1
|
Yang S, Williams SJ, Courtney M, Burchill L. Warfare under the waves: a review of bacteria-derived algaecidal natural products. Nat Prod Rep 2025; 42:681-719. [PMID: 39749862 DOI: 10.1039/d4np00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Covering: 1960s to 2024Harmful algal blooms pose a major threat to aquatic ecosystems and can impact human health. The frequency and intensity of these blooms has increased over recent decades, driven primarily by climate change and an increase in nutrient runoff. Algal blooms often produce toxins that contaminate water sources, disrupt fisheries, and harm human health. These blooms may also result in oxygen-deprived environments leading to mass fish deaths that threaten the survival of other aquatic life. In freshwater and estuarine ecosystems, traditional chemical strategies to mitigate algal blooms include the use of herbicides, metal salts, or oxidants. Though effective, these agents are non-selective, toxic to other species, and cause loss of biodiversity. They can persist in ecosystems, contaminating the food web and providing an impetus for cost-effective, targeted algal-control methods that protect ecosystems. In marine ecosystems, harmful algal blooms are even more challenging to treat due to the lack of scalable solutions and the challenge of dispersal of algal control agents in open ocean settings. Natural products derived from algae-bacteria interactions have led to the evolution of diverse bacteria-derived algaecidal natural products, which are highly potent, species specific and have potential for combating harmful algal blooms. They provide valuable starting points for the development of eco-friendly algae control methods. This review provides a comprehensive overview of all bacterial algaecides and their activities, categorized into two major groups: (1) algaecides produced in ecologically significant associations between bacteria and algae, and (2) algaecides with potentially coincidental activity but without an ecological role in specific bacteria-algae interactions. This review contributes to a better understanding of the chemical ecology of parasitic algal-bacterial interactions, "the warfare under the waves", and highlights the potential applications of bacteria-derived algaecides to provide solutions to harmful algal blooms.
Collapse
Affiliation(s)
- Shuxin Yang
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Myles Courtney
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Laura Burchill
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
2
|
Ma F, Tang X, Chao Y, Wang X, Zheng X, Fu R, Tang Z, Pang L, Dong F, Cheng H, Wang P. Antifouling and Bactericidal Zwitterionic Polymer Coatings with Synergistic Inhibitory and Killing Properties. ACS APPLIED BIO MATERIALS 2025; 8:1635-1645. [PMID: 39843251 DOI: 10.1021/acsabm.4c01776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Polymeric coatings that combine resistance to adhesion ("defending") and killing ("attacking") of biocontaminants were proposed to endow the surface with nonadhesive and bactericidal capabilities. In contrast, a zwitterionic copolymer P(GMA-co-DMAPS) with antifouling groups ([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide, DMAPS) and a zwitterionic/cationic copolymer P(GMA-co-DMAPS-co-DMC) with bactericidal groups ([2-(methacryloyloxy)ethyl]trimethylammonium chloride, DMC) were synthesized, of which the latter exhibited synergistic inhibitory and killing properties. The distinct feed ratios of monomers were conducted, and the optimal molar ratio was obtained. The polymer coating was chemically bonded to the surface of substrates such as stainless steel via the addition-elimination reaction of epoxy groups and hydroxyl groups. Stainless steel surfaces grafted with G20D80-5DMC exhibited fine antifouling and bactericidal properties. The results showed that a highly efficient defending-attacking synergistic effect was achieved with antiprotein adsorption of more than 90% and bactericidal rates against Staphylococcus aureus and Escherichia coli of 98.6% and 96.6%, respectively. The polymers proposed in this study can effectively play an antifouling and antibacterial synergistic role and can be grafted onto substrates through a simple and effective method, showing attractive potential in marine, biomedical, and industrial applications.
Collapse
Affiliation(s)
- Fei Ma
- School of Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Xinde Tang
- School of Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Yanan Chao
- School of Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Xinyan Wang
- School of Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Xuanjie Zheng
- School of Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Ruixin Fu
- School of Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Zihao Tang
- School of Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Laixue Pang
- School of Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Fuying Dong
- School of Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Haixia Cheng
- Shandong Ocean Pipe Technology Co., Ltd, Dezhou 253300, China
| | - Peng Wang
- Shandong Ocean Pipe Technology Co., Ltd, Dezhou 253300, China
| |
Collapse
|
3
|
Di Costanzo F, Di Dato V, Romano G. Diatom-Bacteria Interactions in the Marine Environment: Complexity, Heterogeneity, and Potential for Biotechnological Applications. Microorganisms 2023; 11:2967. [PMID: 38138111 PMCID: PMC10745847 DOI: 10.3390/microorganisms11122967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Diatom-bacteria interactions evolved during more than 200 million years of coexistence in the same environment. In this time frame, they established complex and heterogeneous cohorts and consortia, creating networks of multiple cell-to-cell mutualistic or antagonistic interactions for nutrient exchanges, communication, and defence. The most diffused type of interaction between diatoms and bacteria is based on a win-win relationship in which bacteria benefit from the organic matter and nutrients released by diatoms, while these last rely on bacteria for the supply of nutrients they are not able to produce, such as vitamins and nitrogen. Despite the importance of diatom-bacteria interactions in the evolutionary history of diatoms, especially in structuring the marine food web and controlling algal blooms, the molecular mechanisms underlying them remain poorly studied. This review aims to present a comprehensive report on diatom-bacteria interactions, illustrating the different interplays described until now and the chemical cues involved in the communication and exchange between the two groups of organisms. We also discuss the potential biotechnological applications of molecules and processes involved in those fascinating marine microbial networks and provide information on novel approaches to unveiling the molecular mechanisms underlying diatom-bacteria interactions.
Collapse
Affiliation(s)
| | - Valeria Di Dato
- Stazione Zoologica Anton Dohrn Napoli, Ecosustainable Marine Biotechnology Department, Via Ammiraglio Ferdinando Acton 55, 80133 Napoli, Italy; (F.D.C.); (G.R.)
| | | |
Collapse
|
4
|
Dow L. How Do Quorum-Sensing Signals Mediate Algae-Bacteria Interactions? Microorganisms 2021; 9:microorganisms9071391. [PMID: 34199114 PMCID: PMC8307130 DOI: 10.3390/microorganisms9071391] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Quorum sensing (QS) describes a process by which bacteria can sense the local cell density of their own species, thus enabling them to coordinate gene expression and physiological processes on a community-wide scale. Small molecules called autoinducers or QS signals, which act as intraspecies signals, mediate quorum sensing. As our knowledge of QS has progressed, so too has our understanding of the structural diversity of QS signals, along with the diversity of bacteria conducting QS and the range of ecosystems in which QS takes place. It is now also clear that QS signals are more than just intraspecies signals. QS signals mediate interactions between species of prokaryotes, and between prokaryotes and eukaryotes. In recent years, our understanding of QS signals as mediators of algae-bacteria interactions has advanced such that we are beginning to develop a mechanistic understanding of their effects. This review will summarize the recent efforts to understand how different classes of QS signals contribute to the interactions between planktonic microalgae and bacteria in our oceans, primarily N-acyl-homoserine lactones, their degradation products of tetramic acids, and 2-alkyl-4-quinolones. In particular, this review will discuss the ways in which QS signals alter microalgae growth and metabolism, namely as direct effectors of photosynthesis, regulators of the cell cycle, and as modulators of other algicidal mechanisms. Furthermore, the contribution of QS signals to nutrient acquisition is discussed, and finally, how microalgae can modulate these small molecules to dampen their effects.
Collapse
Affiliation(s)
- Lachlan Dow
- Root Microbe Interactions Laboratory, Australian National University, Canberra 0200, Australia
| |
Collapse
|
5
|
Huang H, Mo K, Li S, Dongmei S, Zhu J, Zou X, Hu Y, Bao S. Alteromonas portus sp. nov., an alginate lyase-excreting marine bacterium. Int J Syst Evol Microbiol 2020; 70:1516-1521. [DOI: 10.1099/ijsem.0.003884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An alginate lyase-excreting bacterium, designated strain HB161718T, was isolated from coastal sand collected from Tanmen Port in Hainan, PR China. Cells were Gram-stain-negative rods and motile with a single polar flagellum. Its major isoprenoid quinone was ubiquinone 8 (Q-8), and its cellular fatty acid profile mainly consisted of C16 : 1 ω7c and/or C16 : 1 ω6c, C18 : 1 ω6c and/or C18 : 1 ω7c, C16 : 0, C17 : 0 10-methyl and C16 : 0 N alcohol. The G+C content of the genomic DNA was 44.1 mol%. 16S rRNA gene sequence analysis suggested that strain HB161718T belonged to the genus
Alteromonas
, sharing 99.5, 99.4, 99.2, 98.9 and 98.5 % sequence similarities to its closest relatives,
Alteromonas macleodii
JCM 20772T,
Alteromonas gracilis
9a2T,
Alteromonas australica
H17T,
Alteromonas marina
SW-47T and
Alteromonas mediterranea
DET, respectively. The low values of DNA–DNA hybridization and average
nucleotide identity showed that it formed a distinct genomic species. The combined phenotypic and molecular features supported the conclusion that strain HB161718T represents a novel species of the genus
Alteromonas
, for which the name Alteromonas portus sp. nov. is proposed. The type strain is HB161718T (=CGMCC 1.13585T=JCM 32687T).
Collapse
Affiliation(s)
- Huiqin Huang
- Hainan Provincial Key Laboratory for Functional Component Research and Utilization of Marine Bioresources, Haikou 571101, Hainan, PR China
- Institute of Tropical Biosciences and Biotechnology, Hainan Academy of Tropical Agricultural Resources, CATAS, Haikou 571101, PR China
| | - Kunlian Mo
- Hainan Provincial Key Laboratory for Functional Component Research and Utilization of Marine Bioresources, Haikou 571101, Hainan, PR China
- Institute of Tropical Biosciences and Biotechnology, Hainan Academy of Tropical Agricultural Resources, CATAS, Haikou 571101, PR China
| | - Shuang Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163000, Hainan, PR China
- Institute of Tropical Biosciences and Biotechnology, Hainan Academy of Tropical Agricultural Resources, CATAS, Haikou 571101, PR China
| | - Sun Dongmei
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163000, Hainan, PR China
| | - Jun Zhu
- Hainan Provincial Key Laboratory for Functional Component Research and Utilization of Marine Bioresources, Haikou 571101, Hainan, PR China
- Institute of Tropical Biosciences and Biotechnology, Hainan Academy of Tropical Agricultural Resources, CATAS, Haikou 571101, PR China
| | - Xiaoxiao Zou
- Hainan Provincial Key Laboratory for Functional Component Research and Utilization of Marine Bioresources, Haikou 571101, Hainan, PR China
- Institute of Tropical Biosciences and Biotechnology, Hainan Academy of Tropical Agricultural Resources, CATAS, Haikou 571101, PR China
| | - Yonghua Hu
- Institute of Tropical Biosciences and Biotechnology, Hainan Academy of Tropical Agricultural Resources, CATAS, Haikou 571101, PR China
- Hainan Provincial Key Laboratory for Functional Component Research and Utilization of Marine Bioresources, Haikou 571101, Hainan, PR China
| | - Shixiang Bao
- Institute of Tropical Biosciences and Biotechnology, Hainan Academy of Tropical Agricultural Resources, CATAS, Haikou 571101, PR China
- Hainan Provincial Key Laboratory for Functional Component Research and Utilization of Marine Bioresources, Haikou 571101, Hainan, PR China
| |
Collapse
|
6
|
|
7
|
Dow L, Stock F, Peltekis A, Szamosvári D, Prothiwa M, Lapointe A, Böttcher T, Bailleul B, Vyverman W, Kroth PG, Lepetit B. The Multifaceted Inhibitory Effects of an Alkylquinolone on the Diatom Phaeodactylum tricornutum. Chembiochem 2020; 21:1206-1216. [PMID: 31747114 PMCID: PMC7217009 DOI: 10.1002/cbic.201900612] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Indexed: 01/30/2023]
Abstract
The mechanisms underlying interactions between diatoms and bacteria are crucial to understand diatom behaviour and proliferation, and can result in far‐reaching ecological consequences. Recently, 2‐alkyl‐4‐quinolones have been isolated from marine bacteria, both of which (the bacterium and isolated chemical) inhibited growth of microalgae, suggesting these compounds could mediate diatom–bacteria interactions. The effects of several quinolones on three diatom species have been investigated. The growth of all three was inhibited, with half‐maximal inhibitory concentrations reaching the sub‐micromolar range. By using multiple techniques, dual inhibition mechanisms were uncovered for 2‐heptyl‐4‐quinolone (HHQ) in Phaeodactylum tricornutum. Firstly, photosynthetic electron transport was obstructed, primarily through inhibition of the cytochrome b6f complex. Secondly, respiration was inhibited, leading to repression of ATP supply to plastids from mitochondria through organelle energy coupling. These data clearly show how HHQ could modulate diatom proliferation in marine environments.
Collapse
Affiliation(s)
- Lachlan Dow
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78467, Konstanz, Germany
| | - Frederike Stock
- Department of Biology, Ghent University, Krijgslaan 281/S8, 9000, Ghent, Belgium
| | - Alexandra Peltekis
- Institut de Biologie Physico-Chimique, CNRS-Sorbonne Université, 13 rue P. et M. Curie, 75005, Paris, France
| | - Dávid Szamosvári
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78467, Konstanz, Germany
| | - Michaela Prothiwa
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78467, Konstanz, Germany
| | - Adrien Lapointe
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78467, Konstanz, Germany
| | - Thomas Böttcher
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78467, Konstanz, Germany
| | - Benjamin Bailleul
- Institut de Biologie Physico-Chimique, CNRS-Sorbonne Université, 13 rue P. et M. Curie, 75005, Paris, France
| | - Wim Vyverman
- Department of Biology, Ghent University, Krijgslaan 281/S8, 9000, Ghent, Belgium
| | - Peter G Kroth
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78467, Konstanz, Germany
| | - Bernard Lepetit
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78467, Konstanz, Germany
| |
Collapse
|
8
|
Meyer N, Bigalke A, Kaulfuß A, Pohnert G. Strategies and ecological roles of algicidal bacteria. FEMS Microbiol Rev 2018; 41:880-899. [PMID: 28961821 DOI: 10.1093/femsre/fux029] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
In both freshwater and marine ecosystems, phytoplankton are the most dominant primary producers, contributing substantially to aquatic food webs. Algicidal bacteria that can associate to microalgae from the phytoplankton have the capability to control the proliferation and even to lyse them. These bacteria thus play an important role in shaping species composition in pelagic environments. In this review, we discuss and categorise strategies used by algicidal bacteria for the attack on microalgae. We highlight the complex regulation of algicidal activity and defence responses that govern alga-bacteria interactions. We also discuss how algicidal bacteria impact algal physiology and metabolism and survey the existing algicidal metabolites and enzymes. The review illustrates that the ecological role of algicidal bacteria is not yet fully understood and critically discusses the challenges in obtaining ecologically relevant data.
Collapse
Affiliation(s)
- Nils Meyer
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Lessingstrasse 8, D-07743 Jena, Germany
| | - Arite Bigalke
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Lessingstrasse 8, D-07743 Jena, Germany
| | - Anett Kaulfuß
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Lessingstrasse 8, D-07743 Jena, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Lessingstrasse 8, D-07743 Jena, Germany.,Max Planck Institute for Chemical Ecology, Hans Knöll Str. 8, D-07745 Jena, Germany
| |
Collapse
|
9
|
Demuez M, González-Fernández C, Ballesteros M. Algicidal microorganisms and secreted algicides: New tools to induce microalgal cell disruption. Biotechnol Adv 2015; 33:1615-25. [PMID: 26303095 DOI: 10.1016/j.biotechadv.2015.08.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/11/2015] [Accepted: 08/15/2015] [Indexed: 11/29/2022]
Abstract
Cell disruption is one of the most critical steps affecting the economy and yields of biotechnological processes for producing biofuels from microalgae. Enzymatic cell disruption has shown competitive results compared to mechanical or chemical methods. However, the addition of enzymes implies an associated cost in the overall production process. Recent studies have employed algicidal microorganisms to perform enzymatic cell disruption and degradation of microalgae biomass in order to reduce this associated cost. Algicidal microorganisms induce microalgae growth inhibition, death and subsequent lysis. Secreted algicidal molecules and enzymes produced by bacteria, cyanobacteria, viruses and the microalga themselves that are capable of inducing algal death are classified, and the known modes of action are described along with insights into cell-to-cell interaction and communication. This review aims to provide information regarding microalgae degradation by microorganisms and secreted algicidal substances that would be useful for microalgae cell breakdown in biofuels production processes. A better understanding of algae-to-algae communication and the specific mechanisms of algal cell lysis is expected to be an important breakthrough for the broader application of algicidal microorganisms in biological cell disruption and the production of biofuels from microalgae biomass.
Collapse
Affiliation(s)
- Marie Demuez
- IMDEA Energy Institute, Biotechnological Processes for Energy Production Unit, Av. Ramón de la Sagra 3, 28935 Móstoles, Spain.
| | - Cristina González-Fernández
- IMDEA Energy Institute, Biotechnological Processes for Energy Production Unit, Av. Ramón de la Sagra 3, 28935 Móstoles, Spain.
| | - Mercedes Ballesteros
- IMDEA Energy Institute, Biotechnological Processes for Energy Production Unit, Av. Ramón de la Sagra 3, 28935 Móstoles, Spain; CIEMAT, Renewable Energy Division, Biofuels Unit, Av. Complutense 40, 28040 Madrid, Spain.
| |
Collapse
|
10
|
Landoulsi J, Cooksey KE, Dupres V. Review--Interactions between diatoms and stainless steel: focus on biofouling and biocorrosion. BIOFOULING 2011; 27:1109-1124. [PMID: 22050233 DOI: 10.1080/08927014.2011.629043] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
There is a considerable body of information regarding bacterially enhanced corrosion, however, this review focuses on diatoms (unicellular algae) whose contribution to biocorrosion is less well studied. The reasons why diatoms have been neglected in studies of biocorrosion in natural waters are discussed and the question whether diatoms should be considered as inert with respect of electrochemical processes is considered. A particular focus is given to the case of stainless steels (SS), which are widely used in variety of applications in natural waters. Basic information on the cell biology of diatoms is included in the review, particularly with respect to their ability to 'sense' and adhere to surfaces. Investigations at the nanoscale are reviewed as these studies provide information about the behavior of cells at interfaces. Recent advances include the use of atomic force microscopy (AFM), although only a few studies have been applied to diatoms. Regarding the electrochemical behavior of SS, the mechanisms by which diatoms influence the potential ennoblement process is discussed. Such studies reveal the association of diatoms, in addition to bacteria, with biocorrosion processes.
Collapse
Affiliation(s)
- J Landoulsi
- Laboratoire de Réactivité de Surface, CNRS-UMR 7197, Université Pierre & Marie Curie - Paris VI, 4 Place Jussieu, Case 178, 75252 Paris Cedex 05, France.
| | | | | |
Collapse
|
11
|
Dichloro-4-quinolinol-3-carboxylic acid: Synthesis and antioxidant abilities to scavenge radicals and to protect methyl linoleate and DNA. Eur J Med Chem 2010; 45:1821-7. [DOI: 10.1016/j.ejmech.2010.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/07/2010] [Accepted: 01/08/2010] [Indexed: 02/08/2023]
|