1
|
Quelhas AR, Mariana M, Cairrao E. Prenatal Exposure to Dibutyl Phthalate and Its Negative Health Effects on Offspring: In Vivo and Epidemiological Studies. J Xenobiot 2024; 14:2039-2075. [PMID: 39728417 DOI: 10.3390/jox14040109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Dibutyl phthalate (DBP) is a low-molecular-weight phthalate commonly found in personal care products, such as perfumes, aftershaves, and nail care items, as well as in children's toys, pharmaceuticals, and food products. It is used to improve flexibility, make polymer products soft and malleable, and as solvents and stabilizers in personal care products. Pregnancy represents a critical period during which both the mother and the developing embryo can be significantly impacted by exposure to endocrine disruptors. This article aims to elucidate the effects of prenatal exposure to DBP on the health and development of offspring, particularly on the reproductive, neurological, metabolic, renal, and digestive systems. Extensive research has examined the effects of DBP on the male reproductive system, where exposure is linked to decreased testosterone levels, reduced anogenital distance, and male infertility. In terms of the female reproductive system, DBP has been shown to elevate serum estradiol and progesterone levels, potentially compromising egg quality. Furthermore, exposure to this phthalate adversely affects neurodevelopment and is associated with obesity, metabolic disorders, and conditions such as hypospadias. These findings highlight how urgently stronger laws prohibiting the use of phthalates during pregnancy are needed to lower the risks to the fetus's health and the child's development.
Collapse
Affiliation(s)
- Ana R Quelhas
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Sciences (FC-UBI), University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Melissa Mariana
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Sciences (FC-UBI), University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Elisa Cairrao
- Faculty of Sciences (FC-UBI), University of Beira Interior, 6201-001 Covilhã, Portugal
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
2
|
Zhang Y, Wan Y, Mu X, Gao R, Geng Y, Chen X, Li F, He J. Gestational dibutyl phthalate exposure impairs primordial folliculogenesis in mice through autophagy activation and NOTCH2 signal interruption. Food Chem Toxicol 2023:113861. [PMID: 37277016 DOI: 10.1016/j.fct.2023.113861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/22/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Female reproductive lifespan is largely determined by the size of the primordial follicle pool, which is established in early life. Dibutyl phthalate (DBP), a popular plasticiser, is a known environmental endocrine disruptor that poses a potential threat to reproductive health. However, DBP impact on early oogenesis has been rarely reported. In this study, maternal exposure to DBP in gestation disrupted germ-cell cyst breakdown and primordial follicle assembly in foetal ovary, impairing female fertility in adulthood. Subsequently, altered autophagic flux with autophagosome accumulation was observed in DBP-exposed ovaries carrying CAG-RFP-EGFP-LC3 reporter genes, whereas autophagy inhibition by 3-methyladenine attenuated the impact of DBP on primordial folliculogenesis. Moreover, DBP exposure reduced the expression of NOTCH2 intracellular domain (NICD2) and decreased interactions between NICD2 and Beclin-l. NICD2 was observed within the autophagosomes in DBP-exposed ovaries. Furthermore, NICD2 overexpression partially restored primordial folliculogenesis. Furthermore, melatonin significantly relieved oxidative stress, decreased autophagy, and restored NOTCH2 signalling, consequently reversing the effect on folliculogenesis. Therefore, this study demonstrated that gestational DBP exposure disrupts primordial folliculogenesis by inducing autophagy, which targets NOTCH2 signalling, and this impact has long-term consequences on fertility in adulthood, strengthening the potential contribution of environmental chemicals to the development of ovarian dysfunctional diseases.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Yiji Wan
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; School of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Rufei Gao
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; School of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xuemei Chen
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Fangfang Li
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Junlin He
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
3
|
Bello UM, Madekurozwa MC, Groenewald HB, Arukwe A, Aire TA. Changes in testicular histomorphometry and ultrastructure of Leydig cells in adult male Japanese quail exposed to di (n-butyl) phthalate (DBP) during the prepubertal period. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55402-55413. [PMID: 36894732 PMCID: PMC10121545 DOI: 10.1007/s11356-023-25767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Phthalate esters, such as di(n-butyl) phthalate, (DBP), are synthetic chemical pollutants commonly used as plasticizers in the manufacture of plastics. In the present study, we investigated the effects of DBP in the testes of adult male quails (Coturnix cortunix japonica) exposed by oral gavage to variable doses of DBP (0 [control], 1, 10, 50, 200, and 400 mg/kgbw-d), for 30 days during the prepubertal period, using histo-morphometric and ultrastructural techniques. Generally, significant decreases in seminiferous tubular diameter (STD) and epithelial height (SEH) were observed predominantly at the highest DBP doses (200 and 400 mg/kg), as compared to medium (50 mg/kg), and lowest doses (1 and 10 mg/kg) as well as the control group. Ultrastructurally, apparent dose-specific degenerative changes were observed in the Leydig cells. The lowest DBP doses (1 and 10 mg/kg) did not produce significant effects on Leydig cell ultrastructure, whereas, at the highest doses (200 and 400 mg/kg), the Leydig cells were remarkably conspicuous in the interstitium and appeared foamy. There was a preponderance of electron-lucent lipid droplets which crowded out the normal organelles of the cell, as well as increases in the number of dense bodies in the cytoplasm. The smooth endoplasmic reticulum (sER) was less obvious, compacted, and wedged between the abundant lipid droplets and mitochondria. Taken together, these findings indicate that pre-pubertal exposure of precocious quail birds to DBP, produced parameter-specific histometric tubular changes, as well as dose-dependent cyto-structural derangement of the Leydig cells; which consequently may lead to overt reproductive impairments in the adult bird in the environment.
Collapse
Affiliation(s)
- Umar M Bello
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
- Laboratory of Cell Biology and Histology, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria.
| | - Mary-Cathrine Madekurozwa
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Hermanus B Groenewald
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491, Trondheim, Norway
| | - Tom A Aire
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, True-Blue, St. George's, Grenada
| |
Collapse
|
4
|
Li H, Jiang Y, Liu M, Yu J, Feng X, Xu X, Wang H, Zhang J, Sun X, Yu Y. DNA methylation-mediated inhibition of MGARP is involved in impaired progeny testosterone synthesis in mice exposed to DBP in utero. ENVIRONMENTAL TOXICOLOGY 2023; 38:914-925. [PMID: 36602389 DOI: 10.1002/tox.23734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/18/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
The dibutyl phthalate (DBP) has been detected in fetuses and infants and can cause damage to the reproductive system in adulthood, but the exact mechanism remains unclear. Here, we aim to investigate the effects of intrauterine DBP exposure on offspring reproductive function and explore possible mechanisms. SPF C57BL/6 pregnant mice were given DBP (0.5, 5, 75 mg/kg/d) or corn oil from day 5 to day 19 by gavage. After weaning, the pups were fed a standard diet for 5 weeks. In addition, TM3 Leydig cell cultures were used to study the relevant mechanisms in vitro. The results showed that intrauterine DBP exposure could reduce sperm density and sperm motility, cause testicular tissue damage, down-regulate serum T and LH levels, and up-regulate serum FSH levels at 75 mg/kg/d. Western blot and methylation detection revealed intrauterine exposure to DBP down-regulated testosterone synthesis-related proteins StAR, P450scc, 3β-HSD, PKA, and PKC expression, while up-regulated the levels of methyltransferase proteins expression and DNA 5-methylcytosine (5mC) in testicular tissue of mouse offspring at 75 mg/kg/d. Further detection found in utero 75 mg/kg/d DBP exposure down-regulated MGARP protein expression, and induced incomplete methylation of the MGARP gene. An in vitro analysis showed that MGARP inhibition is involved in an impaired testosterone synthesis in TM3 cells. Cell culture results suggest that MGARP down-regulation may be involved in impaired testosterone production in monobutyl phthalate-treated cells. The present study revealed that 75 mg/kg/d DBP exposure in utero resulted in testosterone synthesis disorders and reproductive function impairment in mouse offspring, and the mechanism may be related to DNA methylation-mediated down-regulation of MGARP in the testis.
Collapse
Affiliation(s)
- Huan Li
- School of Public Health, Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Beihua University, Jilin, China
| | - Yutong Jiang
- School of Traditional Chinese medicine, Southern Medical University, Guangzhou, China
| | - Minhui Liu
- School of Public Health, Beihua University, Jilin, China
| | - Jiaxin Yu
- School of Public Health, Beihua University, Jilin, China
| | - Xinyue Feng
- School of Public Health, Beihua University, Jilin, China
| | - Xiaolei Xu
- School of Public Health, Beihua University, Jilin, China
| | - Hongyan Wang
- School of Public Health, Beihua University, Jilin, China
| | - Jing Zhang
- School of Public Health, Beihua University, Jilin, China
| | - Xiuling Sun
- School of Public Health, Beihua University, Jilin, China
| | - Yan Yu
- School of Public Health, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Zhou T, He S, Ye X, Wei Z, Wan J, Zhang H, Ding S. Exposure to dibutyl phthalate adsorbed to multi-walled carbon nanotubes causes neurotoxicity in mice by inducing the release of BDNF. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158319. [PMID: 36041608 DOI: 10.1016/j.scitotenv.2022.158319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) and dibutyl phthalate (DBP) exist extensively in the environment, and they are easy to form compound pollution through π-π interactions in the environment. We investigate whether DBP, an environmental hormone disruptor, mediated by CNTs can more easily cross the blood-brain barrier, and whether DBP entering the brain has neurotoxic effects on the cells in the brain. Experimental subjects were 40 male Kunming (KM) mice randomly divided into 4 groups: the control group; the MWCNTs group; the DBP group; and the MWCNTs+DBP group. The mice were exposed via tail intravenous injection once every 3 days for 21 days, following which toxicology studies were carried out. The results of behavioral experiments showed that the mice in the combined exposure group (MWCNTs+DBP) exhibited spatial learning and memory impairment, and anxiety-like behavior. Staining of hippocampal sections of mouse brain tissue showed that, in the CA1, CA2, and DG areas, the number of neurons decreased, the nucleus was pyknotic, the cell body was atrophied, and levels of the microglia marker Iba-1 increased. By proteomic KEGG analysis, we found that the DEPs were mainly those related to neurodegenerative diseases. Immunohistochemistry in the hippocampus indicated that the level of brain-derived neurotrophic factor (BDNF) in the DG region was significantly increased. RT-PCR results revealed that the expression levels of P53, caspase3, and Bax genes related to apoptosis were up-regulated. The experimental results demonstrated that the mechanism of the combined-exposure injury to neurons in the hippocampus of mice may be that MWCNTs with adsorbed DBP can induce the release of BDNF, accelerate the apoptosis of neurons, and reduce the number of nerve cells, which activates microglia, causing neuroinflammation and nervous system toxicity.
Collapse
Affiliation(s)
- Tingting Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Hubei, China.
| | - Suli He
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Hubei, China
| | - Xin Ye
- Liquor Marking Biological Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science & Engineering, Yibin, China.
| | - Zhaolan Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Hubei, China
| | - Jian Wan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Hubei, China.
| | - Hongmao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Hubei, China.
| | - Shumao Ding
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Hubei, China.
| |
Collapse
|
6
|
Källsten L, Almamoun R, Pierozan P, Nylander E, Sdougkou K, Martin JW, Karlsson O. Adult Exposure to Di-N-Butyl Phthalate (DBP) Induces Persistent Effects on Testicular Cell Markers and Testosterone Biosynthesis in Mice. Int J Mol Sci 2022; 23:ijms23158718. [PMID: 35955852 PMCID: PMC9369267 DOI: 10.3390/ijms23158718] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Studies indicate that phthalates are endocrine disruptors affecting reproductive health. One of the most commonly used phthalates, di-n-butyl phthalate (DBP), has been linked with adverse reproductive health outcomes in men, but the mechanisms behind these effects are still poorly understood. Here, adult male mice were orally exposed to DBP (10 or 100 mg/kg/day) for five weeks, and the testis and adrenal glands were collected one week after the last dose, to examine more persistent effects. Quantification of testosterone, androstenedione, progesterone and corticosterone concentrations by liquid chromatography-mass spectrometry showed that testicular testosterone was significantly decreased in both DBP treatment groups, whereas the other steroids were not significantly altered. Western blot analysis of testis revealed that DBP exposure increased the levels of the steroidogenic enzymes CYP11A1, HSD3β2, and CYP17A1, the oxidative stress marker nitrotyrosine, and the luteinizing hormone receptor (LHR). The analysis further demonstrated increased levels of the germ cell marker DAZL, the Sertoli cell markers vimentin and SOX9, and the Leydig cell marker SULT1E1. Overall, the present work provides more mechanistic understanding of how adult DBP exposure can induce effects on the male reproductive system by affecting several key cells and proteins important for testosterone biosynthesis and spermatogenesis, and for the first time shows that these effects persist at least one week after the last dose. It also demonstrates impairment of testosterone biosynthesis at a lower dose than previously reported.
Collapse
|
7
|
Integrated Genomic and Bioinformatics Approaches to Identify Molecular Links between Endocrine Disruptors and Adverse Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19010574. [PMID: 35010832 PMCID: PMC8744944 DOI: 10.3390/ijerph19010574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 12/04/2022]
Abstract
Exposure to Endocrine Disrupting Chemicals (EDC) has been linked with several adverse outcomes. In this review, we examine EDCs that are pervasive in the environment and are of concern in the context of human, animal, and environmental health. We explore the consequences of EDC exposure on aquatic life, terrestrial animals, and humans. We focus on the exploitation of genomics technologies and in particular whole transcriptome sequencing. Genome-wide analyses using RNAseq provides snap shots of cellular, tissue and whole organism transcriptomes under normal physiological and EDC perturbed conditions. A global view of gene expression provides highly valuable information as it uncovers gene families or more specifically, pathways that are affected by EDC exposures, but also reveals those that are unaffected. Hypotheses about genes with unknown functions can also be formed by comparison of their expression levels with genes of known function. Risk assessment strategies leveraging genomic technologies and the development of toxicology databases are explored. Finally, we review how the Adverse Outcome Pathway (AOP) has exploited this high throughput data to provide a framework for toxicology studies.
Collapse
|
8
|
Zhang T, Zhou X, Zhang X, Ren X, Wu J, Wang Z, Wang S, Wang Z. Gut microbiota may contribute to the postnatal male reproductive abnormalities induced by prenatal dibutyl phthalate exposure. CHEMOSPHERE 2022; 287:132046. [PMID: 34474386 DOI: 10.1016/j.chemosphere.2021.132046] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 05/13/2023]
Abstract
Phthalate is an environmental endocrine disruptor that causes direct and intergenerational male reproductive damage. However, its mechanisms require further investigation. The role of gut microbiota in male reproductive function has been gradually revealed in the past. To explore the intergenerational testicular injury and the influence on offspring gut microbiota of the widely used phthalate dibutyl phthalate (DBP), we conducted a prenatal DBP exposure experiment with microbiota sequencing. We finally explained the gestational DBP exposure-induced gut dysbacteriosis, which is one of the mechanisms of testicular injury in the offspring. The occurrence of seminiferous atrophy and spermatogenic cells apoptosis showed a slight increase. Our study partially supported the results of previous research works on the characteristics of gut dysbacteriosis, which featured the increased relative abundance of Bacteroidetes, Prevotella and P. copri. Focusing on the role of gut microbiota in reproductive function is important. Future studies need to investigate the relationship between environmental pollution and human health.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China.
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China.
| | - Xu Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China.
| | - Xiaohan Ren
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China.
| | - Jiajin Wu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China.
| | - Zhongyuan Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China.
| | - Shangqian Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China.
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China; The First People's Hospital of Xuzhou City, China.
| |
Collapse
|
9
|
Wang J, Zhang X, Li Y, Liu Y, Tao L. Exposure to Dibutyl Phthalate and Reproductive-Related Outcomes in Animal Models: Evidence From Rodents Study. Front Physiol 2021; 12:684532. [PMID: 34955869 PMCID: PMC8692859 DOI: 10.3389/fphys.2021.684532] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Dibutyl phthalate (DBP) was an endocrine disruptor, which may lead to cancer and affects reproductive function when accumulated in the body. But the precise role of DBP in the reproductive system remained controversial. Objective: We employed the meta-analysis to explore the relationship between DBP and reproductive-related outcomes. Methods: We searched relevant literature in PubMed, EMBASE, and Web of Science databases. The standardized mean differences (SMDs) and their 95% CIs were measured by random-effects models. Funnel plots and Egger’s regression test were applied to assess publication bias. Results: Finally, 19 literatures were included in this research. The outcomes revealed that DBP was negatively correlated with reproductive organs weight (testis weight: SMD: −0.59; 95% Cl: −1.23, −0.23; seminal vesicles weight: SMD: −0.74; 95% Cl: −1.21, −0.27; prostate weight: SMD: −0.46; 95% Cl: −0.76, −0.16) and sperm parameters (sperm morphology: SMD: 1.29; 95% Cl: 0.63, 1.94; sperm count: SMD: −1.81; 95% Cl: −2.39, −1.23; sperm motility: SMD: −1.92; 95% Cl: −2.62, −1.23). Conclusion: Our research demonstrated that DBP may be negatively associated with reproductive-related indicators, especially at Gestation exposure period and middle dose (100–500 mg/kg/day).
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, China
| | - Xi Zhang
- The State Key Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Li
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yingqing Liu
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, China
| | - Lingsong Tao
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, China
| |
Collapse
|
10
|
Hlisníková H, Petrovičová I, Kolena B, Šidlovská M, Sirotkin A. Effects and mechanisms of phthalates’ action on neurological processes and neural health: a literature review. Pharmacol Rep 2021; 73:386-404. [DOI: 10.1007/s43440-021-00215-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
|
11
|
Wan Omar WFN, Giribabu N, Karim K, Salleh N. Marantodes pumilum (Blume) Kuntze (Kacip Fatimah) stimulates uterine contraction in rats in post-partum period. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112175. [PMID: 31442621 DOI: 10.1016/j.jep.2019.112175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Marantodes pumilum (Blume) Kuntze has traditionally been used to firm the uterus after delivery, however scientific evidences behind this claim is still lacking. AIMS OF STUDY To demonstrate Marantodes pumilum leaves aqueous extract (MPE) has an effect on uterine contraction after delivery and to elucidate the molecular mechanisms involved. METHODS Day-1 post-delivery female rats were given MPE (100, 250 and 500 mg/kg/day) orally for seven consecutive days. A day after the last treatment (day-8), rats were sacrificed and uteri were harvested and subjected for ex-vivo contraction study using organ bath followed by protein expression and distribution study by Western blotting and immunohistochemistry techniques, respectively. The proteins of interest include calmodulin-CaM, myosin light chain kinase-MLCK, sarcoplasmic reticulum Ca2+-ATPase (SERCA), G-protein α and β (Gα and Gβ), inositol-triphosphate 3-kinase (IP3K), oxytocin receptor-OTR, prostaglandin (PGF)2α receptor-PGFR, muscarinic receptor-MAChR and estrogen receptor (ER) isoforms α and β. Levels of estradiol and progesterone in serum were determined by enzyme-linked immunoassay (ELISA). RESULTS Ex-vivo contraction study revealed the force of uterine contraction increased with increasing doses of MPE. In addition, expression of CaM, MLCK, SERCA, Gα, Gβ, IP3K, OTR, PGF2α, MAChR, Erα and ERβ in the uterus increased with increasing doses of MPE. Serum analysis indicate that estradiol levels decreased while progesterone levels remained low at day-8 post-partum in rats receiving 250 and 500 mg/kg/day MPE. CONCLUSIONS These findings support the claims that MPE help to firm the uterus and pave the way for its use as a uterotonic agent after delivery.
Collapse
Affiliation(s)
- Wan Fatein Nabeila Wan Omar
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Kamarulzaman Karim
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Baken KA, Lambrechts N, Remy S, Mustieles V, Rodríguez-Carrillo A, Neophytou CM, Olea N, Schoeters G. A strategy to validate a selection of human effect biomarkers using adverse outcome pathways: Proof of concept for phthalates and reproductive effects. ENVIRONMENTAL RESEARCH 2019; 175:235-256. [PMID: 31146096 DOI: 10.1016/j.envres.2019.05.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/21/2023]
Abstract
Human biomonitoring measures the concentrations of environmental chemicals or their metabolites in body fluids or tissues. Complementing exposure biomarkers with mechanistically based effect biomarkers may further elucidate causal pathways between chemical exposure and adverse health outcomes. We combined information on effect biomarkers previously implemented in human observational studies with mechanisms of action reported in experimental studies and with information from published Adverse Outcome Pathways (AOPs), focusing on adverse reproductive effects of phthalate exposure. Phthalates constitute a group of chemicals that are ubiquitous in consumer products and have been related to a wide range of adverse health effects. As a result of a comprehensive literature search, we present an overview of effect biomarkers for reproductive toxicity that are substantiated by mechanistic information. The activation of several receptors, such as PPARα, PPARγ, and GR, may initiate events leading to impaired male and female fertility as well as other adverse effects of phthalate exposure. Therefore, these receptors appear as promising targets for the development of novel effect biomarkers. The proposed strategy connects the fields of epidemiology and toxicology and may strengthen the weight of evidence in observational studies that link chemical exposures to health outcomes.
Collapse
Affiliation(s)
- Kirsten A Baken
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium.
| | - Nathalie Lambrechts
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium
| | - Sylvie Remy
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Epidemiology and Social Medicine, University of Antwerp, Antwerp, Belgium
| | - Vicente Mustieles
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | | | - Christiana M Neophytou
- Department of Biological Sciences, School of Pure and Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | - Nicolas Olea
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Greet Schoeters
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
13
|
Salleh N, Sayem ASM, Giribabu N, Khaing SL. Expression of proteins related to thyroid hormone function in the uterus is down-regulated at the day of implantation in hypothyroid pregnant rats. Cell Biol Int 2019; 43:486-494. [PMID: 30761678 DOI: 10.1002/cbin.11114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/10/2019] [Indexed: 12/19/2022]
Abstract
Hypothyroidism has been linked to infertility, but the mechanisms underlying infertility-related hypothyroidism have yet to be fully elucidated. Therefore, in this study, effects of hypothyroidism on expression of the proteins related to thyroid hormone function in the uterus, which were thought to play a role implantation, including thyroid hormone receptor (TR), thyroid stimulating hormone receptor (TSHR), retinoic acid receptor (RAR) and extracellular kinase (ERK) were identified. Pregnant female rats were rendered hypothyroid by giving methimazole (MMI), orally. Following hypothyroid induction, rats were grouped into control (non-treated) and received subcutaneous thyroxine at 20, 40, and 80 μg/kg/day for five consecutive days. At Day 6, which is the day of implantation (GD 6), rats were sacrificed and the number of embryo implantation site in the uterus was calculated. Then, uterine horns were harvested and expression of the above proteins and their mRNAs were identified by Western blotting and real-time PCR, respectively. In non-treated hypothyroid pregnant rats, the number of embryo implantation sites decreased as compared to euthyroid and hypothyroid rats receiving thyroxine treatment. Similarly, expression of TRα-1, TRβ-1, TSHR, ERK1/2 and RAR proteins and mRNA in the uterus of non-treated hypothyroid rats also decreased (P < 0.05 when compared to euthyroid and thyroxine-treated hypothyroid rats). In conclusion, downregulated expression of the thyroid hormone related proteins in the uterus at the day of implantation might result in infertility as reported in hypothyroid condition.
Collapse
Affiliation(s)
- Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Abu Sadat Md Sayem
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Department of Pharmacy, University of Science and Technology Chittagong, Zakir Hossain Road, Foy's Lake, Khulshi, Chittagong, 4202, Bangladesh
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Si Lay Khaing
- Department of Obstetrics & Gynecology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Kassab RB, Lokman MS, Essawy EA. Neurochemical alterations following the exposure to di-n-butyl phthalate in rats. Metab Brain Dis 2019; 34:235-244. [PMID: 30446882 DOI: 10.1007/s11011-018-0341-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/08/2018] [Indexed: 12/31/2022]
Abstract
Due to its ability to cross blood brain barrier and placenta, dibutyl phthalate (di-n-butyl phthalate, DBP) is expected to cause severe side effects to the central nervous system of animals and humans. A little data is available about the potential DBP neurotoxicity; therefore, this work was designed to investigate the brain tissue injury induced by DBP exposure. Forty Wister albino rats were allocated randomly into 4 groups (10 rats each). Group 1 served as control and the rats administered with physiological saline (0.9% NaCl) orally for 12 weeks. Groups 2, 3 and 4 were orally treated with DPB (100, 250 and 500 mg/kg) respectively for 12 weeks. DBP-intoxicated rats showed a disturbance in the oxidative status in cerebral cortex, striatum and brainstem, as represented by the elevated oxidants [malondialdehyde (MDA), nitric oxide (NO), 8-hydroxy-2-deoxyguanosine (8-OHdG)] and the decreased antioxidant molecules [reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR)]. DBP also enhanced a pro-inflammatory state through increasing the release of tumor necrosis factor- α (TNF-α) and interleukin-1β (IL-1β). The increase of these cytokines was associated with the increase of pro-apoptotic proteins [Bcl-2 associated X protein (Bax) and caspase-3] and the decrease of the anti-apoptotic protein, B cell lymphoma 2 (Bcl-2). In addition, the levels of norepinephrine (NE), dopamine (DA) and acetylcholine esterase (AChE) activity were decreased. This was accompanied by the alterations in the major excitatory and inhibitory amino acids neurotransmitters levels. The present findings indicated that DBP could exert its neuronal damage through oxidative stress, DNA oxidation, neuroinflammation, activation of apoptotic proteins and altering the monoaminergic, cholinergic and amino acids transmission.
Collapse
Affiliation(s)
- Rami B Kassab
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt.
| | - Maha S Lokman
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| | - Ehab A Essawy
- Chemistry Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
15
|
Rashad MM, Galal MK, EL-Behairy AM, Gouda EM, Moussa SZ. Maternal exposure to di-n-butyl phthalate induces alterations of c-Myc gene, some apoptotic and growth related genes in pups’ testes. Toxicol Ind Health 2018; 34:744-752. [DOI: 10.1177/0748233718791623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The aim of this study was to investigate the effects of maternal exposure to di-( n-butyl) phthalate (DBP) on testicular development and function in pre-pubertal and post-pubertal male rat offspring. Fourteen pregnant female rats were equally divided into two groups: a control group and a DBP-treated group. During gestation day (GD) 12 to postnatal day (PND) 14, the control group was administered 1 ml/day corn oil, and the DBP-treated group was administered DBP 500 mg/kg/day by oral gavage. On PND 25 (pre-puberty) and PND 60 (post-puberty), blood for serum and the testes were collected from five male offspring of each group. To determine the relationship between the methylation state of the c-Myc promoter and the expression of the c-Myc gene, some apoptotic-related genes, such as p53 and Bax, the anti-apoptotic Bcl-2 gene, and some growth arrest-related genes, such as BRD7 and GAS1, were examined. Compared with the control ( p < 0.05), at pre-puberty, DBP induces c-Myc hyper-methylation with significant downregulation for c-Myc, p53, Bax genes, and significant upregulation for Bcl-2, BRD7, and GAS1, while at post puberty, the methylation state and expression of c-Myc and apoptosis-related genes returned to control levels in the same sequence with the fold change in the expression of BRD7 and GAS1 genes. These findings suggest that DBP induced a transient pre-pubertal increase in c-Myc promoter methylation that may be associated with disruption of both apoptotic and growth mechanisms in the testes.
Collapse
Affiliation(s)
- Maha M Rashad
- Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mona K Galal
- Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Adel M EL-Behairy
- Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman M Gouda
- Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Said Z Moussa
- Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
16
|
Negrin AC, de Jesus MM, Christante CM, da Silva DGH, Taboga SR, Pinto-Fochi ME, Góes RM. Maternal supplementation with corn oil associated or not with di-n-butyl phthalate increases circulating estradiol levels of gerbil offspring and impairs sperm reserve. Reprod Toxicol 2018; 81:168-179. [PMID: 30103012 DOI: 10.1016/j.reprotox.2018.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
This study evaluated the consequences of gestational exposure to di-n-butyl phthalate (DBP) for testicular steroidogenesis and sperm parameters of the adult gerbil and the interference of corn oil (co), a vehicle widely used for administration of liposoluble agents, on DBP effects. Pregnant gerbils received no treatment or were treated from gestational day 8 to 23 via gavage with 0.1 mL/day of co only or containing DBP (100 mg/kg/day). Maternal co intake enhanced serum estradiol levels and testicular content of ERα, and reduced sperm reserve of adult offspring. Gestational DBP exposure caused dyslipidemia, increased serum and intratesticular estradiol levels and reduced sperm reserve and motility. Thus, maternal co supplementation alters circulating estradiol and impairs sperm quantity and quality of offspring. Gestational DBP exposure alters lipid metabolism and testicular steroidogenesis and worsens the negative effects of co on the sperm reserve and motility of gerbil. Therefore, co interferes with the reproductive response to DBP.
Collapse
Affiliation(s)
- Ana Carolina Negrin
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil.
| | - Mariana Marcielo de Jesus
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil.
| | - Caroline Maria Christante
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil.
| | - Danilo Grünig Humberto da Silva
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil.
| | - Sebastião Roberto Taboga
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil; Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil.
| | - Maria Etelvina Pinto-Fochi
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil; Faculdade de Medicina, União das Faculdades dos Grandes Lagos - UNILAGO, São José do Rio Preto, SP, Brazil.
| | - Rejane Maira Góes
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil; Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
17
|
Axelstad M, Hass U, Scholze M, Christiansen S, Kortenkamp A, Boberg J. EDC IMPACT: Reduced sperm counts in rats exposed to human relevant mixtures of endocrine disrupters. Endocr Connect 2018; 7:139-148. [PMID: 29203468 PMCID: PMC5776667 DOI: 10.1530/ec-17-0307] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/28/2017] [Indexed: 11/08/2022]
Abstract
Human semen quality is declining in many parts of the world, but the causes are ill defined. In rodents, impaired sperm production can be seen with early life exposure to certain endocrine-disrupting chemicals, but the effects of combined exposures are not properly investigated. In this study, we examined the effects of early exposure to the painkiller paracetamol and mixtures of human relevant endocrine-disrupting chemicals in rats. One mixture contained four estrogenic compounds; another contained eight anti-androgenic environmental chemicals and a third mixture contained estrogens, anti-androgens and paracetamol. All exposures were administered by oral gavage to time-mated Wistar dams rats (n = 16-20) throughout gestation and lactation. In the postnatal period, testicular histology was affected by the total mixture, and at the end of weaning, male testis weights were significantly increased by paracetamol and the high doses of the total and the anti-androgenic mixture, compared to controls. In all dose groups, epididymal sperm counts were reduced several months after end of exposure, i.e. at 10 months of age. Interestingly, the same pattern of effects was seen for paracetamol as for mixtures with diverse modes of action. Reduced sperm count was seen at a dose level reflecting human therapeutic exposure to paracetamol. Environmental chemical mixtures affected sperm count at the lowest mixture dose indicating an insufficient margin of safety for the most exposed humans. This causes concern for exposure of pregnant women to paracetamol as well as environmental endocrine disrupters.
Collapse
Affiliation(s)
- M Axelstad
- Technical University of DenmarkNational Food Institute, Kongens Lyngby, Denmark
| | - U Hass
- Technical University of DenmarkNational Food Institute, Kongens Lyngby, Denmark
| | | | - S Christiansen
- Technical University of DenmarkNational Food Institute, Kongens Lyngby, Denmark
| | | | - J Boberg
- Technical University of DenmarkNational Food Institute, Kongens Lyngby, Denmark
| |
Collapse
|
18
|
Dobrzyńska MM, Tyrkiel EJ, Gajowik A. Three generation study of reproductive and developmental toxicity following exposure of pubescent F0 male mice to di-n-butyl phthalate. Mutagenesis 2017; 32:445-454. [DOI: 10.1093/mutage/gex011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
19
|
Giribabu N, Reddy PS. Protection of male reproductive toxicity in rats exposed to di-n-butyl phthalate during embryonic development by testosterone. Biomed Pharmacother 2017; 87:355-365. [DOI: 10.1016/j.biopha.2016.12.106] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/10/2016] [Accepted: 12/26/2016] [Indexed: 02/05/2023] Open
|
20
|
Zhou C, Gao L, Flaws JA. Prenatal exposure to an environmentally relevant phthalate mixture disrupts reproduction in F1 female mice. Toxicol Appl Pharmacol 2017; 318:49-57. [PMID: 28126412 DOI: 10.1016/j.taap.2017.01.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 12/11/2022]
Abstract
Phthalates are used in a large variety of products, such as building materials, medical devices, and personal care products. Most previous studies on the toxicity of phthalates have focused on single phthalates, but it is also important to study the effects of phthalate mixtures because humans are exposed to phthalate mixtures. Thus, we tested the hypothesis that prenatal exposure to an environmentally relevant phthalate mixture adversely affects female reproduction in mice. To test this hypothesis, pregnant CD-1 dams were orally dosed with vehicle (tocopherol-stripped corn oil) or a phthalate mixture (20 and 200μg/kg/day, 200 and 500mg/kg/day) daily from gestational day 10 to birth. The mixture was based on the composition of phthalates detected in urine samples from pregnant women in Illinois. The mixture included 35% diethyl phthalate, 21% di(2-ethylhexyl) phthalate, 15% dibutyl phthalate, 15% diisononyl phthalate, 8% diisobutyl phthalate, and 5% benzylbutyl phthalate. Female mice born to the exposed dams were subjected to tissue collections and fertility tests at different ages. Our results indicate that prenatal exposure to the phthalate mixture significantly increased uterine weight and decreased anogenital distance on postnatal days 8 and 60, induced cystic ovaries at 13months, disrupted estrous cyclicity, reduced fertility-related indices, and caused some breeding complications at 3, 6, and 9months of age. Collectively, our data suggest that prenatal exposure to an environmentally relevant phthalate mixture disrupts aspects of female reproduction in mice.
Collapse
Affiliation(s)
- Changqing Zhou
- Department of Comparative Biosciences, University of Illinois, Urbana 61802, IL, USA
| | - Liying Gao
- Department of Comparative Biosciences, University of Illinois, Urbana 61802, IL, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana 61802, IL, USA.
| |
Collapse
|
21
|
Motohashi M, Wempe MF, Mutou T, Okayama Y, Kansaku N, Takahashi H, Ikegami M, Asari M, Wakui S. In utero-exposed di(n-butyl) phthalate induce dose dependent, age-related changes of morphology and testosterone-biosynthesis enzymes/associated proteins of Leydig cell mitochondria in rats. J Toxicol Sci 2016; 41:195-206. [PMID: 26961603 DOI: 10.2131/jts.41.195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Female pregnant Sprague-Dawley rats were intragastrically (ig) administered di(n-butyl) phthalate (DBP) at four doses (0, 10, 50 and 100 mg/kg) during gestation days (GD) 12-21 (n = 5 per group). The age-related morphological changes of Leydig cell mitochondrion (LC-Mt) and testosterone biosynthesis enzymes/associated genes/proteins expression levels were investigated. As compared to the control (no DBP), the 10 mg, and 50 mg DBP dose groups, the 100 mg DBP dose group at weeks 5 and 7 showed a significant amount of small LC-Mt. Thereafter, from weeks 9 to 17, the LC-Mt size and quantity in the 100 mg DBP dose group increased and became statistically similar to the other dose groups; hence, dose and time-dependent LC-Mt changes were observed. Throughout the study, the 100 mg DBP dose group had significantly lower testosterone levels. In addition, the 100 mg DBP dose group displayed lower StAR (StAR, steroidogenic acute regulatory protein) and P450scc (CYP11a1, cholesterol side-chain cleavage enzyme) levels at weeks 5 and 7, but they became statistically similar to all other dose groups at weeks 9 to 17; in contrast, the SR-B1 (Sarb1, scavenger receptor class B member 1) levels were similar for all DBP dose groups. The rats in utero 100 mg DBP /kg/day (GD 12-21) exposure results from this study indicate a dose-dependent, age-related morphological change in LC-Mt which are linked to reductions in testosterone biosynthesis genes / proteins expression, specifically StAR and P450scc.
Collapse
Affiliation(s)
- Masaya Motohashi
- Department of Toxicology, Azabu University School of Veterinary Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Male rats exposed in utero to di(n-butyl) phthalate: Age-related changes in Leydig cell smooth endoplasmic reticulum and testicular testosterone-biosynthesis enzymes/proteins. Reprod Toxicol 2015; 59:139-46. [PMID: 26706031 DOI: 10.1016/j.reprotox.2015.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/15/2015] [Accepted: 12/09/2015] [Indexed: 12/31/2022]
Abstract
This study investigated the age-related (i.e., weeks 5, 7, 9, 14 and 17) morphological changes of Leydig cell smooth endoplasmic reticulum (LCs-ER) and testicular testosterone biosynthesis/protein expression in rats in utero exposed to di(n-butyl) phthalate (DBP) (intragastrically; 100mg/kg/day) on days 12-21 post-conception. Ultrastructural observations revealed the LCs-ER of the DBP group were non-dilated until peri-puberty, and thereafter decreased and disappeared. RT-PCR and Western blotting analyses revealed that StAR and P450scc levels in the DBP group were significantly lower at 5 and 7 weeks compared with the vehicle group but became similar during weeks 9-17. Although 3β-HSD, P450c17, and 17β-HSD levels of mRNA and protein in the DBP group were similar to the vehicle control group at 5 and 7 weeks of age, they were significantly lower during weeks 9-17. In utero DBP exposure results in age-related LCs-ER changes corresponding to reduction of testicular testosterone biosynthesis enzymes/associated proteins.
Collapse
|
23
|
Reduced Fgf10/Fgfr2 and androgen receptor (AR) in anorectal malformations male rats induced by di- n -butyl phthalate (DBP): A study on the local and systemic toxicology of DBP. Toxicology 2015; 338:77-85. [DOI: 10.1016/j.tox.2015.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 12/26/2022]
|
24
|
Mathieu-Denoncourt J, Wallace SJ, de Solla SR, Langlois VS. Plasticizer endocrine disruption: Highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species. Gen Comp Endocrinol 2015; 219:74-88. [PMID: 25448254 DOI: 10.1016/j.ygcen.2014.11.003] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
Due to their versatility, robustness, and low production costs, plastics are used in a wide variety of applications. Plasticizers are mixed with polymers to increase flexibility of plastics. However, plasticizers are not covalently bound to plastics, and thus leach from products into the environment. Several studies have reported that two common plasticizers, bisphenol A (BPA) and phthalates, induce adverse health effects in vertebrates; however few studies have addressed their toxicity to non-mammalian species. The aim of this review is to compare the effects of plasticizers in animals, with a focus on aquatic species. In summary, we identified three main chains of events that occur in animals exposed to BPA and phthalates. Firstly, plasticizers affect development by altering both the thyroid hormone and growth hormone axes. Secondly, these chemicals interfere with reproduction by decreasing cholesterol transport through the mitochondrial membrane, leading to reduced steroidogenesis. Lastly, exposure to plasticizers leads to the activation of peroxisome proliferator-activated receptors, the increase of fatty acid oxidation, and the reduction in the ability to cope with the augmented oxidative stress leading to reproductive organ malformations, reproductive defects, and decreased fertility.
Collapse
Affiliation(s)
- Justine Mathieu-Denoncourt
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Sarah J Wallace
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Shane R de Solla
- Wildlife and Landscape Science Directorate, Environment Canada, Burlington, ON L7R 4A6, Canada
| | - Valerie S Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada.
| |
Collapse
|
25
|
Mathieu-Denoncourt J, de Solla SR, Langlois VS. Chronic exposures to monomethyl phthalate in Western clawed frogs. Gen Comp Endocrinol 2015; 219:53-63. [PMID: 25662408 DOI: 10.1016/j.ygcen.2015.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/11/2014] [Accepted: 01/23/2015] [Indexed: 01/24/2023]
Abstract
Polymer flexibility and elasticity is enhanced by plasticizers. However, plasticizers are often not covalently bound to plastics and thus can leach from products into the environment. Much research effort has focused on their effects in mammalian species, but data on aquatic species are scarce. In this study, Western clawed frog (Silurana tropicalis) embryos were exposed to 1.3, 12.3, and 128.7mg/L monomethyl phthalate (MMP) until the juvenile stage (11weeks) and to 1.3mg/L MMP until the adult stage (51weeks). MMP decreased survival, hastened metamorphosis, and biased the sex ratio toward males (2M:1F) at the juvenile stage without altering the expression of a subset of thyroid hormone-, sex steroid-, cellular stress- or transcription regulation-related genes in the juvenile frog livers. At the adult stage, exposure to MMP did not have significant adverse health effects, except that females had larger interocular distance and the expression of the heat shock protein 70 was decreased by 60% in the adult liver. In conclusion, this study shows that MMP is unlikely to threaten amphibian populations as only concentrations four orders of magnitude higher than the reported environmental concentrations altered the animal physiology. This is the first complete investigation of the effects of phthalates in a frog species, encompassing the entire life cycle of the organisms.
Collapse
Affiliation(s)
- Justine Mathieu-Denoncourt
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Shane R de Solla
- Wildlife and Landscape Science Directorate, Environment Canada, Burlington, ON L7S 1A1, Canada
| | - Valerie S Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada.
| |
Collapse
|
26
|
Hu Y, Dong C, Chen M, Chen Y, Gu A, Xia Y, Sun H, Li Z, Wang Y. Effects of monobutyl phthalate on steroidogenesis through steroidogenic acute regulatory protein regulated by transcription factors in mouse Leydig tumor cells. J Endocrinol Invest 2015; 38:875-884. [PMID: 25903692 DOI: 10.1007/s40618-015-0279-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/17/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Dibutyl phthalate (DBP) is one of the most widely used phthalate esters, and it is ubiquitous in the environment. DBP and its major metabolite, monobutyl phthalate (MBP), change steroid biosynthesis and impair male reproductive function. However, the regulatory mechanism underlying the steroid biosynthesis disruption by MBP is still unclear. METHODS We analyzed the progesterone production, steroidogenic acute regulatory protein (StAR) mRNA, protein expression, and DNA-binding affinity of transcription factors (SF-1 and GATA-4). RESULTS Our results reveal that MBP inhibited progesterone production. At the same time, StAR mRNA and protein were decreased after MBP exposure. Furthermore, electrophoretic mobility shift assay showed that DNA-binding affinity of transcription factors (SF-1 and GATA-4) was decreased in a dose-dependent manner after MBP treatments. Western blot tests next confirmed that protein of SF-1 was decreased, but GATA-4 protein was unchanged. However, phosphorylated GATA-4 protein was decreased with 800 μM of MBP. CONCLUSIONS This study reveals an important and novel mechanism whereby SF-1 and GATA-4 may regulate StAR during MBP-induced steroidogenesis disruption.
Collapse
Affiliation(s)
- Y Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ahmad R, Gautam AK, Verma Y, Sedha S, Kumar S. Effects of in utero di-butyl phthalate and butyl benzyl phthalate exposure on offspring development and male reproduction of rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:3156-3165. [PMID: 24213843 DOI: 10.1007/s11356-013-2281-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/24/2013] [Indexed: 06/02/2023]
Abstract
The study was conducted to assess the effects of in utero di-butyl phthalate (DBP) and butyl benzyl phthalate (BBP) exposure during late gestation on offspring's development and reproductive system of male rats. Pregnant rats were treated orally with DBP (2, 10, 50 mg/kg), BBP (4, 20, 100 mg/kg), and diethylstilbestrol (DES) 6 μg/kg (positive control) from GD14 to parturition. A significant reduction in dams' body weight on GD21 in DBP-, BBP-, and DES-treated groups was observed. The gestation length was considerably elevated in the treated groups. Decline in male pups' body weight was significant at PND75 in DBP- (50 mg/kg), BBP- (20,100 mg/kg), and DES-treated groups. The weight of most of the reproductive organs and sperm quality parameters was impaired significantly in DBP- (50 mg/kg) and BBP- (100 mg/kg) treated groups. Further, a non-significant decline in testicular spermatid count and daily sperm production was also monitored in treated groups. A significant reduction in serum testosterone level in BBP (100 mg/kg), whereas the testicular activity of 17β-HSD was declined non-significantly in the treated groups with respect to control. The data suggests that DBP and BBP exposure during late gestation period might have adverse effects on offspring's development, spermatogenesis, and steroidogenesis in adult rats.
Collapse
Affiliation(s)
- Rahish Ahmad
- Division of Reproductive and Cytotoxicology, National Institute of Occupational Health (ICMR), Meghaninagar, 380016, Ahmedabad, India
| | | | | | | | | |
Collapse
|
28
|
Ramezani Tehrani F, Noroozzadeh M, Zahediasl S, Ghasemi A, Piryaei A, Azizi F. Prenatal testosterone exposure worsen the reproductive performance of male rat at adulthood. PLoS One 2013; 8:e71705. [PMID: 23967236 PMCID: PMC3744450 DOI: 10.1371/journal.pone.0071705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/02/2013] [Indexed: 11/23/2022] Open
Abstract
The reproductive system is extremely susceptible to environmental insults, for example exogenous steroids during gestational development and differentiation. Experimental induction of androgen excess during prenatal life in female animal models reprograms their reproductive physiology, however the fetal programming of the male reproductive system by androgen excess has not been well studied. We aimed to determine the effect of prenatal exposure of two different doses of testosterone on different gestational days, on the male reproductive system using a rat model. Sixteen pregnant rats were randomly divided into two experimental groups and two control groups. Experimental group І were subcutaneously injected with 3 mg free testosterone on gestational days 16-19 and its controls received solvent for that time; experimental group П were subcutaneously injected with 20 mg free testosterone on day 20 of gestational period and its controls received solvent at the same time. The reproductive system morphology and function of 32 male offspring of these study groups were compared at days 6-30-60 of age and after puberty. The anogenital distance of the male offspring of both experimental groups had no significant differences on the different days of measurement, compared with controls. In the offspring of experimental group І, the testes weight, number of Sertoli, Spermatocyte and Spermatid cells, sperm count and motility and the serum concentration of testosterone after puberty were significantly decreased; except for reduction of sperm motility (p< 0.01), the other effects were not observed in the offspring of experimental group ІІ. In summary, our data show that prenatal exposure of male rat fetuses to excess testosterone disrupted reproductive function, an effect highly dependent on the time, duration and level of exposure. It seems that the reproductive system in individuals exposed to high levels of androgens during fetal life should be evaluated at puberty and likely to be treated.
Collapse
Affiliation(s)
- Fahimeh Ramezani Tehrani
- Reproduction Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Noroozzadeh
- Reproduction Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saleh Zahediasl
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- * E-mail:
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Craig ZR, Hannon PR, Wang W, Ziv-Gal A, Flaws JA. Di-n-butyl phthalate disrupts the expression of genes involved in cell cycle and apoptotic pathways in mouse ovarian antral follicles. Biol Reprod 2013; 88:23. [PMID: 23242528 DOI: 10.1095/biolreprod.112.105122] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Di-n-butyl phthalate (DBP) is present in many consumer products, such as infant, beauty, and medical products. Several studies have shown that DBP causes reproductive toxicity in rodents, but no studies have evaluated its effects on ovarian follicles. Therefore, we used a follicle culture system to evaluate the effects of DBP on antral follicle growth, cell cycle and apoptosis gene expression, cell cycle staging, atresia, and 17β-estradiol (E(2)) production. Antral follicles were isolated from adult CD-1 mice and exposed to DBP at 1, 10, 100, and 1000 μg/ml for 24 or 168 h. Follicles treated with vehicle or DBP at 1-100 μg/ml grew over time, but DBP at 1000 μg/ml significantly suppressed follicle growth. Regardless of effect on follicle growth, DBP-treated follicles had decreased mRNA for cyclins D2, E1, A2, and B1 and increased p21. Levels of the proapoptotic genes Bax, Bad, and Bok were not altered by DBP treatment, but DBP 1000 μg/ml increased levels of Bid and decreased levels of the antiapoptotic gene Bcl2. DBP-treated follicles contained significantly more cells in G(1) phase, significantly less cells in S, and exhibited a trend for fewer cells in G(2). Although DBP did not affect E(2) production and atresia at 24 h, follicles treated with DBP had reduced levels of E(2) at 96 h and underwent atresia at 168 h. These data suggest that DBP targets antral follicles and alters the expression of cell cycle and apoptosis factors, causes cell cycle arrest, decreases E(2), and triggers atresia, depending on dose.
Collapse
Affiliation(s)
- Zelieann R Craig
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA.
| | | | | | | | | |
Collapse
|