1
|
Li Y, Baumert BO, Stratakis N, Goodrich JA, Wu H, Liu SH, Wang H, Beglarian E, Bartell SM, Eckel SP, Walker D, Valvi D, La Merrill MA, Inge TH, Jenkins T, Ryder JR, Sisley S, Kohli R, Xanthakos SA, Vafeiadi M, Margetaki A, Roumeliotaki T, Aung M, McConnell R, Baccarelli A, Conti D, Chatzi L. Exposure to per- and polyfluoroalkyl substances and alterations in plasma microRNA profiles in children. ENVIRONMENTAL RESEARCH 2024; 259:119496. [PMID: 38936497 PMCID: PMC11847561 DOI: 10.1016/j.envres.2024.119496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals that persist in the environment and can accumulate in humans, leading to adverse health effects. MicroRNAs (miRNAs) are emerging biomarkers that can advance the understanding of the mechanisms of PFAS effects on human health. However, little is known about the associations between PFAS exposures and miRNA alterations in humans. OBJECTIVE To investigate associations between PFAS concentrations and miRNA levels in children. METHODS Data from two distinct cohorts were utilized: 176 participants (average age 17.1 years; 75.6% female) from the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) cohort in the United States, and 64 participants (average age 6.5 years, 39.1% female) from the Rhea study, a mother-child cohort in Greece. PFAS concentrations and miRNA levels were assessed in plasma samples from both studies. Associations between individual PFAS and plasma miRNA levels were examined after adjusting for covariates. Additionally, the cumulative effects of PFAS mixtures were evaluated using an exposure burden score. Ingenuity Pathways Analysis was employed to identify potential disease functions of PFAS-associated miRNAs. RESULTS Plasma PFAS concentrations were associated with alterations in 475 miRNAs in the Teen-LABs study and 5 miRNAs in the Rhea study (FDR p < 0.1). Specifically, plasma PFAS concentrations were consistently associated with decreased levels of miR-148b-3p and miR-29a-3p in both cohorts. Pathway analysis indicated that PFAS-related miRNAs were linked to numerous chronic disease pathways, including cardiovascular diseases, inflammatory conditions, and carcinogenesis. CONCLUSION Through miRNA screenings in two independent cohorts, this study identified both known and novel miRNAs associated with PFAS exposure in children. Pathway analysis revealed the involvement of these miRNAs in several cancer and inflammation-related pathways. Further studies are warranted to enhance our understanding of the relationships between PFAS exposure and disease risks, with miRNA emerging as potential biomarkers and/or mediators in these complex pathways.
Collapse
Affiliation(s)
- Yijie Li
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brittney O Baumert
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Shelley H Liu
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hongxu Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Emily Beglarian
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Scott M Bartell
- Department of Environmental and Occupational Health and Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA
| | - Sandrah Proctor Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Douglas Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, 1518 Clifton Road, NE, Atlanta, GA, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Thomas H Inge
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Todd Jenkins
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Justin R Ryder
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Stephanie Sisley
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Rohit Kohli
- Division of Gastroenterology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Stavra A Xanthakos
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Aikaterini Margetaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Theano Roumeliotaki
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Social Medicine, School of Medicine, University of Crete, Greece
| | - Max Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrea Baccarelli
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - David Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Khan EA, Greve M, Russell I, Ciesielski TM, Lundregan S, Jensen H, Rønning B, Bones AM, Asimakopoulos AG, Waugh CA, Jaspers VLB. Lead exposure is related to higher infection rate with the gapeworm in Norwegian house sparrows (Passer domesticus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123443. [PMID: 38278400 DOI: 10.1016/j.envpol.2024.123443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Anthropogenic pollution is identified as an important threat to bird and other wildlife populations. Many metals and toxic elements, along with poly- and perfluoroalkyl substances (PFASs) are known to induce immunomodulation and have previously been linked to increased pathogen prevalence and infectious disease severity. In this study, the house sparrow (Passer domesticus) was investigated at the coast of Helgeland in northern Norway. This population is commonly infected with the parasitic nematode "gapeworm" (Syngamus trachea), with a prevalence of 40-60 % during summer months. Gapeworm induces severe respiratory disease in birds and has been previously demonstrated to decrease survival and reproductive success in wild house sparrows. The aim of this study was to investigate whether a higher exposure to pollution with PFASs, metals and other elements influences gapeworm infection in wild house sparrows. We conducted PFASs and elemental analysis on whole blood from 52 house sparrows from Helgeland, including analyses of highly toxic metals such as lead (Pb), mercury (Hg) and arsenic (As). In addition, we studied gapeworm infection load by counting the parasite eggs in faeces from each individual. We also studied the expression of microRNA 155 (miR155) as a key regulator in the immune system. Elevated blood concentrations of Pb were found to be associated with an increased prevalence of gapeworm infection in the house sparrow. The expression of miR155 in the plasma of the house sparrow was only weakly associated with Pb. In contrast, we found relatively low PFASs concentrations in the house sparrow blood (∑ PFASs 0.00048-354 μg/L) and PFASs were not associated to miR155 nor infection rate. The current study highlights the potential threat posed by Pb as an immunotoxic pollutant in small songbirds.
Collapse
Affiliation(s)
- Essa A Khan
- Department of Biology, Norwegian University of Science and Technology, Norway.
| | - Melissa Greve
- Department of Biology, Norwegian University of Science and Technology, Norway
| | - Isabelle Russell
- Department of Biology, Norwegian University of Science and Technology, Norway
| | - Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Norway
| | - Sarah Lundregan
- Department of Biology, Norwegian University of Science and Technology, Norway
| | - Henrik Jensen
- Department of Biology, Norwegian University of Science and Technology, Norway
| | - Bernt Rønning
- Department of Teacher Education, Norwegian University of Science and Technology, Norway
| | - Atle M Bones
- Department of Biology, Norwegian University of Science and Technology, Norway
| | | | | | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology, Norway
| |
Collapse
|
3
|
Li Y, Baumert BO, Costello E, Chen JC, Rock S, Stratakis N, Goodrich JA, Zhao Y, Eckel SP, Walker DI, Valvi D, La Merrill MA, McConnell R, Cortessis VK, Aung M, Wu H, Baccarelli A, Conti D, Chatzi L. Per- and polyfluoroalkyl substances, polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers and dysregulation of MicroRNA expression in humans and animals-A systematic review. ENVIRONMENTAL RESEARCH 2024; 244:117832. [PMID: 38056610 PMCID: PMC10932823 DOI: 10.1016/j.envres.2023.117832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Persistent organic pollutants (POPs) are chemicals characterized by their environmental persistence. Evidence suggests that exposure to POPs, which is ubiquitous, is associated with microRNA (miRNA) dysregulation. miRNA are key regulators in many physiological processes. It is thus of public health concern to understand the relationships between POPs and miRNA as related to health outcomes. OBJECTIVES This systematic review evaluated the relationship between widely recognized, intentionally manufactured, POPs, including per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (dichlorodiphenyltrichloroethane [DDT], dichlorodiphenyldichloroethylene [DDE], hexachlorobenzene [HCB]), with miRNA expression in both human and animal studies. METHODS We used PubMed and Embase to systematically search the literature up to September 29th, 2023. Search results for human and animal studies were included if they incorporated at least one POP of interest in relation to at least one miRNA. Data were synthesized to determine the direction and significance of associations between POPs and miRNA. We utilized ingenuity pathway analysis to review disease pathways for miRNA that were associated with POPs. RESULTS Our search identified 38 eligible studies: 9 in humans and 29 in model organisms. PFAS were associated with decreased expression of miR-19, miR-193b, and miR-92b, as well as increased expression of miR-128, miR-199a-3p, and miR-26b across species. PCBs were associated with increased expression of miR-15a, miR-1537, miR-21, miR-22-3p, miR-223, miR-30b, and miR-34a, as well as decreased expression of miR-130a and let-7b in both humans and animals. Pathway analysis for POP-associated miRNA identified pathways related to carcinogenesis. DISCUSSION This is the first systematic review of the association of POPs with miRNA in humans and model organisms. Large-scale prospective human studies are warranted to examine the role of miRNA as mediators between POPs and health outcomes.
Collapse
Affiliation(s)
- Yijie Li
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Brittney O Baumert
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth Costello
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiawen Carmen Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah Rock
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yinqi Zhao
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Victoria K Cortessis
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Max Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - David Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Atteia HH. MicroRNAs in Anticancer Drugs Hepatotoxicity: From Pathogenic Mechanism and Early Diagnosis to Therapeutic Targeting by Natural Products. Curr Pharm Biotechnol 2024; 25:1791-1806. [PMID: 38178678 DOI: 10.2174/0113892010282155231222071903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
Patients receiving cancer therapies experience severe adverse effects, including hepatotoxicity, even at therapeutic doses. Consequently, monitoring patients on cancer therapy for hepatic functioning is necessary to avoid permanent liver damage. Several pathways of anticancer drug-induced hepatotoxicity involve microRNAs (miRNAs) via targeting mRNAs. These short and non-coding RNAs undergo rapid modulation in non-targeted organs due to cancer therapy insults. Recently, there has been an interest for miRNAs as useful and promising biomarkers for monitoring toxicity since they have conserved sequences across species and are cellular-specific, stable, released during injury, and simple to analyze. Herein, we tried to review the literature handling miRNAs as mediators and biomarkers of anticancer drug-induced hepatotoxicity. Natural products and phytochemicals are suggested as safe and effective candidates in treating cancer. There is also an attempt to combine anticancer drugs with natural compounds to enhance their efficiencies and reduce systemic toxicities. We also discussed natural products protecting against chemotherapy hepatotoxicity via modulating miRNAs, given that miRNAs have pathogenic and diagnostic roles in chemotherapy-induced hepatotoxicity and that many natural products can potentially regulate their expression. Future studies should integrate these findings into clinical trials by formulating suitable therapeutic dosages of natural products to target miRNAs involved in anticancer drug hepatotoxicity.
Collapse
Affiliation(s)
- Hebatallah Husseini Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Sharkia, 44519, Egypt
| |
Collapse
|
5
|
Durham J, Tessmann JW, Deng P, Hennig B, Zaytseva YY. The role of perfluorooctane sulfonic acid (PFOS) exposure in inflammation of intestinal tissues and intestinal carcinogenesis. FRONTIERS IN TOXICOLOGY 2023; 5:1244457. [PMID: 37662676 PMCID: PMC10469509 DOI: 10.3389/ftox.2023.1244457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
PFAS (per- and polyfluoroalkyl substances) are organofluorine substances that are used commercially in products like non-stick cookware, food packaging, personal care products, fire-fighting foam, etc. These chemicals have several different subtypes made of varying numbers of carbon and fluorine atoms. PFAS substances that have longer carbon chains, such as PFOS (perfluorooctane sulfonic acid), can potentially pose a significant public health risk due to their ability to bioaccumulate and persist for long periods of time in the body and the environment. The National Academies Report suggests there is some evidence of PFOS exposure and gastrointestinal (GI) inflammation contributing to ulcerative colitis. Inflammatory bowel diseases such as ulcerative colitis are precursors to colorectal cancer. However, evidence about the association between PFOS and colorectal cancer is limited and has shown contradictory findings. This review provides an overview of population and preclinical studies on PFOS exposure and GI inflammation, metabolism, immune responses, and carcinogenesis. It also highlights some mitigation approaches to reduce the harmful effects of PFOS on GI tract and discusses the dietary strategies, such as an increase in soluble fiber intake, to reduce PFOS-induced alterations in cellular lipid metabolism. More importantly, this review demonstrates the urgent need to better understand the relationship between PFOS and GI pathology and carcinogenesis, which will enable development of better approaches for interventions in populations exposed to high levels of PFAS, and in particular to PFOS.
Collapse
Affiliation(s)
- Jerika Durham
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Josiane Weber Tessmann
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Pan Deng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Bernhard Hennig
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Yekaterina Y. Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
6
|
Du Y, Xu T, Luo D, Wang Y, Yin H, Liu C, Li S. Perfluorooctane sulfonate-induced apoptosis in kidney cells by triggering the NOX4/ROS/JNK axis and antagonism of cannabidiol. ENVIRONMENTAL TOXICOLOGY 2023; 38:1651-1664. [PMID: 36988283 DOI: 10.1002/tox.23794] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is one of the persistent organic pollutants (POPs), which can cause severe nephrotoxicity in mammals. Cannabinol (CBD), a nonpsychoactive cannabinoid obtained from the cannabis plant, has attracted attention in recent years for its excellent antioxidant properties. NADPH oxidase 4 (NOX4) has an important effect in supporting normal renal physiological function. The potential mechanisms of PFOS nephrotoxicity and whether CBD can prevent renal damage caused by PFOS remain unclear. This work aimed to study the mechanisms of PFOS-induced kidney damage and the protective role of CBD against PFOS-induced kidney damage. We demonstrated that PFOS led to renal insufficiency and structural damage in mice, induced overexpression of NOX4 and the onset of oxidative stress, and activated apoptosis of the mitochondrial pathway via the JNK signaling pathway. However, treatment with CBD reversed these changes. For further investigation of the potential mechanism of PFOS-induced renal cell apoptosis, the expression of NOX4 was inhibited in vitro experiments using Apocynin, an effective NOX4 inhibitor. The outcomes showed that PFOS-induced ROS production and JNK signaling pathway activation and apoptosis in human embryonic kidney (HEK293) cells were significantly reduced after inhibition of NOX4. This suggests that PFOS-induced NOX4 overexpression serves as an upstream event for JNK pathway activation. In conclusion, the findings suggest that PFOS induces apoptosis in renal cells via the NOX4/ROS/JNK pathway. Meanwhile, CBD alleviated PFOS-induced renal apoptosis through the inhibition of NOX4/ROS/JNK axis activation.
Collapse
Affiliation(s)
- Yongzhen Du
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Dongliu Luo
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Yixuan Wang
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Hang Yin
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Chengguo Liu
- Instrumental Analysis Center, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| |
Collapse
|
7
|
Tian Y, Han W, Fu L, Lv K, Zhou X. Silencing of IGHG1 reverses the resistance of pancreatic cancer to multidrug chemotherapy by modulating autophagy. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37186415 DOI: 10.1002/tox.23810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/20/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Pancreatic cancer is one of the most aggressive tumors with a high-mortality rate. First-line drugs include 5-fluorouracil (5-FU), gemcitabine (GEM), and oxaliplatin (OXA). Resistance to 5-FU, GEM, and OXA is a major challenge. Immunoglobulin heavy chain F1 (IGHG1) participates in the regulation of cancer progression. It is still unclear how IGHG1 affects 5-FU, GEM, and OXA in pancreatic cancer. METHODS The expression status of IGHG1 in pancreatic cancer was analyzed through bioinformatics tools. IGHG1 expression in pancreatic cancer tissues and cells was determined via RT-qPCR. Cell counting kit 8 assays, and flow cytometry analysis were utilized to detect the impact of IGHG1,5-FU, GEM, and OXA on cell proliferation and apoptosis. Western blotting was utilized to detect changes in the levels of the autophagy-associated proteins LC3, Beclin-1, p62, and ATG5. Immunofluorescence assays were employed to determine LC3 expression in cells. Xenograft experiments were conducted on nude mice to study tumor growth. RESULTS IGHG1 was overexpressed in pancreatic cancer cells and tissues. IGHG1 expression was downregulated by 5-FU, GEM, or OXA treatment in cells. Treatment with 5-FU, GEM, or OXA repressed viability and promoted apoptosis and autophagy in pancreatic cancer cells. IGHG1 silencing exhibited the same results. Furthermore, IGHG1 depletion notably strengthened the effects of 5-FU, GEM, and OXA on pancreatic cancer cell viability, apoptosis, and autophagy. The combination of IGHG1 depletion with 5-FU, GEM, or OXA significantly reduced tumor growth in vivo. CONCLUSION Silencing of IGHG1 could enhance 5-FU, GEM, or OXA function in pancreatic cancer and reverse resistance by regulating apoptosis and autophagy.
Collapse
Affiliation(s)
- Yuan Tian
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wenwen Han
- Department of Emergency, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Long Fu
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kaiji Lv
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xinhua Zhou
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
8
|
Petroff RL, Cavalcante RG, Langen ES, Dolinoy DC, Padmanabhan V, Goodrich JM. Mediation effects of DNA methylation and hydroxymethylation on birth outcomes after prenatal per- and polyfluoroalkyl substances (PFAS) exposure in the Michigan mother-infant Pairs cohort. Clin Epigenetics 2023; 15:49. [PMID: 36964604 PMCID: PMC10037903 DOI: 10.1186/s13148-023-01461-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/05/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are chemicals that are resistant to degradation and ubiquitous in our environments. PFAS may impact the developing epigenome, but current human evidence is limited to assessments of total DNA methylation. We assessed associations between first trimester PFAS exposures with newborn DNA methylation, including 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC). DNA methylation mediation of associations between PFAS and birth outcomes were explored in the Michigan Mother Infant Pairs cohort. Nine PFAS were measured in maternal first trimester blood. Seven were highly detected and included for analysis: PFHxS, PFOA, PFOS, PFNA, PFDA, PFUnDA, and MeFOSAA. Bisulfite-converted cord blood DNA (n = 141) and oxidative-bisulfite-converted cord blood (n = 70) were assayed on Illumina MethylationEPIC BeadChips to measure total DNA methylation (5-mC + 5-hmC) and 5-mC/5-hmC. Correcting for multiple comparisons, beta regressions were used to assess associations between levels of PFAS and total methylation, 5-mC, or 5-hmC. Nonlinear mediation analyses were used to assess the epigenetic meditation effect between PFAS and birth outcomes. RESULTS PFAS was significantly associated with total methylation (q < 0.05: PFHxS-12 sites; PFOS-19 sites; PFOA-2 sites; PFNA-3 sites; PFDA-4 sites). In 72 female infants and 69 male infants, there were sex-specific associations between five PFAS and DNA methylation. 5-mC and 5-hmC were each significantly associated with thousands of sites for PFHxS, PFOS, PFNA, PFDA, PFUnDA, and MeFOSAA (q < 0.05). Clusters of 5-mC and 5-hmC sites were significant mediators between PFNA and PFUnDA and decreased gestational age (q < 0.05). CONCLUSIONS This study demonstrates the mediation role of specific types of DNA methylation on the relationship between PFAS exposure and birth outcomes. These results suggest that 5-mC and 5-hmC may be more sensitive to the developmental impacts of PFAS than total DNA methylation.
Collapse
Affiliation(s)
- Rebekah L Petroff
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Raymond G Cavalcante
- Epigenomics Core, Biomedical Research Core Facilities, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Elizabeth S Langen
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
- Epigenomics Core, Biomedical Research Core Facilities, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pediatrics Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
9
|
Liang Y, Lu J, Yi W, Cai M, Shi W, Li B, Zhang Z, Jiang F. 1α,25-dihydroxyvitamin D 3 supplementation alleviates perfluorooctanesulfonate acid-induced reproductive injury in male mice: Modulation of Nrf2 mediated oxidative stress response. ENVIRONMENTAL TOXICOLOGY 2023; 38:322-331. [PMID: 36321694 DOI: 10.1002/tox.23685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Perfluorooctanesulfonate acid (PFOS) is a typical persistent organic pollutant that widely exists in the environment. To clarify the toxic effects and mechanisms of PFOS and to find effective intervention strategies have been attracted global attention. Here, we investigated the effects of PFOS on the male reproductive system and explored the potential protective role of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2 D3 ). Our results showed that 1α,25(OH)2 D3 intervention significantly improved PFOS-induced sperm quality decline and testicular damage. Moreover, 1α,25(OH)2 D3 aggrandized the total antioxidant capacity. Furthermore, after PFOS exposure, the transcription factor nuclear factor erythroid-related factor 2 (Nrf2) was adaptively increased together with its target genes, such as HO-1, NQO1, and SOD2. Meanwhile, 1α,25(OH)2 D3 ameliorated PFOS-induced augment of Nrf2 and target genes. These findings indicated that 1α,25(OH)2 D3 might attenuate PFOS-induced reproductive injury in male mice via Nrf2-mediated oxidative stress.
Collapse
Affiliation(s)
- Yongchao Liang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jingjing Lu
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Wenjie Yi
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Ming Cai
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Weiqiang Shi
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, Medical College of Soochow University, Suzhou, China
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Fei Jiang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Del Fiore P, Cavallin F, Mazza M, Benna C, Monico AD, Tadiotto G, Russo I, Ferrazzi B, Tropea S, Buja A, Cozzolino C, Cappellesso R, Nicolè L, Piccin L, Pigozzo J, Chiarion-Sileni V, Vecchiato A, Menin C, Bassetto F, Tos APD, Alaibac M, Mocellin S. Per- and polyfluoroalkyl substances (PFAS) exposure in melanoma patients: a retrospective study on prognosis and histological features. Environ Health 2022; 21:126. [PMID: 36482443 PMCID: PMC9743017 DOI: 10.1186/s12940-022-00944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are endocrine disrupting chemicals which could be associated with cancer development, such as kidney and testicular cancers, pancreatic and hepatocellular carcinoma and thyroid tumor. Available scientific literature offers no information on the role of PFAS in melanoma development/progression. Since 1965, a massive environmental contamination by PFAS has occurred in northeastern Italy. This study compared histopathology and prognosis between melanoma patients exposed (n = 194) and unexposed (n = 488) to PFAS. All patients were diagnosed and/or treated for melanoma at the Veneto Oncological Institute and the University Hospital of Padua (Italy) in 1998-2014. Patients were categorized in exposed or unexposed groups according to their home address and the geographical classification of municipalities affected by PFAS contamination as provided by Veneto Government in 2018. Presence of mitoses was found in 70.5% of exposed patients and 58.7% of unexposed patients (p = 0.005). Median follow-up was 90 months (IQR 59-136). 5-year overall survival was 83.7% in exposed patients and 88.0% in unexposed patients (p = 0.20); 5-year disease-specific survival was 88.0% in exposed patients and 90.9% in unexposed patients (p = 0.50); 5-year disease-free survival was 83.8% in exposed patients and 87.3% in unexposed patients (p = 0.20). Adjusting for imbalanced characteristics at baseline (presence of mitoses), survival was not statistically different between exposed and unexposed patients (overall survival: HR 1.10, 95% CI 0.77 to 1.58, p = 0.57; disease-specific survival: HR 0.99, 95% CI 0.62 to 1.59, p = 0.99; disease-free survival: HR 1.10, 95% CI 0.74 to 1.64, p = 0.62). Although the magnitude of PFAS exposure was not quantifiable, our findings suggested that exposure to PFAS was associated with higher level of mitosis in melanoma patients, but this did not translate into a survival difference. Further studies are required to investigate this relationship and all effects of PFAS on prognosis.
Collapse
Affiliation(s)
- Paolo Del Fiore
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | | | - Marcodomenico Mazza
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Clara Benna
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35128 Padua, Italy
| | - Alessandro Dal Monico
- Division of Dermatology, Department of Medicine (DIMED), University of Padova, 35128 Padua, Italy
| | - Giulia Tadiotto
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Irene Russo
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
- Division of Dermatology, Department of Medicine (DIMED), University of Padova, 35128 Padua, Italy
| | - Beatrice Ferrazzi
- Postgraduate School of Occupational Medicine, University of Verona, 37129 Verona, Italy
| | - Saveria Tropea
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Alessandra Buja
- Department of Cardiological, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padua, Italy
| | - Claudia Cozzolino
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Rocco Cappellesso
- Pathological Anatomy Unit, University Hospital of Padova, 35128 Padua, Italy
| | - Lorenzo Nicolè
- Department of Medicine (DIMED), Unit of Pathology & Cytopathology, University of Padova, 35128 Padua, Italy
- Unit of Surgical Pathology & Cytopathology, Ospedale Dell’Angelo, 30174 Mestre, Italy
| | - Luisa Piccin
- Melanoma Unit, Oncology 2, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Jacopo Pigozzo
- Melanoma Unit, Oncology 2, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Vanna Chiarion-Sileni
- Melanoma Unit, Oncology 2, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Antonella Vecchiato
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Chiara Menin
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Franco Bassetto
- Clinic of Plastic Surgery, Department of Neuroscience, Padua University Hospital, University of Padova, Padua, Italy
| | - Angelo Paolo Dei Tos
- Pathological Anatomy Unit, University Hospital of Padova, 35128 Padua, Italy
- Department of Medicine- DIMED, University of Padova, 35128 Padua, Italy
| | - Mauro Alaibac
- Division of Dermatology, Department of Medicine (DIMED), University of Padova, 35128 Padua, Italy
| | - Simone Mocellin
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35128 Padua, Italy
| |
Collapse
|
11
|
Bouzari B, Mohammadi S, Bokov DO, Krasnyuk II, Hosseini-Fard SR, Hajibaba M, Mirzaei R, Karampoor S. Angioregulatory role of miRNAs and exosomal miRNAs in glioblastoma pathogenesis. Biomed Pharmacother 2022; 148:112760. [PMID: 35228062 DOI: 10.1016/j.biopha.2022.112760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma (GB) is a highly aggressive cancer of the central nervous system, occurring in the brain or spinal cord. Many factors such as angiogenesis are associated with GB development. Angiogenesis is a procedure by which the pre-existing blood vessels create new vessels that play an essential role in health and disease, including tumors. Also, angiogenesis is one of the significant factors thought to be responsible for treatment resistance in many tumors, including GB. Hence, an improved understanding of the molecular processes underlying GB angiogenesis will pave the way for developing potential new treatments. Recently, it has been found that microRNAs (miRNAs) and exosomal miRNAs have a crucial role in inducing or inhibiting the angiogenesis process in GB development. A better knowledge of the miRNA's regulation pathway in the angiogenesis process in cancer offers unique mechanistic insight into the mechanism of tumor-associated neovascularization. Because of advancements in miRNA characterization and delivery methods, miRNAs can also be employed in clinical settings as potential biomarkers for anti-angiogenic treatment response as well as therapies targeting tumor angiogenesis. The recent finding and insights about miRNAs' angioregulatory role and exosomal miRNAs in GB are provided throughout the review. Also, we discuss the new concept of miRNAs-based therapies for GB in the future.
Collapse
Affiliation(s)
- Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shabahang Mohammadi
- ENT and Head and Neck Research Center and Department, Firoozgar General Hospital, The Five Senses Health Institute, Iran
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Ivan Ivanovich Krasnyuk
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Hajibaba
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Aili Y, Maimaitiming N, Mahemuti Y, Qin H, Wang Y, Wang Z. The Role of Exosomal miRNAs in Glioma: Biological Function and Clinical Application. Front Oncol 2021; 11:686369. [PMID: 34540663 PMCID: PMC8442992 DOI: 10.3389/fonc.2021.686369] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022] Open
Abstract
Gliomas are complex and heterogeneous central nervous system tumors with poor prognosis. Despite the increasing development of aggressive combination therapies, the prognosis of glioma is generally unsatisfactory. Exosomal microRNA (miRNA) has been successfully used in other diseases as a reliable biomarker and even therapeutic target. Recent studies show that exosomal miRNA plays an important role in glioma occurrence, development, invasion, metastasis, and treatment resistance. However, the association of exosomal miRNA between glioma has not been systemically characterized. This will provide a theoretical basis for us to further explore the relationship between exosomal miRNAs and glioma and also has a positive clinical significance in the innovative diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Yirizhati Aili
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | | | - Yusufu Mahemuti
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Hu Qin
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Yongxin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Zengliang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| |
Collapse
|
13
|
Kim S, Thapar I, Brooks BW. Epigenetic changes by per- and polyfluoroalkyl substances (PFAS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116929. [PMID: 33751946 DOI: 10.1016/j.envpol.2021.116929] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/07/2021] [Accepted: 03/03/2021] [Indexed: 05/09/2023]
Abstract
Increasing studies are examining per- and polyfluoroalkyl substances (PFAS) induced toxicity and resulting health outcomes, including epigenetic modifications (e.g., DNA methylation, histone modification, microRNA expression). We critically reviewed current evidence from human epidemiological, in vitro, and animal studies, including mammalian and aquatic model organisms. Epidemiological studies identified the associations between perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) exposure and epigenetic changes in both adult populations and birth cohorts. For in vitro studies, various cell types including neuroblasts, preadipocytes, and hepatocytes have been employed to understand epigenetic effects of PFAS. In studies with animal models, effects of early life exposure to PFAS have been examined using rodent models, and aquatic models (e.g., zebrafish) have been more frequently used in recent years. Several studies highlighted oxidative stress as a key mediator between epigenetic modification and health effects. Collectively, previous research clearly suggest involvement of epigenetic mechanisms in PFAS induced toxicity, though these efforts have primarily focused on specific PFASs (i.e. mainly PFOS and PFOA) or endpoints (i.e. cancer). Additional studies are necessary to define specific linkages among epigenetic mechanisms and related biomarkers or phenotypical changes. In addition, future research is also needed for understudied PFAS and complex mixtures. Studies of epigenetic effects elicited by individual PFAS and mixtures are needed within an adverse outcome pathways framework, which will advance an understanding of PFAS risks to public health and the environment, and support efforts to design less hazardous chemicals.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Environmental Science, Baylor University, Waco, TX, 76706, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, 76706, USA.
| | - Isha Thapar
- Department of Environmental Science, Baylor University, Waco, TX, 76706, USA; Honors College, Baylor University, Waco, TX, 76706, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, 76706, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, 76706, USA.
| |
Collapse
|
14
|
Sun J, Letcher RJ, Waugh CA, Jaspers VLB, Covaci A, Fernie KJ. Influence of perfluoroalkyl acids and other parameters on circulating thyroid hormones and immune-related microRNA expression in free-ranging nestling peregrine falcons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145346. [PMID: 33736417 DOI: 10.1016/j.scitotenv.2021.145346] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Exposure to certain perfluoroalkyl acids (PFAAs) can have considerable effects on the endocrine and immune systems, although such effects remain largely uncharacterized in wildlife. Using an apex avian predator, we investigated possible relationships of thyroid hormones (THs), specifically free (F) and total (T) thyroxine (FT4; TT4) and triiodothyronine (FT3; TT3), and the expression of an immune-related microRNA biomarker (i.e., miR-155), with the concentrations of 11 PFAAs in nestling peregrine falcons (Falco peregrinus). Nestling peregrines (n = 56; usually two chicks of each sex per nest) were blood sampled when 23 ± 4 days old in urban and rural regions of the Laurentian Great Lakes Basin (Ontario, Canada) in 2016 and 2018. The circulating concentrations of several PFAAs were significantly associated with THs and estimated thyroid gland activity (TT3:TT4; FT3:FT4), including PFHxS (FT3; FT3:FT4), PFDS (TT3; TT3:TT4), PFOA (TT4; FT3:FT4), PFTeDA (TT4; FT3:FT4), PFHxDA (TT4; TT3:TT4) and ΣPFCAs (TT4). Our novel evaluation of miR-155 in peregrine nestlings identified significantly negative relationships of plasma miR-155 counts with PFHxS and PFOA concentrations, indicating potential down-regulation of miR-155 expression and impaired immunity. Several PFAA homologues significantly predicted the variation in THs and miR-155 in conjunction with year (e.g., inter-annual differences in weather, ambient temperature, rainfall), region (urban/rural), nestling age, and/or diet (trophic position; δ15N), which suggests that multiple environmental and biological stressors, including PFAA exposure, influenced thyroid activity and immune function in these nestlings. Further research is warranted to identify the mechanisms and additional impacts of PFAA-related thyroid and immune disruption on the growth, development, and health risks in developing birds.
Collapse
Affiliation(s)
- Jiachen Sun
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, CN-510632 Guangzhou, Guangdong, China
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, K1A 0H3 Ottawa, Ontario, Canada
| | - Courtney A Waugh
- Environmental Toxicology Group, Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Veerle L B Jaspers
- Environmental Toxicology Group, Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, BE-2610 Wilrijk, Belgium
| | - Kim J Fernie
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, L7S 1A1 Burlington, Ontario, Canada.
| |
Collapse
|
15
|
Xu Z, Zeng X, Li M, Liao J, Chen Q. MicroRNA-383 promotes reactive oxygen species-induced autophagy via downregulating peroxiredoxin 3 in human glioma U87 cells. Exp Ther Med 2021; 21:439. [PMID: 33747176 PMCID: PMC7967820 DOI: 10.3892/etm.2021.9870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 06/10/2020] [Indexed: 12/25/2022] Open
Abstract
Peroxiredoxin 3 (PRDX3) is an abundant and effective enzyme, which aids in the removal of H2O2 in the mitochondria, thereby inhibiting cell autophagy. PRDX3 is a target protein of microRNA (miRNA/miR)-383, the overexpression of which has been found to inhibit the growth of glioma cells. We hypothesized that miR-383 serves an antitumor role by inhibiting oxidative stress during tumor growth. In the current study, human glioma U87 cells were transfected with pre-/short hairpin (sh)-PRDX3 vectors and miR-383 mimics/inhibitors. Apoptosis and reactive oxygen species (ROS) production were detected using flow cytometry. Autophagy was examined using acridine orange staining, and the expression of cytoplasmic autophagy-related proteins [autophagy-related protein 9 (ATG9), Ras-related protein Rab-1A (Rab1) and p62] was determined using western blot analysis. The interaction between miR-383 and PRDX3 was assessed using a dual-luciferase assay. The results indicated that both sh-PRDX3 and miR-383 mimics promoted apoptosis and increased the level of mitochondrial ROS, whilst acridine orange staining revealed that sh-PRDX3 promoted autophagy in U87 cells compared with that in the control cells. The detection of autophagic proteins indicated that sh-PRDX3 and miR-383 mimics increased the protein expression level of ATG9 and RAB1, and inhibited that of p62. On the contrary, the effect of miR-383 mimics was opposite to that of pre-PRDX3 in U87 cells. Reverse transcription-quantitative PCR and western blot assays revealed that miR-383 was negatively associated with PRDX3 in U87 cells. miR-383 was indicated to interact with PRDX3, as demonstrated using a dual-luciferase assay. In conclusion, the present study demonstrated that miR-383 induced cell apoptosis and mitochondrial ROS production by downregulating PRDX3 in U87 cells, thereby promoting oxidative stress-induced autophagy.
Collapse
Affiliation(s)
- Zhou Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xingruo Zeng
- Department of Nephrology and Rheumatology, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jianming Liao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
16
|
Sherif IO, Al-Shaalan NH. Hepatoprotective effect of Ginkgo biloba extract against methotrexate-induced hepatotoxicity via targeting STAT3/miRNA-21 axis. Drug Chem Toxicol 2020; 45:1723-1731. [DOI: 10.1080/01480545.2020.1862859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Iman O. Sherif
- Emergency Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nora H. Al-Shaalan
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Xu Y, Jurkovic-Mlakar S, Li Y, Wahlberg K, Scott K, Pineda D, Lindh CH, Jakobsson K, Engström K. Association between serum concentrations of perfluoroalkyl substances (PFAS) and expression of serum microRNAs in a cohort highly exposed to PFAS from drinking water. ENVIRONMENT INTERNATIONAL 2020; 136:105446. [PMID: 31926437 DOI: 10.1016/j.envint.2019.105446] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) are widespread synthetic substances with various adverse health effects. Not much is known about the modes of action of PFAS toxicity, but one likely mechanism is alteration of microRNA expression. OBJECTIVES To investigate whether PFAS exposure is associated with altered microRNA expression in serum. METHODS We selected women from the Ronneby cohort, with high exposure to perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS), emanating from drinking water contaminated by firefighting foam, and a control group of women from a neighbouring municipality without drinking water contamination. Serum levels of PFAS were analysed using LC/MS/MS. High coverage microRNA expression was analysed by next generation sequencing (NGS) in 53 individuals to screen for microRNAs associated with PFAS exposure. After verification by qPCR, associations between PFAS exposure and expression of 18 selected microRNAs were validated by qPCR in 232 individuals. In silico functional analyses were performed using Ingenuity pathway analysis (IPA). RESULTS Three microRNAs were consistently associated with PFAS exposure in the different steps of the study: miR-101-3p, miR-144-3p and miR-19a-3p (all downregulated with increasing exposure). In silico functional analyses suggested that these PFAS-associated microRNAs were annotated to e.g. cardiovascular function and disease, Alzheimer's disease, growth of cancer cell lines and cancer. Seven predicted target genes for the downregulated microRNAs were annotated to PFAS in IPA knowledge database: DNA methyltransferase 3 alpha (DNMT3a), epidermal growth factor receptor (EGFR), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), nuclear receptor subfamily 1, group H, member 3 (NR1H3), peroxisome proliferator-activated receptor alpha (PPARα), prostaglandin-endoperoxide synthase 2 (PTGS2), and tumour growth factor alpha (TGFα). DISCUSSION PFAS exposure was associated with downregulation of specific microRNAs. Further, in silico functional analyses suggest potential links between the specific PFAS-associated microRNAs, specific microRNA target genes and possibly also health effects.
Collapse
Affiliation(s)
- Yiyi Xu
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Simona Jurkovic-Mlakar
- CANSEARCH Research Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ying Li
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Wahlberg
- Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristin Scott
- Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Daniela Pineda
- Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christian H Lindh
- Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristina Jakobsson
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karin Engström
- EPI@LUND, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
18
|
An overview of omics approaches to characterize the effect of perfluoroalkyl substances in environmental health. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Li M, Huo X, Davuljigari CB, Dai Q, Xu X. MicroRNAs and their role in environmental chemical carcinogenesis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:225-247. [PMID: 30171477 DOI: 10.1007/s10653-018-0179-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 08/23/2018] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, noncoding RNA species that play crucial roles across many biological processes and in the pathogenesis of major diseases, including cancer. Recent studies suggest that the expression of miRNA is altered by certain environmental chemicals, including metals, organic pollutants, cigarette smoke, pesticides and carcinogenic drugs. In addition, extensive studies have indicated the existence and importance of miRNA in different cancers, suggesting that cancer-related miRNAs could serve as potential markers for chemically induced cancers. The altered expression of miRNA was considered to be a vital pathogenic role in xenobiotic-induced cancer development. However, the significance of miRNA in the etiology of cancer and the exact mechanisms by which environmental factors alter miRNA expression remain relatively unexplored. Hence, understanding the interaction of miRNAs with environmental chemicals will provide important information on mechanisms underlying the pathogenesis of chemically induced cancers, and effectively diagnose and treat human cancers resulting from chronic or acute carcinogen exposure. This study presents the current evidence that the miRNA deregulation induced by various chemical carcinogens, different cancers caused by environmental carcinogens and the potentially related genes in the onset or progression of cancer. For each carcinogen, the specifically expressed miRNA may be considered as the early biomarkers of the cancer process. In this review, we also summarize various target genes of the altered miRNA, oncogenes or anti-oncogenes, and the existing evidence regarding the gene regulation mechanisms of cancer caused by environmentally induced miRNA alteration. The future perspective of miRNA may become attractive targets for the diagnosis and treatment of carcinogen-induced cancer.
Collapse
Affiliation(s)
- Minghui Li
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Chand Basha Davuljigari
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Qingyuan Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
20
|
Wang D, Wang X, Liu X, Jiang L, Yang G, Shi X, Zhang C, Piao F. Inhibition of miR-219 Alleviates Arsenic-Induced Learning and Memory Impairments and Synaptic Damage Through Up-regulating CaMKII in the Hippocampus. Neurochem Res 2018; 43:948-958. [DOI: 10.1007/s11064-018-2500-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 01/09/2023]
|
21
|
Lin H, Ewing LE, Koturbash I, Gurley BJ, Miousse IR. MicroRNAs as biomarkers for liver injury: Current knowledge, challenges and future prospects. Food Chem Toxicol 2017; 110:229-239. [PMID: 29042291 PMCID: PMC6693868 DOI: 10.1016/j.fct.2017.10.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/02/2017] [Accepted: 10/14/2017] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are short regulatory RNAs that are involved in various biological processes that regulate gene expression posttranscriptionally. Changes in miRNA expression can be detected in many physiological and pathological events, such as liver injury. Drug induced liver injury is a life threatening condition that frequently requires organ transplantation. Hepatotoxicity is also one of the major causes of drug failure in clinical trials and of drug withdrawal from the market. The profiling of miRNA expression shows great promise in monitoring liver injury, in the prediction of outcome in patients, and in the identification of liver-reactive compounds in toxicological assessment. Recent studies have demonstrated organ-specificity of some miRNAs (i.e., miR-122), which are released into biological fluids as a result of hepatocyte damage. This attests to the potential of miRNAs as noninvasive biomarkers to detect liver toxicity. This review presents information on miRNA signatures of hepatotoxicity and on the application of promising miRNA biomarkers in preclinical safety assessment. We further discuss the technical challenges associated with these emerging biomarkers for early diagnosis and detection of hepatotoxicity.
Collapse
Affiliation(s)
- Haixia Lin
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| | - Laura E Ewing
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| | - Bill J Gurley
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72223, United States.
| | - Isabelle R Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| |
Collapse
|
22
|
Arrieta-Cortes R, Farias P, Hoyo-Vadillo C, Kleiche-Dray M. Carcinogenic risk of emerging persistent organic pollutant perfluorooctane sulfonate (PFOS): A proposal of classification. Regul Toxicol Pharmacol 2017; 83:66-80. [DOI: 10.1016/j.yrtph.2016.11.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 01/09/2023]
|
23
|
Identification of protein tyrosine phosphatase SHP-2 as a new target of perfluoroalkyl acids in HepG2 cells. Arch Toxicol 2016; 91:1697-1707. [DOI: 10.1007/s00204-016-1836-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/24/2016] [Indexed: 01/19/2023]
|
24
|
Dong H, Curran I, Williams A, Bondy G, Yauk CL, Wade MG. Hepatic miRNA profiles and thyroid hormone homeostasis in rats exposed to dietary potassium perfluorooctanesulfonate (PFOS). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:201-210. [PMID: 26724606 DOI: 10.1016/j.etap.2015.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/30/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
Perfluorooctanesulfonate (PFOS) has been widely used in a variety of industrial and commercial applications as a surfactant and stain repellent. PFOS causes liver damage (including liver tumors) in experimental animals, primarily via interaction with PPARα and CAR/PXR. We investigated the involvement of microRNAs (miRNAs) in PFOS-induced hepatotoxicity, and mechanisms involved in abnormal thyroid hormone (TH) homeostasis, in the livers of adult male rats exposed in feed to 50mg PFOS/kg diet for 28 days. PFOS-treated rats exhibited expected histopathological and clinical chemistry changes, and global gene expression changes consistent with the involvement of PPARα and CAR/PXR. Thirty-eight miRNAs were significantly altered. Three members of the miR-200 family were the most increased, while miR-122-5p and miR-21-5p were the most decreased, in PFOS-treated rats. Expression of the miR-23b-3p/27b-3p/24-3p cluster also decreased in PFOS-treated animals. Pathway analysis of miRNAs and associated gene expression changes suggests involvement of epithelial to mesenchymal transition (EMT), which is a primary process of tumor cell motility and cancer metastasis. Our analysis also revealed transcripts that may mediate PFOS-induced effects on TH homeostasis including: activation of the CAR/PXR pathway, phase II/III enzymes, and deiodinase. These changes are consistent with low serum TH due to enhanced metabolic clearance of TH. However, most TH hepatic target genes were not altered in a manner consistent with reduced TH signaling, suggesting that PFOS exposure did not induce functional hypothyroidism. Collectively, the study suggests an important role for miRNAs in PFOS-induced hepatotoxicity and provides insight into the effects of PFOS on TH homeostasis.
Collapse
Affiliation(s)
- Hongyan Dong
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Ottawa, ON, Canada K1A 0K9
| | - Ivan Curran
- Bureau of Chemical Safety, Health Canada, Ottawa, ON, Canada K1A 0K9
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Ottawa, ON, Canada K1A 0K9
| | - Genevieve Bondy
- Bureau of Chemical Safety, Health Canada, Ottawa, ON, Canada K1A 0K9
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Ottawa, ON, Canada K1A 0K9
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Ottawa, ON, Canada K1A 0K9.
| |
Collapse
|
25
|
Wang Y, Zhang X, Wang M, Cao Y, Wang X, Liu Y, Wang J, Wang J, Wu L, Hei TK, Luan Y, Xu A. Mutagenic Effects of Perfluorooctanesulfonic Acid in gpt Delta Transgenic System Are Mediated by Hydrogen Peroxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6294-6303. [PMID: 25875360 DOI: 10.1021/acs.est.5b00530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Perfluorooctane sulfate (PFOS), a persistent organic pollutant, has recently been closely linked with an increased risk of tumorigenesis. However, PFOS has yielded negative results in various tests of genotoxicity. The present study aimed to investigate the mutagenic response to PFOS in the gpt delta transgenic mouse mutation system and to illustrate the contribution of hydrogen peroxide (H2O2) to PFOS genotoxicity. Mutations at the redBA/gam loci were determined by Spi(-) assay both in vitro and in vivo. DNA damage was measured by phosphorylated histone H2AX (γ-H2AX) and mouse bone marrow micronucleus (MN) testing. Our data showed that PFOS induced concentration-dependent increases in γ-H2AX foci and in mutation frequencies at redBA/gam loci in transgenic mouse embryonic fibroblast cells, which were confirmed by the formation of MNs in the bone marrow and the observations of mutation induction in the livers of gpt delta transgenic mice. Concurrent treatment with catalase, an efficient H2O2 scavenger, significantly decreased the formation of γ-H2AX foci and the mutation yields induced by PFOS. In addition, the generation of H2O2 was found to be closely related to the abnormal peroxisomal β-oxidation caused by PFOS. These finding might provide new mechanistical information about genotoxic effects of PFOS.
Collapse
Affiliation(s)
- Yichen Wang
- †Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P. R. China
| | - Xuefeng Zhang
- ‡Jiangsu Tripod Preclinical Research Laboratories, Pukou Economic Development Zone, 9# Xinglong Road, Nanjing, China
| | - Meimei Wang
- †Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P. R. China
| | - Yiyi Cao
- §Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Xinan Wang
- †Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P. R. China
| | - Yun Liu
- †Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P. R. China
| | - Juan Wang
- †Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P. R. China
| | - Jing Wang
- ‡Jiangsu Tripod Preclinical Research Laboratories, Pukou Economic Development Zone, 9# Xinglong Road, Nanjing, China
| | - Lijun Wu
- †Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P. R. China
| | - Tom K Hei
- ∥Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York City, New York 10027, United States
| | - Yang Luan
- §Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - An Xu
- †Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P. R. China
| |
Collapse
|
26
|
Vrijens K, Bollati V, Nawrot TS. MicroRNAs as potential signatures of environmental exposure or effect: a systematic review. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:399-411. [PMID: 25616258 PMCID: PMC4421768 DOI: 10.1289/ehp.1408459] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 01/14/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND The exposome encompasses all life-course environmental exposures from the prenatal period onward that influence health. MicroRNAs (miRNAs) are interesting entities within this concept as markers and causation of disease. MicroRNAs are short oligonucleotide sequences that can interact with several mRNA targets. OBJECTIVES We reviewed the current state of the field on the potential of using miRNAs as biomarkers for environmental exposure. We investigated miRNA signatures in response to all types of environmental exposure to which a human can be exposed, including cigarette smoke, air pollution, nanoparticles, and diverse chemicals; and we examined the health conditions for which the identified miRNAs have been reported (i.e., cardiovascular disease, cancer, and diabetes). METHODS We searched the PubMed and ScienceDirect databases to identify relevant studies. RESULTS For all exposures incorporated in this review, 27 miRNAs were differentially expressed in at least two independent studies. miRNAs that had expression alterations associated with smoking observed in multiple studies are miR-21, miR-34b, miR-125b, miR-146a, miR-223, and miR-340; and those miRNAs that were observed in multiple air pollution studies are miR-9, miR-10b, miR-21, miR-128, miR-143, miR-155, miR-222, miR-223, and miR-338. We found little overlap among in vitro, in vivo, and human studies between miRNAs and exposure. Here, we report on disease associations for those miRNAs identified in multiple studies on exposure. CONCLUSIONS miRNA changes may be sensitive indicators of the effects of acute and chronic environmental exposure. Therefore, miRNAs are valuable novel biomarkers for exposure. Further studies should elucidate the role of the mediation effect of miRNA between exposures and effect through all stages of life to provide a more accurate assessment of the consequences of miRNA changes.
Collapse
Affiliation(s)
- Karen Vrijens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | | | | |
Collapse
|
27
|
López-Doval S, Salgado R, Fernández-Pérez B, Lafuente A. Possible role of serotonin and neuropeptide Y on the disruption of the reproductive axis activity by perfluorooctane sulfonate. Toxicol Lett 2015; 233:138-47. [PMID: 25623392 DOI: 10.1016/j.toxlet.2015.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 01/09/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is an endocrine disruptor, whose exposure can induce several alterations on the reproductive axis activity in males during adulthood. This study was undertaken to evaluate the possible role of serotonin and neuropeptide Y (NPY) on the disruption of the hypothalamic-pituitary-testicular (HPT) axis induced by PFOS in adult male rats. For that, adult male rats were orally treated with 0.5; 1.0; 3.0 and 6.0mg of PFOS/kg/day for 28 days. After PFOS exposure, serotonin concentration increased in the anterior and mediobasal hypothalamus as well as in the median eminence. The metabolism of this amine (expressed as the ratio 5-hydroxyindolacetic acid (5-HIAA)/serotonin) was diminished except in the anterior hypothalamus, with the doses of 3.0 and 6.0mg/kg/day, being this dose 0.5mg/kg/day in the median eminence. In general terms, PFOS-treated rats presented a decrease of the hypothalamic concentration of the gonadotropin releasing hormone (GnRH) and NPY. A diminution of the serum levels of the luteinizing hormone (LH), testosterone and estradiol were also shown. These results suggest that both serotonin and NPY could be involved in the inhibition induced by PFOS on the reproductive axis activity in adult male rats.
Collapse
Affiliation(s)
- S López-Doval
- Laboratory of Toxicology, Sciences School, University of Vigo, Las Lagunas S/n, 32004 Ourense, Spain
| | - R Salgado
- Laboratory of Toxicology, Sciences School, University of Vigo, Las Lagunas S/n, 32004 Ourense, Spain
| | - B Fernández-Pérez
- Laboratory of Toxicology, Sciences School, University of Vigo, Las Lagunas S/n, 32004 Ourense, Spain
| | - A Lafuente
- Laboratory of Toxicology, Sciences School, University of Vigo, Las Lagunas S/n, 32004 Ourense, Spain.
| |
Collapse
|