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Talstr. 33, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Naimabadi A, Ghadiri A, Idani E, Babaei AA, Alavi N, Shirmardi M, Khodadadi A, Marzouni MB, Ankali KA, Rouhizadeh A, Goudarzi G. Chemical composition of PM10 and its in vitro toxicological impacts on lung cells during the Middle Eastern Dust (MED) storms in Ahvaz, Iran. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 211:316-24. [PMID: 26774778 DOI: 10.1016/j.envpol.2016.01.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/04/2016] [Accepted: 01/04/2016] [Indexed: 05/23/2023]
Abstract
Reports on the effects of PM10 from dust storm on lung cells are limited. The main purpose of this study was to investigate the chemical composition and in vitro toxicological impacts of PM10 suspensions, its water-soluble fraction, and the solvent-extractable organics extracted from Middle Eastern Dust storms on the human lung epithelial cell (A549). Samples of dust storms and normal days (PM10 < 200 μg m(-3)) were collected from December 2012 until June 2013 in Ahvaz, the capital of Khuzestan Province in Iran. The chemical composition and cytotoxicity were analyzed by ICP- OES and Lactase Dehydrogenase (LDH) reduction assay, respectively. The results showed that PM10 suspensions, their water-soluble fraction and solvent-extractable organics from both dust storm and normal days caused a decrease in the cell viability and an increase in LDH in supernatant in a dose-response manner. Although samples of normal days showed higher cytotoxicity than those of dust storm at the highest treated dosage, T Test showed no significant difference in cytotoxicity between normal days and dust event days (P value > 0.05). These results led to the conclusions that dust storm PM10 as well as normal day PM10 could lead to cytotoxicity, and the organic compounds (PAHs) and the insoluble particle-core might be the main contributors to cytotoxicity. Our results showed that cytotoxicity and the risk of PM10 to human lung may be more severe during dust storm than normal days due to inhalation of a higher mass concentration of airborne particles. Further research on PM dangerous fractions and the most responsible components to make cytotoxicity in exposed cells is recommended.
Collapse
Affiliation(s)
- Abolfazl Naimabadi
- Department of Environmental Health Engineering, Health Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ata Ghadiri
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esmaeil Idani
- Department of Internal Medicine, Division of Pulmonology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Akbar Babaei
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, Health Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadali Alavi
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Shirmardi
- Department of Environmental Health Engineering, Health Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Kambiz Ahmadi Ankali
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Rouhizadeh
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, Health Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
3
|
Alessandria L, Schilirò T, Degan R, Traversi D, Gilli G. Cytotoxic response in human lung epithelial cells and ion characteristics of urban-air particles from Torino, a northern Italian city. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:5554-64. [PMID: 24407785 DOI: 10.1007/s11356-013-2468-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 12/16/2013] [Indexed: 05/26/2023]
Abstract
Recently, much attention has been devoted to urban air pollution because epidemiological studies have reported health impacts related to particulate matter (PM). PM10 and PM2.5 were collected during different seasons in Torino, a northern Italian city, and were characterised by inorganic chemical species (secondary particulates and bio-available iron). The biological effects of aqueous and organic solvent PM extracts on human epithelial lung A549 were evaluated, and the effects on cell proliferation and lactate dehydrogenase (LDH) release were assayed. The average PM10 concentration during the sampling period was 47.9 ± 18.0 μg/m(3); the secondary particles accounted for 49 % ± 9 % of the PM10 total mass, and the bio-available iron concentration was 0.067 ± 0.045 μg/m(3). The PM2.5/PM10 ratio in Torino ranged from 0.47 to 0.90 and was higher in cold months than in warm months. The PM10 and PM2.5 extracts inhibited cell proliferation and induced LDH release in a dose-dependent manner with a seasonal trend. The PM10 extract had a stronger effect on LDH release, whereas the PM2.5 extract more strongly inhibited cell proliferation. No significant differences were observed in the effects induced by the two extracts, and no significant correlations were found between the biological effects and the PM components evaluated in this study, thus emphasising the importance of the entire mixture in inducing a cytotoxic response.
Collapse
Affiliation(s)
- Luca Alessandria
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia, 94, 10126, Torino, Italy
| | | | | | | | | |
Collapse
|
4
|
Mueller A, Schlink U, Wichmann G, Bauer M, Graebsch C, Schüürmann G, Herbarth O. Individual and combined effects of mycotoxins from typical indoor moulds. Toxicol In Vitro 2013; 27:1970-8. [DOI: 10.1016/j.tiv.2013.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 06/11/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
|
5
|
Wagner W, Sachrajda I, Pułaski Ł, Hałatek T, Dastych J. Application of cellular biosensors for analysis of bioactivity associated with airborne particulate matter. Toxicol In Vitro 2011; 25:1132-42. [DOI: 10.1016/j.tiv.2011.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 02/28/2011] [Accepted: 03/25/2011] [Indexed: 10/18/2022]
|
6
|
Rudzok S, Krejči S, Graebsch C, Herbarth O, Mueller A, Bauer M. Toxicity profiles of four metals and 17 xenobiotics in the human hepatoma cell line HepG2 and the protozoa Tetrahymena pyriformis--a comparison. ENVIRONMENTAL TOXICOLOGY 2011; 26:171-186. [PMID: 19790250 DOI: 10.1002/tox.20541] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We performed an interspecies comparison for the human hepatoma cell line HepG2 and the eukaryotic single cell organism Tetrahymena pyriformis (T. pyriformis) for 17 xenobiotics with diverse structures and four metals. The cytotoxicity was assessed by four different cell viability assays (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide reduction (MTT), neutral red uptake (NRU), resazurin dye (AlamarBlue), 5-carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM)) for the HepG2 and by cell count and MTT for T. pyriformis. For HepG2 cells, the results revealed interassay variations depending on the compound. The highest assay conformity was found for the metal Hg(2+) and the fungicide prochloraz. The AlamarBlue assay was the most sensitive assay according to low-effect concentrations. By contrast, the NRU assay was comprised of more frequent whole concentration response relationships and was more susceptible to EC(50). For T. pyriformis the EC(50) values of the two applied assays displayed a high conformity (R(2) = 0.97). Comparing the EC(50) values obtained by the MTT assay for the two cell models, a direct correlation was absent for the xenobiotics and only present for the metals (Cd(2+), Cu(2+), and Ni(2+)). Moreover, the protozoa T. pyriformis displayed a 20 times higher sensitivity than the cell line. The highest interspecies difference of three log degrees was obtained for the polycyclic aromatic hydrocarbon fluoranthene. In addition, a correlation of the EC(50) values and octanol-water partition coefficient (log K(OW)) of the xenobiotics was performed. No correlation was found for HepG2, and a weak one for T. pyriformis. Interestingly, the interspecies difference of logarithmized EC(50) correlated positive with the log K(OW) (R(2) = 0.65). In conclusion, to obtain reliable evidence for human cytotoxicity, more than one viability/cytotoxicity assay had to be applied for cell lines. Second, the human hepatoma cell line was less affected by the organic compounds than the eukaryotic single-cell organism and was also less dependent on the log K(OW) of the xenobiotic.
Collapse
Affiliation(s)
- Susanne Rudzok
- Helmholtz Centre for Environmental Research-UFZ, Division Health Research, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Schilirò T, Alessandria L, Degan R, Traversi D, Gilli G. Chemical characterisation and cytotoxic effects in A549 cells of urban-air PM10 collected in Torino, Italy. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 29:150-157. [PMID: 21787597 DOI: 10.1016/j.etap.2009.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 12/18/2009] [Accepted: 12/23/2009] [Indexed: 05/28/2023]
Abstract
Human type II alveolar cells (A549) were exposed to aqueous- and organic-solvent PM10 extracts to evaluate their effects on cell proliferation, proinflammatory cytokine release and cytotoxicity (assayed by lactate dehydrogenase, LDH, activity). PM10 samples collected in Torino (northwest Italy) were analysed for inorganic chemical species (bioavailable iron and secondary particulates) and endotoxins, which are potentially inflammatory promoters in human airways. During the sampling period, PM10 concentration was 55.4±39.1μg/m(3), secondary particles constituted 42±9% of the PM10 total mass, and bioavailable iron concentration was 0.078±0.095μg/m(3). PM10 inhibits cell proliferation and induces both IL-6 and LDH release in a dose- and time-dependent manner, with a seasonal trend. The different effects of aqueous and organic PM10 extracts demonstrate the importance of particle composition for the induction of cytotoxic effects on A549 cells. A first comparison between the biological effects induced by PM10 extracts and PM10 components was performed.
Collapse
Affiliation(s)
- Tiziana Schilirò
- Department of Public Health and Microbiology, University of Torino, Via Santena 5bis, 10126 Torino, Italy
| | | | | | | | | |
Collapse
|
8
|
Wichmann G, Franck U, Herbarth O, Rehwagen M, Dietz A, Massolo L, Ronco A, Müller A. Different immunomodulatory effects associated with sub-micrometer particles in ambient air from rural, urban and industrial areas. Toxicology 2009; 257:127-36. [DOI: 10.1016/j.tox.2008.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 12/15/2008] [Accepted: 12/16/2008] [Indexed: 11/27/2022]
|