1
|
Sabotič J, Bayram E, Ezra D, Gaudêncio SP, Haznedaroğlu BZ, Janež N, Ktari L, Luganini A, Mandalakis M, Safarik I, Simes D, Strode E, Toruńska-Sitarz A, Varamogianni-Mamatsi D, Varese GC, Vasquez MI. A guide to the use of bioassays in exploration of natural resources. Biotechnol Adv 2024; 71:108307. [PMID: 38185432 DOI: 10.1016/j.biotechadv.2024.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Bioassays are the main tool to decipher bioactivities from natural resources thus their selection and quality are critical for optimal bioprospecting. They are used both in the early stages of compounds isolation/purification/identification, and in later stages to evaluate their safety and efficacy. In this review, we provide a comprehensive overview of the most common bioassays used in the discovery and development of new bioactive compounds with a focus on marine bioresources. We present a comprehensive list of practical considerations for selecting appropriate bioassays and discuss in detail the bioassays typically used to explore antimicrobial, antibiofilm, cytotoxic, antiviral, antioxidant, and anti-ageing potential. The concept of quality control and bioassay validation are introduced, followed by safety considerations, which are critical to advancing bioactive compounds to a higher stage of development. We conclude by providing an application-oriented view focused on the development of pharmaceuticals, food supplements, and cosmetics, the industrial pipelines where currently known marine natural products hold most potential. We highlight the importance of gaining reliable bioassay results, as these serve as a starting point for application-based development and further testing, as well as for consideration by regulatory authorities.
Collapse
Affiliation(s)
- Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
| | - Engin Bayram
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - David Ezra
- Department of Plant Pathology and Weed Research, ARO, The Volcani Institute, P.O.Box 15159, Rishon LeZion 7528809, Israel
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Biomolecular Sciences Unit, Department of Chemistry, Blue Biotechnology & Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Berat Z Haznedaroğlu
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Nika Janež
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Leila Ktari
- B3Aqua Laboratory, National Institute of Marine Sciences and Technologies, Carthage University, Tunis, Tunisia
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Dina Simes
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; 2GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Evita Strode
- Latvian Institute of Aquatic Ecology, Agency of Daugavpils University, Riga LV-1007, Latvia
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, 81-378 Gdynia, Poland
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | | | - Marlen I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 3036 Limassol, Cyprus
| |
Collapse
|
2
|
Alesci A, Di Paola D, Fumia A, Marino S, D’Iglio C, Famulari S, Albano M, Spanò N, Lauriano ER. Internal Defense System of Mytilus galloprovincialis (Lamarck, 1819): Ecological Role of Hemocytes as Biomarkers for Thiacloprid and Benzo[a]Pyrene Pollution. TOXICS 2023; 11:731. [PMID: 37755742 PMCID: PMC10537264 DOI: 10.3390/toxics11090731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
The introduction of pollutants, such as thiacloprid and benzo[a]pyrene (B[a]P), into the waters of urbanized coastal and estuarine areas through fossil fuel spills, domestic and industrial waste discharges, atmospheric inputs, and continental runoff poses a major threat to the fauna and flora of the aquatic environment and can have a significant impact on the internal defense system of invertebrates such as mussels. Using monoclonal and polyclonal anti-Toll-like receptor 2 (TLR2) and anti-inducible nitric oxide synthetase (iNOS) antibodies for the first time, this work aims to examine hemocytes in the mantle and gills of M. galloprovincialis as biomarkers of thiacloprid and B[a]P pollution and analyze their potential synergistic effect. To pursue this objective, samples were exposed to the pollutants, both individually and simultaneously. Subsequently, oxidative stress biomarkers were evaluated by enzymatic analysis, while tissue changes and the number of hemocytes in the different contaminated groups were assessed via histomorphological and immunohistochemical analyses. Our findings revealed that in comparison to a single exposure, the two pollutants together significantly elevated oxidative stress. Moreover, our data may potentially enhance knowledge on how TLR2 and iNOS work as part of the internal defense system of bivalves. This would help in creating new technologies and strategies, such as biosensors, that are more suitable for managing water pollution, and garnering new details on the condition of the marine ecosystem.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico “G. Martino”, 98124 Messina, Italy;
| | - Sebastian Marino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Claudio D’Iglio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Sergio Famulari
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Marco Albano
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Nunziacarla Spanò
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| |
Collapse
|
3
|
Cai Z, Yan T, Li S, Zhang J, Wang X, Li L, Wang H, Chen H, Tang Y. Ameliorative effect of dandelion (Taraxacum officinale) peptides on benzo(a)pyrene-induced oxidative stress and inflammation in human umbilical vein endothelial cells. J Pept Sci 2023; 29:e3447. [PMID: 35940823 DOI: 10.1002/psc.3447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022]
Abstract
Dandelion (Taraxacum officinale) is widely consumed as a health food and a traditional medicine. However, the protective effect of dandelion bio-active peptides (DPs) against polycyclic aromatic hydrocarbon-induced blood vessel inflammation and oxidative damage is not well documented. In the current study, four novel DPs were isolated using an activity tracking method. The protective activity of the DPs against benzo(a)pyrene (Bap)-induced human umbilical vein endothelial cell (HUVEC) damage was explored. The results indicated that DP-2 [cycle-(Thr-His-Ala-Trp)] effectively inhibited Bap-induced reactive oxygen species (ROS) and malondialdehyde (MDA) overproduction and reinforced antioxidant enzyme activity while inhibiting the production of inflammatory factors in HUVECs. Moreover, DP-2 increased NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1, and nuclear factor E2-releated factor 2 expression levels by activating the PI3K/Akt signaling pathway. In addition, DP-2 attenuated Bap-induced HUVEC apoptosis via the Bcl-2/Bax/cytochrome c apoptotic pathway. These results suggest that DP-2 is a promising compound for protecting HUVECs from Bap-induced inflammatory and oxidative damage.
Collapse
Affiliation(s)
- Zhixiang Cai
- Panyu Central Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Yan
- Department of Cardiovascular Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Siwen Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Jianyi Zhang
- Panyu Central Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianyue Wang
- Department of Cardiovascular Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Li Li
- Department of Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Huailing Wang
- The Research Center of Allergy & Immunology, Shenzhen University Health Science Center, Shenzhen, China
| | - Hanwei Chen
- Department of Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yukuan Tang
- Department of Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
4
|
Luo M, Luo D, Liu J, Wang H, Liu X, Yang M, Tian F, Qin S, Li Y. Ameliorative effect of the probiotic peptide against benzo(α)pyrene-induced inflammatory damages in enterocytes. Int Immunopharmacol 2022; 112:109255. [PMID: 36152539 DOI: 10.1016/j.intimp.2022.109255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
Probiotics are living bacteria that provide health benefits to the host when consumed in sufficient quantities. However, the protective effect of the bioactive peptides isolated from the probiotics against benzo(α)pyrene (BaP) induced gastrointestinal injury has never been investigated. The current work used a bio-assay guided technique to identify-four new cyclic peptides in BaP-induced Caco-2 cell culture and mouse colitis model. Lactobacillus rhamnosus cycle (Thr-His-Ala-Trp) peptide-1 (LRCP-1) effectively inhibited BaP-induced epithelial cytokine over-release and intracellular ROS over-production. Simultaneously, LRCP-1 attenuated BaP-induced NAD (P)H: oxidases (NOXs), Matrix metalloproteinases (MMPs) over-expression, respectively. Furthermore, increased NAD (P)H: quinone oxidoreductase 1 (NQO1)/heme oxygenase-1 (HO-1)/nuclear factor E2-related factor 2 (Nrf2) expression and aryl hydrocarbon receptor (AhR) pathway activation induced by the BaP-exposure were also inhibited after the LRCP-1 treatment. Notably, LRCP-1 is a promising agent protecting gastrointestinal epithelial cells from BaP-induced inflammatory and oxidative damages.
Collapse
Affiliation(s)
- Min Luo
- Laboratory of inflammation and allergy, Department of respiratory and critical care medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Dan Luo
- Laboratory of inflammation and allergy, Department of respiratory and critical care medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jie Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Huailing Wang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Xiaoyu Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Min Yang
- Kexing Biopharm Co., Ltd, Shenzhen 518057, China
| | | | - Suofu Qin
- Kexing Biopharm Co., Ltd, Shenzhen 518057, China
| | - Yuying Li
- Laboratory of inflammation and allergy, Department of respiratory and critical care medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
5
|
Ge J, Hao R, Rong X, Dou QP, Tan X, Li G, Li F, Li D. Secoisolariciresinol diglucoside mitigates benzo[a]pyrene-induced liver and kidney toxicity in mice via miR-101a/MKP-1-mediated p38 and ERK pathway. Food Chem Toxicol 2021; 159:112733. [PMID: 34856318 DOI: 10.1016/j.fct.2021.112733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/16/2021] [Accepted: 11/28/2021] [Indexed: 02/09/2023]
Abstract
Benzo[a]pyrene (BaP) can cause hepatorenal toxicity. Secoisolariciresinol diglucoside (SDG), a polyphenolic compound present in flaxseed, has shown a variety of biological activities including antioxidant, anti-inflammatory, anti-apoptotic effects. This study aimed to investigate the protective effects and working mechanisms of SDG against BaP-induced hepatorenal injury. Forty male mice were administrated daily (via gastric gavage; 4 weeks) with 0.9% saline (control), BaP (75 mg/kg body weight (b.w.)), SDG (100 mg/kg b.w.), SDG (100 mg/kg b.w.)+BaP (75 mg/kg b.w.). Results showed that the mice treated with SDG + BaP had significantly (P < 0.05) higher body weight, lower organ-to-body weight ratio, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) activities, and less levels of serum creatinine (CRE) and blood urea nitrogen (BUN) than those treated with BaP alone. SDG administration alleviated BaP-induced oxidative damages, inflammation and apoptosis. Furthermore, it significantly (P < 0.05) downregulated phosphor-p38 (p-p38) and phosphor-extracellular regulated protein kinases (p-ERK) levels, upregulated mitogen-activated protein kinase phosphatase-1 (MKP-1) level, and suppressed miR-101a expression compared with BaP alone group. Taken together, these results showed for the first time that SDG has protective effects against BaP-induced liver and kidney toxicity in mice through regulating oxidative stress, inflammation and apoptosis via miR-101a/MKP-1-mediated p38 and ERK pathway.
Collapse
Affiliation(s)
- Junlin Ge
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Rili Hao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xue Rong
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Q Ping Dou
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Xintong Tan
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Guannan Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Feng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
6
|
Marine Fish Primary Hepatocyte Isolation and Culture: New Insights to Enzymatic Dissociation Pancreatin Digestion. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041380. [PMID: 33546159 PMCID: PMC7913162 DOI: 10.3390/ijerph18041380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 11/23/2022]
Abstract
Primary cell cultures from wild organisms have been gaining relevance in ecotoxicology as they are considered more sensitive than immortalized cell lines and retain the biochemical pathways found in vivo. In this study, the efficacy of two methods for primary hepatocyte cell isolation was compared using liver from two marine fish (Sparus aurata and Psetta maxima): (i) two-step collagenase perfusion and (ii) pancreatin digestion with modifications. Cell cultures were incubated in L-15 medium at 17 ± 1 °C and monitored for up to six days for cell viability and function using the trypan blue exclusion test, MTT test, lactate dehydrogenase (LDH) activity, and ethoxyresorufin O-deethylase (EROD) activity after Benzo[a]Pyrene exposure. The results showed significant differences between the number of viable cells (p < 0.05), the highest number being obtained for the pancreatin digestion method (average = 4.5 ± 1.9 × 107 cells). Moreover, the hepatocytes showed solid adherence to the culture plate and the rounded shape, changing into a triangular/polygonal shape. The cell viability and function obtained by pancreatin digestion were maintained for five days, and the EROD induction after exposure to the B[a]P showed that cells were metabolically active. This study shows that the optimized pancreatin digestion method is a valid, cost-effective, and simple alternative to the standard perfusion method for the isolation of primary hepatocytes from fish and is suitable for ecotoxicological studies involving marine pollutants, such as PAHs.
Collapse
|
7
|
Tang Y, Rong J, Guan X, Zha S, Shi W, Han Y, Du X, Wu F, Huang W, Liu G. Immunotoxicity of microplastics and two persistent organic pollutants alone or in combination to a bivalve species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113845. [PMID: 31883493 DOI: 10.1016/j.envpol.2019.113845] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/26/2019] [Accepted: 12/16/2019] [Indexed: 05/25/2023]
Abstract
Both microplastics and persistent organic pollutants (POPs) are ubiquitously present in natural water environment, posing a potential threat to aquatic organisms. While it has been suggested that the immune responses of aquatic organisms could be hampered by exposure to microplastics and POPs, the synergistic immunotoxic impact of these two types of pollutants remain poorly understood. In addition, little is known about the mechanism behind the immunotoxic effect of microplastics. Therefore, in the present study, the immunotoxicity of microplastics and two POPs, benzo[a]pyrene (B[a]P) and 17β-estradiol (E2), were investigated alone or in combination in a bivalve species, Tegillarca granosa. Evident immunotoxicity, as indicated by alterations of haemocyte count, blood cell composition, phagocytic activity, intracellular content of ROS, concentration of Ca2+ and lysozyme, and lysozyme activity, was revealed for both microplastics and the two POPs examined. In addition, the expression of six immune-, Ca2+ signalling-, and apoptosis-related genes was significantly altered by exposure of clams to the contaminants studied. Furthermore, the toxicity of POPs was generally aggravated by smaller microplastics (500 nm) and mitigated by larger ones (30 μm). This size dependent effect on POP toxicity may result from size dependent interactions between microplastics and POPs. Data obtained in this study also indicate that similar to exposure to B[a]P and E2, exposure to microplastics may hamper the immune responses of clams through a series of interdependent physiological and molecular processes.
Collapse
Affiliation(s)
- Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Jiahuan Rong
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaofan Guan
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shanjie Zha
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Fangzhu Wu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China.
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
8
|
Song Y, Nahrgang J, Tollefsen KE. Transcriptomic analysis reveals dose-dependent modes of action of benzo(a)pyrene in polar cod (Boreogadus saida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:176-189. [PMID: 30408666 DOI: 10.1016/j.scitotenv.2018.10.261] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
Polar cod (Boreogadus saida) has been used as a model Arctic species for hazard assessment of environmental stressors such as polycyclic aromatic hydrocarbons (PAHs). However, most of the PAH studies using polar cod rely on targeted biomarker-based analysis thus may not adequately address the complexity of the toxic mechanisms of the stressors. The present study was performed to develop a broad-content transcriptomic platform for polar cod and apply it for understanding the toxic mechanisms of a model PAH, benzo(a)pyrene (BaP). Hepatic transcriptional analysis using a combination of high-density polar cod oligonucleotide microarray and quantitative real-time RT-PCR was conducted to characterize the stress responses in polar cod after 14d repeated dietary exposure to 0.4 (Low) and 20.3 μg/g fish/feeding (High) BaP doses. Bile metabolic analysis was performed to identify the storage of a key BaP hepatic biotransformation product, 3-hydroxybenzo(a)pyrene (3-OH-BaP). The results clearly showed that 3-OH-BaP was detected in the bile of polar cod after both Low and High BaP exposure. Dose-dependent hepatic stress responses were identified, with Low BaP suppressing genes involved in the defense mechanisms and High BaP inducing genes associated with these pathways. The results suggested that activation of the aryl hydrocarbon receptor signaling, induction of oxidative stress, DNA damage and apoptosis were the common modes of action (MoA) of BaP between polar cod or other vertebrates, whereas induction of protein degradation and disturbance of mitochondrial functions were proposed as novel MoAs. Furthermore, conceptual toxicity pathways were proposed for BaP-mediated effects in Arctic fish. The present study has for the first time reported a transcriptome-wide analysis using a polar cod-specific microarray and suggested novel MoAs of BaP. The analytical tools, bioinformatics solutions and mechanistic knowledge generated by this study may facilitate mechanistically-based hazard assessment of environmental stressors in the Arctic using this important fish as a model species.
Collapse
Affiliation(s)
- You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway.
| | - Jasmine Nahrgang
- UiT The Arctic University of Norway, Faculty of Biosciences, Fisheries and Economics, Dept. of Arctic and Marine Biology, N-9037 Tromsø, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, Dept. for Environmental Sciences, Post box 5003, N-1432 Ås, Norway.
| |
Collapse
|
9
|
Yu N, Ding Q, Li E, Qin JG, Chen L, Wang X. Growth, energy metabolism and transcriptomic responses in Chinese mitten crab (Eriocheir sinensis) to benzo[α]pyrene (BaP) toxicity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 203:150-158. [PMID: 30138799 DOI: 10.1016/j.aquatox.2018.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Benzo(a)pyrene (BaP) is a highly toxic polycyclic aromatic hydrocarbon and has strong affinity to suspended materials and sediments in the aquatic environment. Most crustaceans are benthic species and are easily affected by the pollution in the sediments, but there is little information on the response mechanism of crustaceans to BaP exposure. This study compared the growth and hepatopancreas transcriptomic responses of the Chinse mitten crab (Eriocheir sinensis) exposed to 0, 0.15 (BaP1) and 0.45 μg /L (BaP2) for 28 days. Crab survival and weight gain were reduced in the water born BaP in a dose-dependent way. The contents of hepatopancreas glycogen, triglyceride, total amino acids and lactic acid were all decreased after BaP exposure, indicating possible more energy consumption during detoxification. In the transcriptome analysis, a total of 106.65 million clean reads were obtained and assembled into 81,714 unigenes with an average length of 594 bp and N50 of 808 bp. Under 0.15 or 0.45 μg /L BaP exposure, 922 and 1129 unigenes in crabs were significantly expressed, annotated to 676 and 802 Gene Ontology (GO) terms respectively. The "cellular process" was the leading category for both concentrations. Thirteen significantly changed pathways were identified in both Control vs BaP1 and Control vs BaP2 groups. These pathways were divided into four different parts according to their reported functions, including metabolism, environmental information processing, organismal systems and cellular processes. Nice out of thirteen pathways in BaP1 were related to metabolism, containing amino acid metabolism, phenylpropanoid biosynthesis, monobactam biosynthesis and styrene degradation. Almost all the pathways related with the biosynthesis processes were down-regulated, while the degradation pathways were up-regulated. Seven out of thirteen pathways were classified into metabolism category in BaP2. These pathways were mostly associated with stress resistance rather than supplying energy. This study indicates that both concentrations of BaP disturbed nutrient metabolism, immune response and defense system in the crabs, while exposure to a higher concentration had a greater impact on immunity system than on metabolism. This study provides a better understanding of the underlying molecular and regulatory mechanisms in crustaceans coping with BaP toxicity.
Collapse
Affiliation(s)
- Na Yu
- East China Normal University, Shanghai, 200241, China
| | - Qingqing Ding
- East China Normal University, Shanghai, 200241, China
| | - Erchao Li
- East China Normal University, Shanghai, 200241, China; Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- East China Normal University, Shanghai, 200241, China
| | - Xiaodan Wang
- East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
10
|
Chen H, Diao X, Wang H, Zhou H. An integrated metabolomic and proteomic study of toxic effects of Benzo[a]pyrene on gills of the pearl oyster Pinctada martensii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:330-336. [PMID: 29573723 DOI: 10.1016/j.ecoenv.2018.03.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Benzo[a]pyrene (BaP) is one of the most important polycyclic aromatic hydrocarbons (PAHs), which are widely present in the marine environment. Because of its teratogenic, mutagenic, and carcinogenic effects on various organisms, the toxicity of BaP is of great concern. In this study, we focused on the toxic effects of BaP (1 µg/L and 10 µg/L) on gills of the pearl oyster Pinctada martensii using combined metabolomic and proteomic approaches. At the metabolome level, the high concentration of BaP mainly caused abnormal energy metabolism, osmotic regulation and immune response marked by significantly altered metabolites in gills. At the proteome level, both concentrations of BaP mainly induced signal transduction, transcription regulation, cell growth, stress response, and energy metabolism. Overall, the research demonstrated that the combination of proteomic and metabolomic approaches could provide a significant way to elucidate toxic effects of BaP on P. martensii.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Haihua Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
11
|
Fanali LZ, Franco-Belussi L, Bonini-Domingos CR, de Oliveira C. Effects of benzo[a]pyrene on the blood and liver of Physalaemus cuvieri and Leptodactylus fuscus (Anura: Leptodactylidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:93-102. [PMID: 29477119 DOI: 10.1016/j.envpol.2018.02.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/13/2018] [Accepted: 02/09/2018] [Indexed: 05/14/2023]
Abstract
Benzo[a]pyrene (BaP) is a bio-accumulative toxic compound found in the atmosphere, water, and soil that may affect the life cycle of amphibians. In this study, a few contamination biomarkers, such as hepatic melanomacrophages (MMs), mast cells, erythrocyte micronuclei (MN) and white blood cells were used to determine how BaP acts in these cells in the anurans Physalaemus cuvieri and Leptodactylus fuscus. Animals of both species were divided into three treatment groups: 1 day, 7 days and 13 days, subcutaneously injected 2 mg/kg BaP diluted in mineral oil and control group with only mineral oil. After 7 days, BaP caused the frequency of MN to increase in both species while reducing melanin area. The micronucleus frequency increased due to the genotoxicity of BaP, while the decreasing melanin area may be related to the inhibition of tyrosinase activity, an enzyme responsible for regulating melanogenesis, decreasing the synthesis of melanin. The mast cell density increased in all groups and in both species as a response to the inflammatory action of BaP. These cells respond to nonspecific inflammatory effects leading, therefore, to this response in all treatments. The percentage of leukocytes remained unchanged probably due to great intraspecific variability. Additionally, the leukocyte profiles of both species were characterized and the differences were attributed to extrinsic factors. In short, BaP can affect the integrity of several organs and tissues, and cell functions leading to the conclusion that this compound is hepatotoxic, genotoxic and immunotoxic for anurans.
Collapse
Affiliation(s)
- Lara Zácari Fanali
- Graduate Program in Animal Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil.
| | - Lilian Franco-Belussi
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil; Graduate Program in Biotechnology and Environmental monitoring, CCTS, Federal University of São Carlos, 18052-780, Sorocaba, São Paulo, Brazil
| | | | - Classius de Oliveira
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil
| |
Collapse
|
12
|
Chen H, Diao X, Zhou H. Tissue-specific metabolic responses of the pearl oyster Pinctada martensii exposed to benzo[a]pyrene. MARINE POLLUTION BULLETIN 2018; 131:17-21. [PMID: 29886933 DOI: 10.1016/j.marpolbul.2018.03.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) that is well known for its teratogenic, mutagenic and carcinogenic effects. In this study, we applied metabolomics to investigate the tissue-specific metabolic responses of the Pinctada martensii digestive glands and gills after a short-duration exposure to BaP (1 μg/L and 10 μg/L). After 72 h of exposure to BaP, the majority of metabolite changes were related to osmolytes, energy metabolites, and amino acids. BaP (1 μg/L) accelerated energy deterioration and decreased osmotic regulation, while BaP (10 μg/L) disturbed energy metabolism and increased osmotic stress in the digestive glands. Both BaP doses disturbed osmotic regulation and energy metabolism in the gills. BaP also induced neurotoxicity in both tissues. These findings demonstrated that BaP exhibited tissue-specific metabolic responses in P. martensii. The difference in these metabolite responses between the digestive glands and gills might prove to be suitable biomarkers for indicating exposure to specific marine pollutants.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
13
|
Hong X, Qin J, Chen R, Yuan L, Zha J, Huang C, Li N, Ji X, Wang Z. Phenanthrene-Induced Apoptosis and Its Underlying Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:14397-14405. [PMID: 29161501 DOI: 10.1021/acs.est.7b04045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phenanthrene (Phe) is one of the most abundant low-molecular-weight polycyclic aromatic hydrocarbons (PAHs). Widespread human and aquatic organism exposure to Phe has been reported, but the toxic effects of Phe and potential mechanisms are unclear. We focused on the chronic hepatotoxicity of Phe in adult Chinese rare minnows (Gobiocypris rarus) and the underlying mechanisms. The chronic effects of exposing Chinese rare minnows to 8.9, 82.3, or 510.0 μg/L Phe for 30 days were examined by histopathological observation, TUNEL assays, caspase activity assays, and gene expression profiles. The liver lesion frequency and hepatocyte apoptosis were increased in Phe-exposed groups. Caspase 9 and caspase 3 enzyme activity in liver tissues was markedly increased. The expression of miR-17/92 cluster members was significantly increased in the 82.3 and 510.0 μg/L groups. Moreover, the response of primary hepatocytes indicated a significant decrease in the mitochondrial membrane potential (MMP) after a 48 h exposure to Phe. Interestingly, miR-18a was significantly decreased in primary hepatocytes in all treatments. Moreover, molecular docking indicated that Phe might have the same binding domain as pri-miR-18a, forming pi-pi and pi-σ interactions with heterogeneous nuclear ribonucleoprotein (hnRNP) A1. Given the above, Phe caused liver lesions and induced hepatocyte apoptosis through the intrinsic apoptosis pathway, and the interaction of Phe with hnRNP A1 contributes to the suppression of miR-18a expression and hepatocyte apoptosis.
Collapse
Affiliation(s)
- Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University , Wuhan 430070, China
- University of Chinese Academy of Sciences , Beijing 100085, China
| | - Jianhui Qin
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University , Wuhan 430070, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Lilai Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Chao Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100085, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Xiaoya Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100085, China
| | - Zijian Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| |
Collapse
|
14
|
Su W, Zha S, Wang Y, Shi W, Xiao G, Chai X, Wu H, Liu G. Benzo[a]pyrene exposure under future ocean acidification scenarios weakens the immune responses of blood clam, Tegillarca granosa. FISH & SHELLFISH IMMUNOLOGY 2017; 63:465-470. [PMID: 28254499 DOI: 10.1016/j.fsi.2017.02.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/23/2017] [Accepted: 02/25/2017] [Indexed: 06/06/2023]
Abstract
Persistent organic pollutants (POPs) are known to converge into the ocean and accumulate in the sediment, posing great threats to marine organisms such as the sessile bottom burrowing bivalves. However, the immune toxicity of POPs, such as B[a]P, under future ocean acidification scenarios remains poorly understood to date. Therefore, in the present study, the impacts of B[a]P exposure on the immune responses of a bivalve species, Tegillarca granosa, under present and future ocean acidification scenarios were investigated. Results obtained revealed an increased immune toxicity of B[a]P under future ocean acidification scenarios in terms of reduced THC, altered haemocyte composition, and hampered phagocytosis, which may attribute to the synergetic effects of B[a]P and ocean acidification. In addition, the gene expressions of pathogen pattern recognition receptors (TLR1, TLR2, TLR4, TLR6), pathway mediators (TRAF6, TAK1, TAB2, IKKα and Myd88), and effectors (NF-ĸB) of the important immune related pathways were significantly down-regulated upon exposure to B[a]P under future ocean acidification scenarios. Results of the present study suggested an increased immune toxicity of B[a]P under future ocean acidification scenarios, which will significantly hamper the immune responses of T. granosa and subsequently render individuals more susceptible to pathogens challenges.
Collapse
Affiliation(s)
- Wenhao Su
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shanjie Zha
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yichen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guoqiang Xiao
- Zhejiang Mariculture Research Institute, Wenzhou, PR China
| | - Xueliang Chai
- Zhejiang Mariculture Research Institute, Wenzhou, PR China
| | - Hongxi Wu
- Zhejiang Fisheries Technology Extension Station, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
15
|
Ranjit S, Midde NM, Sinha N, Patters BJ, Rahman MA, Cory TJ, Rao PSS, Kumar S. Effect of Polyaryl Hydrocarbons on Cytotoxicity in Monocytic Cells: Potential Role of Cytochromes P450 and Oxidative Stress Pathways. PLoS One 2016; 11:e0163827. [PMID: 27684561 PMCID: PMC5042547 DOI: 10.1371/journal.pone.0163827] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/14/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Benzo(a)pyrene (BaP), naphthalene (NPh), phenanthrene (Phe), benzo(a)antharacene (BeA), and benzo(b)fluoranthene (BeF) are known carcinogenic polyaryl hydrocarbons (PAHs) present in cigarette smoke. This study was designed to examine the relative effect of these constituents on the cytotoxicity of monocytic cells and the possible mechanism of PAH-mediated cytotoxicity. METHODS We examined the acute (6-24 hours) and chronic (7 days) effects of these PAHs on the expression of cytochromes P450 (CYPs), oxidative stress, and cytotoxicity. The treated cells were examined for mRNA and protein levels of CYPs (1A1 and 3A4) and antioxidants enzymes (AOEs) superoxide dismutase-1 (SOD1) and catalase. Further, we assessed the levels of reactive oxygen species (ROS), caspase-3 cleavage activity, and cell viability. We performed these experiments in U937 and/or primary monocytic cells. RESULTS Of the five PAHs tested, after chronic treatment only BaP (100 nM) showed a significant increase in the expression of CYP1A1, AOEs (SOD1 and catalase), ROS generation, caspase-3 cleavage activity, and cytotoxicity. However, acute treatment with BaP showed only an increase in the mRNA expression of CYP1A1. CONCLUSIONS These results suggest that of the five PAHs tested, BaP is the major contributor to the toxic effect of PAHs in monocytic cells, which is likely to occur through CYP and oxidative stress pathways.
Collapse
Affiliation(s)
- Sabina Ranjit
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - Narasimha M. Midde
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - Namita Sinha
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - Benjamin J. Patters
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - Mohammad A. Rahman
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - Theodore J. Cory
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - P. S. S. Rao
- Department of Pharmaceutical Sciences, The University of Findley, 1000 N. Main Street, Findlay, OH, 45840, United States of America
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
- * E-mail:
| |
Collapse
|
16
|
Chen H, Song Q, Diao X, Zhou H. Proteomic and metabolomic analysis on the toxicological effects of Benzo[a]pyrene in pearl oyster Pinctada martensii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:81-9. [PMID: 26999675 DOI: 10.1016/j.aquatox.2016.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 05/15/2023]
Abstract
Benzo[a]pyrene (BaP) is one of the typical toxic polycyclic aromatic hydrocarbons (PAHs) that are widely present in marine environment. BaP has diverse toxic effects, including teratogenic, carcinogenic, mutagenic effects and so on, in various organisms. In this work, we focused on the differential proteomic and metabolomic responses in the digestive gland of pearl oyster Pinctada martensii exposed to two doses of BaP (1 and 10μg/L). Metabolic responses revealed that the high dose of BaP (10μg/L) mainly caused disturbances in osmotic regulation and energy metabolism in the digestive gland. Proteomic responses indicated that both doses of BaP induced disturbances in energy metabolism, cytoskeleton, cell injury, oxidative stress and signal transduction based on the differential proteomic biomarkers. Overall, these results demonstrated a number of potential biomarkers that were characterized by an integrated proteomic and metabolomic approach and provided a useful insight into the toxicological effects on pearl oyster P. martensii.
Collapse
Affiliation(s)
- Hao Chen
- College of Environment and Plant Protection, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environmental Toxicology, Haikou 570228, China.
| | - Qinqin Song
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Xiaoping Diao
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environmental Toxicology, Haikou 570228, China.
| | - Hailong Zhou
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environmental Toxicology, Haikou 570228, China.
| |
Collapse
|