1
|
Ma Y, Liu H, Du X, Shi Z, Liu X, Wang R, Zhang S, Tian Z, Shi L, Guo H, Zhang H. Advances in the toxicology research of microcystins based on Omics approaches. ENVIRONMENT INTERNATIONAL 2021; 154:106661. [PMID: 34077854 DOI: 10.1016/j.envint.2021.106661] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs) are the most widely distributed cyanotoxins, which can be ingested by animals and human body in multiple ways, resulting in a threat to human health and the biodiversity of wildlife. Therefore, the study on toxic effects and mechanisms of MCs is one of the focuses of attention. Recently, the Omics techniques, i.e. genomics, transcriptomics, proteomics and metabolomics, have significantly contributed to the comprehensive understanding and revealing of the molecular mechanisms about the toxicity of MCs. This paper mainly reviews current literature using the Omics approaches to explore the toxicity mechanism of MCs in liver, gonad, spleen, brain, intestine and lung of multiple species. It was found that MCs can exert strong toxic effects on various metabolic activities and cell signal transduction in cell cycle, apoptosis, destruction of cell cytoskeleton and redox disorder, at protein, transcription and metabolism level. Meanwhile, it was also revealed that the alteration of non-coding RNAs (miRNA, circRNA and lncRNA, etc.) and gut microbiota plays an essential regulatory role in the toxic effects of MCs, especially in hepatotoxicity and reproductive toxicity. In addition, we summarized current research gaps and pointed out the future directions for research. The detailed information in this paper shows that the application and development of Omics techniques have significantly promoted the research on MCs toxicity, and it is also a valuable resource for exploring the toxic mechanism of MCs.
Collapse
Affiliation(s)
- Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Ziang Shi
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, PR China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, PR China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
2
|
Chen L, Giesy JP, Adamovsky O, Svirčev Z, Meriluoto J, Codd GA, Mijovic B, Shi T, Tuo X, Li SC, Pan BZ, Chen J, Xie P. Challenges of using blooms of Microcystis spp. in animal feeds: A comprehensive review of nutritional, toxicological and microbial health evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142319. [PMID: 33069479 DOI: 10.1016/j.scitotenv.2020.142319] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Microcystis spp., are Gram-negative, oxygenic, photosynthetic prokaryotes which use solar energy to convert carbon dioxide (CO2) and minerals into organic compounds and biomass. Eutrophication, rising CO2 concentrations and global warming are increasing Microcystis blooms globally. Due to its high availability and protein content, Microcystis biomass has been suggested as a protein source for animal feeds. This would reduce dependency on soybean and other agricultural crops and could make use of "waste" biomass when Microcystis scums and blooms are harvested. Besides proteins, Microcystis contain further nutrients including lipids, carbohydrates, vitamins and minerals. However, Microcystis produce cyanobacterial toxins, including microcystins (MCs) and other bioactive metabolites, which present health hazards. In this review, challenges of using Microcystis blooms in feeds are identified. First, nutritional and toxicological (nutri-toxicogical) data, including toxicity of Microcystis to mollusks, crustaceans, fish, amphibians, mammals and birds, is reviewed. Inclusion of Microcystis in diets caused greater mortality, lesser growth, cachexia, histopathological changes and oxidative stress in liver, kidney, gill, intestine and spleen of several fish species. Estimated daily intake (EDI) of MCs in muscle of fish fed Microcystis might exceed the provisional tolerable daily intake (TDI) for humans, 0.04 μg/kg body mass (bm)/day, as established by the World Health Organization (WHO), and is thus not safe. Muscle of fish fed M. aeruginosa is of low nutritional value and exhibits poor palatability/taste. Microcystis also causes hepatotoxicity, reproductive toxicity, cardiotoxicity, neurotoxicity and immunotoxicity to mollusks, crustaceans, amphibians, mammals and birds. Microbial pathogens can also occur in blooms of Microcystis. Thus, cyanotoxins/xenobiotics/pathogens in Microcystis biomass should be removed/degraded/inactivated sufficiently to assure safety for use of the biomass as a primary/main/supplemental ingredient in animal feed. As an ameliorative measure, antidotes/detoxicants can be used to avoid/reduce the toxic effects. Before using Microcystis in feed ingredients/supplements, further screening for health protection and cost control is required.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada; Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Ondrej Adamovsky
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jussi Meriluoto
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Geoffrey A Codd
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK; Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Biljana Mijovic
- Faculty of Medicine, University of East Sarajevo, Studentska 5, 73 300 Foča, Republika Srpska, Bosnia and Herzegovina
| | - Ting Shi
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Xun Tuo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Shang-Chun Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Bao-Zhu Pan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
3
|
Kalaitzidou MP, Nannou CI, Lambropoulou DA, Papageorgiou KV, Theodoridis AM, Economou VK, Giantsis IA, Angelidis PG, Kritas SK, Petridou EJ. First report of detection of microcystins in farmed mediterranean mussels Mytilus galloprovincialis in Thermaikos gulf in Greece. JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2021; 28:8. [PMID: 33691804 PMCID: PMC7949245 DOI: 10.1186/s40709-021-00139-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/04/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Microcystins are emerging marine biotoxins, produced by potentially toxic cyanobacteria. Their presence has been reported in aquatic animals in Greek freshwater, while data are few in marine environments. Since the climate change induces eutrophication and harmful algal blooms in coastal marine ecosystems affecting the public health, further research on microcystins' presence in marine waters is required. The aim of this study was to examine the potential presence of microcystins in mussels Mytilus galloprovincialis in the largest farming areas in Thermaikos gulf, in Northern Greece, and to investigate their temporal and spatial distribution, adding to the knowledge of microcystins presence in Greek Mediterranean mussels. RESULTS A 4-year microcystins' assessment was conducted from 2013 to 2016, in farmed Mediterranean mussels M. galloprovincialis, in five sampling areas in Thermaikos gulf, in northern Greece, where the 90% of the Greek mussels' farming activities is located. The isolation of potentially toxic cyanobacteria was confirmed by molecular methods. An initial screening was performed with a qualitative and quantitative direct monoclonal (DM) ELISA and results above 1 ng g-1 were confirmed for the occurrence of the most common microcystins-RR, -LR and -YR, by Ultra High Performance Liquid Chromatography (UHPLC) coupled with a high- resolution mass spectrometer (HRMS) (Orbitrap analyzer). Microcystin-RR and microcystin-LR were detected, while the intensity of microcystin-YR was below the method detection limit. Most samples that exhibited concentrations above 1 ng g-1 were detected during the warm seasons of the year and especially in spring. Results indicated an overestimation of the ELISA method, since concentrations ranged between 0.70 ± 0.15 ng g-1 and 53.90 ± 3.18 ng g-1, while the confirmation denoted that the levels of microcystins were 6 to 22 times lower. CONCLUSIONS Microcystin-RR and microcystin-LR were detected for the first time in mussel M. galloprovincialis, harvested from farms in Thermaikos gulf, in Central Macedonia, Greece. Their presence was linked to potentially toxic cyanobacteria. Bioaccumulation was observed in digestive gland, while the concentrations in muscles were found extremely low. Samples with levels above 1 ng g-1 were observed mostly during spring, confirming the seasonal distribution of microcystins. The comparison of the results by the ELISA and the LC-Orbitrap MS method indicated an overestimation of concentration by the ELISA method.
Collapse
Affiliation(s)
- Maria P. Kalaitzidou
- National Reference Laboratory for Marine Biotoxins, Department of Food Microbiology, Biochemical Control, Residues, Marine Biotoxins and other water toxins, Directorate of Veterinary Center of Thessaloniki, Ministry of Rural Development and Food, Limnou 3A, 54627 Thessaloniki, Greece
| | - Christina I. Nannou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| | - Dimitra A. Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| | - Konstantinos V. Papageorgiou
- 3rd Military Veterinary Hospital, General Staff, Hellenic Ministry of Defense, 15th km Thessaloniki-Vasilika, 57001 Thessaloniki, Greece
| | - Alexandros M. Theodoridis
- Laboratory of Animal Production Economics, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Vangelis K. Economou
- Laboratory of Hygiene of Foods of Animal Origin-Veterinary Public Health, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Ioannis A. Giantsis
- Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
| | - Panagiotis G. Angelidis
- Laboratory of Ichthyology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Spyridon K. Kritas
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Evanthia J. Petridou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
4
|
Effects of Acute Ammonia Stress on Antioxidant Responses, Histopathology and Ammonia Detoxification Metabolism in Triangle Sail Mussels (Hyriopsis cumingii). WATER 2021. [DOI: 10.3390/w13040425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ammonia is one of the major pollutants in the aquatic ecosystem. Hyriopsis cumingii has great potential for the restoration of eutrophic water. However, there is no study investigating the effect of ammonia exposure in H. cumingii. The median lethal concentration (96 h LC50) of unionized ammonium was 12.86 mg/L in H. cumingii. In the study, H. cumingii were exposed to 6.43 mg L−1 unionized ammonium (1/2 96 h LC50) for 0, 6, 12, 24, 48, 72, and 96 h. High environment ammonia induced antioxidant response to protect the body from oxidative damage. After exposure to ammonia, there was a same trend of induction followed by inhibition of the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione-S-transferases (GST) in the hepatopancreas and gills of H. cumingii. However, the antioxidant response could not completely counteract the oxidation effect during the exposure period, resulting in lipid peroxidation (LPO) and tissue injury in the hepatopancreas and gills of H. cumingii eventually. Moreover, this study indicated that glutamine synthetase (GS), glutamate dehydrogenase (GDH), alanine aminotransaminase (ALT), and aspartate aminotransaminase (AST) in the hepatopancreas and gills may play an important role in ammonia detoxification of H. cumingii. Our results will be helpful to understand the mechanism of aquatic toxicology induced by ammonia in shellfish.
Collapse
|
5
|
Chapman EC, Bonsor BJ, Parsons DR, Rotchell JM. Influence of light and temperature cycles on the expression of circadian clock genes in the mussel Mytilus edulis. MARINE ENVIRONMENTAL RESEARCH 2020; 159:104960. [PMID: 32250881 DOI: 10.1016/j.marenvres.2020.104960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Clock genes and environmental cues regulate essential biological rhythms. The blue mussel, Mytilus edulis, is an ecologically and economically important intertidal bivalve undergoing seasonal reproductive rhythms. We previously identified seasonal expression differences in M. edulis clock genes. Herein, the effects of light/dark cycles, constant darkness, and daily temperature cycles on the circadian expression patterns of such genes are characterised. Clock genes Clk, Cry1, ROR/HR3, Per and Rev-erb/NR1D1, and Timeout-like, show significant mRNA expression variation, persisting in darkness indicating endogenous control. Rhythmic expression was apparent under diurnal temperature cycles in darkness for all except Rev-erb. Temperature cycles induced a significant expression difference in the non-circadian clock-associated gene aaNAT. Furthermore, Suppression Subtractive Hybridisation (SSH) was used to identify seasonal genes with potential links to molecular clock function and revealed numerous genes meriting further investigation. Understanding the relationship between environmental cues and molecular clocks is crucial in predicting the outcomes of environmental change on fundamental rhythmic processes.
Collapse
Affiliation(s)
- Emma C Chapman
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Brodie J Bonsor
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Daniel R Parsons
- Department of Geography, Geology and Environment, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Jeanette M Rotchell
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom.
| |
Collapse
|
6
|
Li H, Yang Z, Huang Q, Li Y. Molecular cloning and characterization of a sigma-class glutathione S-transferase from the freshwater mussel Hyriopsis cumingii. Microbiol Immunol 2016; 59:219-30. [PMID: 25689106 DOI: 10.1111/1348-0421.12250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/31/2015] [Accepted: 02/05/2015] [Indexed: 11/29/2022]
Abstract
A full-length cDNA of a sigma-like glutathione S-transferase (GST) was identified from Hyriopsis cumingii (HcGSTS). The deduced amino acid sequence of HcGSTS was found to comprise 203 amino acid residues and to contain the distinct highly conserved glutathione binding site of N-terminal and the relatively diverse substrate binding site of C-terminal. Alignment analysis and phylogenetic relationship suggested that the HcGSTS is a sigma-class GST. The mRNA of HcGSTS was constitutively expressed in all tested tissues, the strongest expression being in the hepatopancreas. The mRNA expression of HcGSTS was significantly up-regulated (P < 0.05) in all assessed tissues after stimulation of the mussels with peptidoglycan (PGN) and LPS, the only exception being when the gills were challenged with PGN. The expression of HcGSTS mRNA in kidney and foot was also significantly up-regulated (P < 0.05) by microcystin-LR. Recombinant HcGSTS exhibited high activity towards the substrate 1-chloro-2,4-dinitrobenzene. The optimal pH was 8.0 and temperature 35 °C.
Collapse
Affiliation(s)
- Haihua Li
- Key Laboratory of Northwest Water Resources and Environmental Ecology of Education Ministry, Xi'an University of Technology, Xi'an, Shanxi Province, 710048, China; School of Environment and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan Province, 450011, China
| | | | | | | |
Collapse
|
7
|
Gomes T, Chora S, Pereira CG, Cardoso C, Bebianno MJ. Proteomic response of mussels Mytilus galloprovincialis exposed to CuO NPs and Cu²⁺: an exploratory biomarker discovery. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:327-336. [PMID: 25089921 DOI: 10.1016/j.aquatox.2014.07.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/11/2014] [Accepted: 07/13/2014] [Indexed: 05/29/2023]
Abstract
CuO NPs are one of the most used metal nanomaterials nowadays with several industrial and other commercial applications. Nevertheless, less is known about the mechanisms by which these NPs inflict toxicity in mussels and to what extent it differs from Cu(2+). The aim of this study was to investigate changes in protein expression profiles in mussels Mytilus galloprovincialis exposed for 15 days to CuO NPs and Cu(2+) (10 μg L(-1)) using a proteomic approach. Results demonstrate that CuO NPs and Cu(2+) induced major changes in protein expression in mussels' showing several tissue and metal-dependent responses. CuO NPs showed a higher tendency to up-regulate proteins in the gills and down-regulate in the digestive gland, while Cu(2+) showed the opposite tendency. Distinctive sets of differentially expressed proteins were found, either common or specific to each Cu form and tissue, reflecting different mechanisms involved in their toxicity. Fifteen of the differentially expressed proteins from both tissues were identified by MALDI-TOF-TOF. Identified proteins indicate common response mechanisms induced by CuO NPs and Cu(2+), namely in cytoskeleton and cell structure (actin, α-tubulin, paramyosin), stress response (heat shock cognate 71, putative C1q domain containing protein), transcription regulation (zinc-finger BED domain-containing protein 1, nuclear receptor subfamily 1G) and energy metabolism (ATP synthase F0 subunit 6). CuO NPs alone also had a marked effect on other biological processes, namely oxidative stress (GST), proteolysis (cathepsin L) and apoptosis (caspase 3/7-1). On the other hand, Cu(2+) affected a protein associated with adhesion and mobility, precollagen-D that is associated with the detoxification mechanism of Cu(2+). Protein identification clearly showed that the toxicity of CuO NPs is not solely due to Cu(2+) dissolution and can result in mitochondrial and nucleus stress-induced cell signalling cascades that can lead to apoptosis. While the absence of the mussel genome precluded the identification of other proteins relevant to clarify the effects of CuO NPs in mussels' tissues, proteomics analysis provided additional knowledge of their potential effects at the protein level that after confirmation and validation can be used as putative new biomarkers in nanotoxicology.
Collapse
Affiliation(s)
- Tânia Gomes
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Suze Chora
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Catarina G Pereira
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Cátia Cardoso
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria João Bebianno
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
8
|
Tao Y, Yang ZY, Zhang X, Wu HJ. Molecular cloning and mRNA expression of the peptidoglycan recognition protein gene HcPGRP1 and its isoform HcPGRP1a from the freshwater mussel Hyriopsis cumingi. Genet Mol Biol 2014; 37:508-17. [PMID: 25249773 PMCID: PMC4171769 DOI: 10.1590/s1415-47572014000400006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/10/2014] [Indexed: 12/02/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) are innate immune molecules that have been structurally conserved throughout evolution in invertebrates and vertebrates. In this study, peptidoglycan recognition protein HcPGRP1 and its isoform HcPGRP1a were identified in the freshwater mussel Hyriopsis cumingii. The full-length cDNAs of HcPGRP1 (973 bp) and HcPGRP1a (537 bp) encoded polypeptides with 218 and 151 amino acids, respectively. Sequence analysis showed that HcPGRP1 had one C-terminal PGRP domain that was conserved throughout evolution. Phylogenetic analysis showed that HcPGRP1 clustered closely with EsPGRP4 of Euprymna scolopes. Real-time PCR showed that the mRNA transcripts of HcPGRP1 and HcPGRP1a were constitutively expressed in various tissues, with the highest level in hepatopancreas. Stimulation with lipopolysaccharide (LPS) and peptidoglycan (PGN) significantly up-regulated HcPGRP1 mRNA expression in hepatopancreas and foot, but not in gill, whereas HcPGRP1a expression was significantly up-regulated in all three tissues. Our results indicate that HcPGRP1 is both a constitutive and inducible protein that may be involved in immune responses (recognition and defense) against invaders.
Collapse
Affiliation(s)
- Ye Tao
- School of Environmental Science and Engineering , Huazhong University of Science and Technology , Wuhan , China . ; Department of Environmental Protection of Henan Province , Zhengzhou , China
| | - Zi-Yan Yang
- School of Environmental Science and Engineering , Huazhong University of Science and Technology , Wuhan , China . ; School of Environment and Municipal Engineering , North China University of Water Resources and Electric Power , Zhengzhou , China
| | - Xin Zhang
- Henan Rural Energy & Environment Agency , Henan Provincial Department of Agriculture , Zhengzhou , China
| | - Hong-Juan Wu
- School of Environmental Science and Engineering , Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
9
|
Miao J, Pan L, Zhang W, Liu D, Cai Y, Li Z. Identification of differentially expressed genes in the digestive gland of manila clam Ruditapes philippinarum exposed to BDE-47. Comp Biochem Physiol C Toxicol Pharmacol 2014; 161:15-20. [PMID: 24384476 DOI: 10.1016/j.cbpc.2013.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 11/28/2022]
Abstract
Suppression subtractive hybridization (SSH) was used to identify alterations in gene transcription of the manila clam Ruditapes philippinarum after exposure to 5μg/L 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) for 15days. The ability to accumulate BDE-47 in digestive gland and gill was also evaluated in order to provide information for food safety. Analysis of tissue extracts indicated that digestive gland had the higher BDE-47 levels (12,463.1±1334.8 ng/g d.w.) compared to gill (6368.6±738.7ng/g d.w.) after a 15-day exposure period. Forward and reverse SSH libraries were made from pooled digestive glands of R. philippinarum, from which 75 high quality sequences were obtained by BLAST analysis. The expression of 39 genes with significant homology (E-value<10(-5)) out of the 75 sequences was investigated by quantitative RT-PCR. Among the 39 genes, 27 genes were found up-regulated while 12 genes were found down-regulated after the BDE-47 exposure. The 39 genes were involved in cellular cycle, cytoskeleton, substance and energy metabolism, stress response, innate immunity and cell signaling and transport which were extensively discussed. This study provides a preliminary basis for studying the response of marine bivalves upon exposure to PBDEs in terms of regulated gene expression.
Collapse
Affiliation(s)
- Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Wenhao Zhang
- Technical Center for Shandong Entry-exit Inspection and Quarantine Bureau, China
| | - Dong Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yuefeng Cai
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zhen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
10
|
Molecular cloning and functional characterization of a short peptidoglycan recognition protein (HcPGRPS1) from the freshwater mussel, Hyriopsis cumingi. Mol Immunol 2013; 56:729-38. [DOI: 10.1016/j.molimm.2013.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/23/2013] [Accepted: 06/27/2013] [Indexed: 11/23/2022]
|
11
|
Binelli A, Marisa I, Fedorova M, Hoffmann R, Riva C. First evidence of protein profile alteration due to the main cocaine metabolite (benzoylecgonine) in a freshwater biological model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:268-278. [PMID: 23838174 DOI: 10.1016/j.aquatox.2013.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/12/2013] [Accepted: 06/15/2013] [Indexed: 06/02/2023]
Abstract
Illicit drugs represent not only a great social problem but are also considered an environmental problem because their use and, often, abuse release large amounts of parent compounds, and especially their metabolites, into freshwaters. One of the most commonly used drugs is cocaine, which is the second most prevalent drug in Europe (accounting for almost 30% of all cocaine users worldwide). Cocaine is rapidly metabolised in humans to benzoylecgonine (35-54%), ecgonine methyl ester (32-49%) and norcocaine (5%), which are eliminated in the urine and are only partially removed by wastewater treatment plants (WWTPs). Because no studies have previously been carried out to evaluate the possible risks due to cocaine and its metabolites in non-target organisms, we applied a multi-disciplinary approach to investigate the possible environmental risk related to benzoylecgonine (BE), the main metabolite of cocaine. Previous studies carried out by means of a biomarker suite and the redox-proteomic approach showed an imbalance of anti-oxidant enzyme activities and several genotoxic effects to be caused by environmental BE concentrations in the freshwater bivalve Zebra mussel (Dreissena polymorpha). This report presents the results obtained in the last step of this study, based on a proteomics analysis. We analysed the protein expression profile in the gills of Zebra mussels exposed to two different concentrations (0.5 and 1 μg/L) of BE for 14 days through 2-DE and mass spectrometry analysis (RP-UPLC ESI-LTQ-Orbitrap). Our results highlight significant changes in some proteins in gill cells whose functions are crucial for overall metabolism. In particular, we detected a probable effect of BE on calcium homeostasis and a consequent imbalance of oxidative stress, as verified for vertebrates.
Collapse
Affiliation(s)
- A Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | | | | | | | | |
Collapse
|
12
|
Gomes T, Pereira CG, Cardoso C, Bebianno MJ. Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 136-137:79-90. [PMID: 23665239 DOI: 10.1016/j.aquatox.2013.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/19/2013] [Accepted: 03/29/2013] [Indexed: 05/04/2023]
Abstract
Ag NPs are one of the most commonly used NPs in nanotechnology whose environmental impacts are to date unknown and the information about bioavailability, mechanisms of biological uptake and toxic implications in organisms is scarce. So, the main objective of this study was to investigate differences in protein expression profiles in gills and digestive gland of mussels Mytilus galloprovincialis exposed to Ag NPs and Ag(+) (10 μg L(-1)) for a period of 15 days. Protein expression profiles of exposed gills and digestive glands were compared to those of control mussels using two-dimensional electrophoresis to discriminate differentially expressed proteins. Different patterns of protein expression were obtained for exposed mussels, dependent not only on the different redox requirements of each tissue but also to the Ag form used. Unique sets of differentially expressed proteins were affected by each silver form in addition to proteins that were affected by both Ag NPs and Ag(+). Fifteen of these proteins were subsequently identified by MALDI-TOF-TOF and database search. Ag NPs affected similar cellular pathways as Ag(+), with common response mechanisms in cytoskeleton and cell structure (catchin, myosin heavy chain), stress response (heat shock protein 70), oxidative stress (glutathione s-transferase), transcriptional regulation (nuclear receptor subfamily 1G), adhesion and mobility (precollagen-P) and energy metabolism (ATP synthase F0 subunit 6 and NADH dehydrogenase subunit 2). Exposure to Ag NPs altered the expression of two proteins associated with stress response (major vault protein and ras partial) and one protein involved in cytoskeleton and cell structure (paramyosin), while exposure to Ag(+) had a strong influence in one protein related to stress response (putative c1q domain containing protein) and two proteins involved in cytoskeleton and cell structure (actin and α-tubulin). Protein identification showed that Ag NPs toxicity is mediated by oxidative stress-induced cell signalling cascades (including mitochondria and nucleus) that can lead to cell death. This toxicity represents the cumulative effect of Ag(+) released from the particles and other properties as particle size and surface reactivity. This study helped to unravel the molecular mechanisms that can be associated with Ag NPs toxicity; nevertheless, some additional studies are required to investigate the exact interaction between these NPs and cellular components.
Collapse
Affiliation(s)
- Tânia Gomes
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | |
Collapse
|
13
|
Cui Z, Zhang K, Qu X, Liu Q. Construction of differentially expressed genes library of bighead carp (Aristichthys nobilis) exposed to microcystin-lr using ssh and expression profile of related genes. FISH & SHELLFISH IMMUNOLOGY 2011; 31:746-753. [PMID: 21803161 DOI: 10.1016/j.fsi.2011.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/28/2011] [Accepted: 07/09/2011] [Indexed: 05/31/2023]
Abstract
Microcystins (MCs) are hepatotoxic cyclic heptapeptides produced by cyanobacteria (blue-green algae). There are more than 70 MCs variants of which the most common and widely studied is MC-LR. We screened the hepatocellular differentially expressed genes against MC-LR in the bighead carp (Aristichthys nobilis). Suppression subtractive hybridization was used to construct the forward subtracted and reverse subtracted cDNA libraries, and one hundred and thirty two positive clones (seventy one in forward library and sixty one in reverse library) were randomly selected and sequenced. Finally, fifty five reliable sequences from the forward subtracted library were used in a homology search by BLASTn and BLASTx, as were 57 reliable sequences from the reverse subtracted library. Furthermore, eight analyzed sequences from the forward subtracted cDNA library and seven from the reverse subtracted library were found to be non-homologous sequences. The screening identified genes induced by MC-LR in both libraries that are involved in various processes, such as energy metabolism, immunity, and apoptosis. Some are cytoskeleton- and transportation-related genes, while signal transduction-related genes were also found. Significant genes, such as the apoptosis-related gene p53 and the proto-oncogene c-myc, are involved in inhibition of the MC-LR response in the reverse subtracted library. In addition, several immune-related genes, which play an important role in antioxidation and detoxification of MC-LR, were characterized and identified in both of the subtracted libraries. The study provides the basic data to further identify the genes and molecular mechanism of detoxification of microcystins.
Collapse
Affiliation(s)
- Zhihui Cui
- College of Fisheries and Life Sciences, Shanghai Ocean University, 999, Hucheng Huan Road, Shanghai, PR China
| | | | | | | |
Collapse
|