1
|
Sobhani-Nasab A, Banafshe HR, Atapour A, Khaksary Mahabady M, Akbari M, Daraei A, Mansoori Y, Moradi Hasan-Abad A. The use of nanoparticles in the treatment of infectious diseases and cancer, dental applications and tissue regeneration: a review. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 5:1330007. [PMID: 38323112 PMCID: PMC10844477 DOI: 10.3389/fmedt.2023.1330007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/12/2023] [Indexed: 02/08/2024] Open
Abstract
The emergence of nanotechnology as a field of study can be traced back to the 1980s, at which point the means to artificially produce, control, and observe matter on a nanometer level was made viable. Recent advancements in technology have enabled us to extend our reach to the nanoscale, which has presented an unparalleled opportunity to directly target biomolecular interactions. As a result of these developments, there is a drive to arise intelligent nanostructures capable of overcoming the obstacles that have impeded the progress of conventional pharmacological methodologies. After four decades, the gradual amalgamation of bio- and nanotechnologies is initiating a revolution in the realm of disease detection, treatment, and monitoring, as well as unsolved medical predicaments. Although a significant portion of research in the field is still confined to laboratories, the initial application of nanotechnology as treatments, vaccines, pharmaceuticals, and diagnostic equipment has now obtained endorsement for commercialization and clinical practice. The current issue presents an overview of the latest progress in nanomedical strategies towards alleviating antibiotic resistance, diagnosing and treating cancer, addressing neurodegenerative disorders, and an array of applications, encompassing dentistry and tuberculosis treatment. The current investigation also scrutinizes the deployment of sophisticated smart nanostructured materials in fields of application such as regenerative medicine, as well as the management of targeted and sustained release of pharmaceuticals and therapeutic interventions. The aforementioned concept exhibits the potential for revolutionary advancements within the field of immunotherapy, as it introduces the utilization of implanted vaccine technology to consistently regulate and augment immune functions. Concurrently with the endeavor to attain the advantages of nanomedical intervention, it is essential to enhance the unceasing emphasis on nanotoxicological research and the regulation of nanomedications' safety. This initiative is crucial in achieving the advancement in medicine that currently lies within our reach.
Collapse
Affiliation(s)
- Ali Sobhani-Nasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Banafshe
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Akbari
- Department of Surgery, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Tamaddon AM, Bashiri R, Najafi H, Mousavi K, Jafari M, Borandeh S, Aghdaie MH, Shafiee M, Abolmaali SS, Azarpira N. Biocompatibility of graphene oxide nanosheets functionalized with various amino acids towards mesenchymal stem cells. Heliyon 2023; 9:e19153. [PMID: 37664696 PMCID: PMC10469575 DOI: 10.1016/j.heliyon.2023.e19153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Graphene and its derivatives have gained popularity due to their numerous applications in various fields, such as biomedicine. Recent reports have revealed the severe toxic effects of these nanomaterials on cells and organs. In general, the chemical composition and surface chemistry of nanomaterials affect their biocompatibility. Therefore, the purpose of the present study was to evaluate the cytotoxicity and genotoxicity of graphene oxide (GO) synthesized by Hummer's method and functionalized by different amino acids such as lysine, methionine, aspartate, and tyrosine. The obtained nanosheets were identified by FT-IR, EDX, RAMAN, FE-SEM, and DLS techniques. In addition, trypan blue and Alamar blue methods were used to assess the cytotoxicity of mesenchymal stem cells extracted from human embryonic umbilical cord Wharton jelly (WJ-MSCs). The annexin V staining procedure was used to determine apoptotic and necrotic death. In addition, COMET and karyotyping techniques were used to assess the extent of DNA and chromosome damage. The results of the cytotoxicity assay showed that amino acid modifications significantly reduced the concentration-dependent cytotoxicity of GO to varying degrees. The GO modified with aspartic acid had the lowest cytotoxicity. There was no evidence of chromosomal damage in the karyotyping method, but in the comet assay, the samples modified with tyrosine and lysine showed the greatest DNA damage and rate of apoptosis. Overall, the aspartic acid-modified GO caused the least cellular and genetic damage to WJ-MSCs, implying its superior biomedical applications such as cell therapy and tissue engineering over GO.
Collapse
Affiliation(s)
- Ali Mohammad Tamaddon
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Rahman Bashiri
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Haniyeh Najafi
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Khadijeh Mousavi
- Food and Drug Administration, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahboobeh Jafari
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Sedigheh Borandeh
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Mahdokht H. Aghdaie
- Transplant Research Center, Shiraz University of Medical Sciences, Mohammad Rasoul-Allah Research Tower, Shiraz, PO Box 7193711351, Iran
| | - Mina Shafiee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Mohammad Rasoul-Allah Research Tower, Shiraz, PO Box 7193711351, Iran
| |
Collapse
|
3
|
Siivola KK, Burgum MJ, Suárez-Merino B, Clift MJD, Doak SH, Catalán J. A systematic quality evaluation and review of nanomaterial genotoxicity studies: a regulatory perspective. Part Fibre Toxicol 2022; 19:59. [PMID: 36104711 PMCID: PMC9472411 DOI: 10.1186/s12989-022-00499-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/26/2022] [Indexed: 12/29/2022] Open
Abstract
The number of publications in the field of nanogenotoxicology and the amount of genotoxicity data on nanomaterials (NMs) in several databases generated by European Union (EU) funded projects have increased during the last decade. In parallel, large research efforts have contributed to both our understanding of key physico-chemical (PC) parameters regarding NM characterization as well as the limitations of toxicological assays originally designed for soluble chemicals. Hence, it is becoming increasingly clear that not all of these data are reliable or relevant from the regulatory perspective. The aim of this systematic review is to investigate the extent of studies on genotoxicity of NMs that can be considered reliable and relevant by current standards and bring focus to what is needed for a study to be useful from the regulatory point of view. Due to the vast number of studies available, we chose to limit our search to two large groups, which have raised substantial interest in recent years: nanofibers (including nanotubes) and metal-containing nanoparticles. Focusing on peer-reviewed publications, we evaluated the completeness of PC characterization of the tested NMs, documentation of the model system, study design, and results according to the quality assessment approach developed in the EU FP-7 GUIDEnano project. Further, building on recently published recommendations for best practices in nanogenotoxicology research, we created a set of criteria that address assay-specific reliability and relevance for risk assessment purposes. Articles were then reviewed, the qualifying publications discussed, and the most common shortcomings in NM genotoxicity studies highlighted. Moreover, several EU projects under the FP7 and H2020 framework set the aim to collectively feed the information they produced into the eNanoMapper database. As a result, and over the years, the eNanoMapper database has been extended with data of various quality depending on the existing knowledge at the time of entry. These activities are highly relevant since negative results are often not published. Here, we have reviewed the NanoInformaTIX instance under the eNanoMapper database, which hosts data from nine EU initiatives. We evaluated the data quality and the feasibility of use of the data from a regulatory perspective for each experimental entry.
Collapse
Affiliation(s)
- Kirsi K. Siivola
- grid.6975.d0000 0004 0410 5926Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland
| | - Michael J. Burgum
- grid.4827.90000 0001 0658 8800In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP Wales UK
| | | | - Martin J. D. Clift
- grid.4827.90000 0001 0658 8800In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP Wales UK
| | - Shareen H. Doak
- grid.4827.90000 0001 0658 8800In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP Wales UK
| | - Julia Catalán
- grid.6975.d0000 0004 0410 5926Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland ,grid.11205.370000 0001 2152 8769Department of Anatomy Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
4
|
Ince Yardimci A, Istifli ES, Acikbas Y, Liman R, Yagmucukardes N, Yilmaz S, Ciğerci İH. Synthesis and characterization of single-walled carbon nanotube: Cyto-genotoxicity in Allium cepa root tips and molecular docking studies. Microsc Res Tech 2022; 85:3193-3206. [PMID: 35678501 DOI: 10.1002/jemt.24177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 11/11/2022]
Abstract
Herein, single-walled carbon nanotubes (SWCNTs) were synthesized by the thermal chemical vapor deposition (CVD) method, and characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), Raman spectroscopy, dynamic light scattering (DLS), and thermo-gravimetric analysis (TGA). The results indicated that obtained nanotubes were SWCNTs with high crystallinity and their average diameter was 10.15 ± 3 nm. Allium cepa ana-telophase and comet assays on the root meristem were employed to evaluate the cytotoxic and genotoxic effects of SWCNTs by examining mitotic phases, mitotic index (MI), chromosomal aberrations (CAs), and DNA damage. A. cepa root tip cells were exposed to SWCNTs at concentrations of 12.5, 25, 50, and 100 μg/ml for 4 h. Distilled water and methyl methanesulfonate (MMS, 10 μg/ml) were used as the negative and positive control groups, respectively. It was observed that MIs decreased statistically significantly for all applied doses. Besides, CAs such as chromosome laggards, disturbed anaphase-telophase, stickiness and bridges and also DNA damage increased in the presence of SWCNTs in a concentration-dependent manner. In the molecular docking study, the SWCNT were found to be a strong DNA major groove binder showing an energetically very favorable binding free energy of -21.27 kcal/mol. Furthermore, the SWCNT interacted effectively with the nucleotides on both strands of DNA primarily via hydrophobic π and electrostatic interactions. As a result, cytotoxic and genotoxic effects of SWCNTs in A. cepa root meristematic cells which is a reliable system for assessment of nanoparticle toxicology were demonstrated in this study.
Collapse
Affiliation(s)
| | - Erman Salih Istifli
- Department of Biology, Faculty of Science and Literature, Cukurova University, Adana, Turkey
| | - Yaser Acikbas
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Usak University, Usak, Turkey
| | - Recep Liman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Usak University, Usak, Turkey
| | - Nesli Yagmucukardes
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Usak University, Usak, Turkey
| | - Selahattin Yilmaz
- Department of Chemical Engineering, Izmir Institute of Technology, Izmir, Turkey
| | - İbrahim Hakkı Ciğerci
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
5
|
Vijayalakshmi V, Sadanandan B, Venkataramanaiah Raghu A. Single walled carbon nanotubes in high concentrations is cytotoxic to the human neuronal cell LN18. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
6
|
Genotoxicity of aluminium oxide, iron oxide, and copper nanoparticles in mouse bone marrow cells. Arh Hig Rada Toksikol 2021; 72:315-325. [PMID: 34985838 PMCID: PMC8785108 DOI: 10.2478/aiht-2021-72-3578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to evaluate the genotoxic effects of Al2O3, Fe2O3, and Cu nanoparticles with chromosomal aberration (CA), micronucleus (MN), and comet assays on the bone marrow of male BALB/c mice. Three doses of Al2O3, Fe2O3 (75, 150, and 300 mg/kg), or Cu (5, 10, and 15 mg/kg) nanoparticles were administered to mice through intraperitoneal injection once a day for 14 days and compared with negative control (distilled water) and positive control (mitomycin C and methyl methanesulphonate). Al2O3 and Fe2O3 did not show genotoxic effects, but Cu nanoparticles induced significant (P<0.05) genotoxicity at the highest concentration compared to negative control. Our findings add to the health risk information of Al2O3, Fe2O3, and Cu nanoparticles regarding human exposure (occupational and/or through consumer products or medical treatment), and may provide regulatory reference for safe use of these nanoparticles. However, before they can be used safely and released into the environment further chronic in vivo studies are essential.
Collapse
|
7
|
Kumar S, Kumar K, Yadav R, Kukutla P, Devunuri N, Deenadayalu N, Venkatesu P. Understanding the close encounter of heme proteins with carboxylated multiwalled carbon nanotubes: a case study of contradictory stability trend for hemoglobin and myoglobin. Phys Chem Chem Phys 2021; 23:19740-19751. [PMID: 34525143 DOI: 10.1039/d1cp02167b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon nanotubes (CNTs) are one of the unique and promising nanomaterials that possess plenty of applications, such as biosensors, advanced drug delivery systems and biotechnology. CNTs bind rapidly with proteins, which result in the formation of a protein coating layer known as a "protein corona" around the surface of the nanomaterial. This hinders their applications as a drug carrier and influences the properties of biological macromolecules. The present work focuses on studying the thermal stability and molecular level interactions of two heme proteins, hemoglobin (Hb) and myoglobin (Mb), in the presence of carboxylated functionalized multi-walled CNTs (CA-MWCNTs). Through the current study, the following steps have been taken to distinguish the biocompatibility of the hydrophilic surface CA-MWCNTs for heme proteins via a series of spectroscopic techniques and differential scanning calorimetry (DSC). UV-Visible and steady-state fluorescence spectroscopy were used to reveal changes in the aromatic amino acid residues of heme proteins upon the addition of CA-MWCNTs. Circular dichroism spectroscopy (CD) shows the alteration in the native structure of proteins in the presence of the nanomaterial. A tremendous increase in the size of the protein CA-MWCNTs system is observed in dynamic light scattering (DLS), which clearly manifests the protein corona formation. Unexpectedly, both proteins interact differently with CA-MWCNTs, which is observed in CD spectroscopy and DSC. In the presence of CA-MWCNTs, an increase in the transition temperature (Tm) was observed for Hb, while the Tm value decreases for Mb. Different interactions with proteins at the molecular scale may be the reason for this unexpected behavior. Henceforth, the present results can help in the design of the next-generation drug carrier nanomaterials with the idea of the heme protein corona formation prior to development.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, University of Delhi, Delhi-110 007, India.
| | - Krishan Kumar
- Department of Chemistry, University of Delhi, Delhi-110 007, India.
| | - Ritu Yadav
- Department of Chemistry, University of Delhi, Delhi-110 007, India.
| | - Prasanna Kukutla
- Department of Chemistry, University of Delhi, Delhi-110 007, India. .,Vignan's Foundation for Science, Technology and Research (VFSTR) Deemed to be University, Vadlamudi, Guntur-522 213, Andhra Pradesh, India
| | - Nagaraju Devunuri
- Vignan's Foundation for Science, Technology and Research (VFSTR) Deemed to be University, Vadlamudi, Guntur-522 213, Andhra Pradesh, India
| | - Nirmala Deenadayalu
- Department of Chemistry, Durban University of Technology, Durban-4000, South Africa
| | | |
Collapse
|
8
|
Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology. J Toxicol 2021; 2021:9954443. [PMID: 34422042 PMCID: PMC8376461 DOI: 10.1155/2021/9954443] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
Nanoparticles are of great importance in development and research because of their application in industries and biomedicine. The development of nanoparticles requires proper knowledge of their fabrication, interaction, release, distribution, target, compatibility, and functions. This review presents a comprehensive update on nanoparticles' toxic effects, the factors underlying their toxicity, and the mechanisms by which toxicity is induced. Recent studies have found that nanoparticles may cause serious health effects when exposed to the body through ingestion, inhalation, and skin contact without caution. The extent to which toxicity is induced depends on some properties, including the nature and size of the nanoparticle, the surface area, shape, aspect ratio, surface coating, crystallinity, dissolution, and agglomeration. In all, the general mechanisms by which it causes toxicity lie on its capability to initiate the formation of reactive species, cytotoxicity, genotoxicity, and neurotoxicity, among others.
Collapse
|
9
|
Jiang T, Amadei CA, Gou N, Lin Y, Lan J, Vecitis CD, Gu AZ. Toxicity of Single-Walled Carbon Nanotubes (SWCNTs): Effect of Lengths, Functional Groups and Electronic Structures Revealed by a Quantitative Toxicogenomics Assay. ENVIRONMENTAL SCIENCE. NANO 2020; 7:1348-1364. [PMID: 33537148 PMCID: PMC7853656 DOI: 10.1039/d0en00230e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) are a group of widely used carbon-based nanomaterials (CNMs) with various applications, which raise increasing public concerns associated with their potential toxicological effect and risks on human and ecosystems. In this report, we comprehensively evaluated the nanotoxicity of SWCNTs with their relationship to varying lengths, functional groups and electronic structures, by employing both newly established quantitative toxicogenomics test, as well as conventional phenotypic bioassays. The objective is to reveal potential cellular toxicity and mechanisms of SWCNTs at the molecular level, and to probe their potential relationships with their morphological, surface, and electronic properties. The results indicated that DNA damage and oxidative stress were the dominant mechanisms of action for all SWCNTs and, the toxicity level and characteristics varied with length, surface functionalization and electronic structure. Distinguishable molecular toxicity fingerprints were revealed for the two SWCNTs with varying length, with short SWCNT exhibiting higher toxicity level than the long one. In terms of surface properties, SWCNT functionalization, namely carboxylation and hydroxylation, led to elevated overall toxicity, especially genotoxicity, as compared to unmodified SWCNT. Carboxylated SWCNT induced a greater toxicity than the hydroxylated SWCNT. The nucleus is likely the primary target site for long, short, and carboxylated SWCNTs and mechanical perturbation is likely responsible for the DNA damage, specifically related to degradation of the DNA double helix structure. Finally, dramatically different electronic structure-dependent toxicity was observed with metallic SWCNT exerting much higher toxicity than the semiconducting one that exhibited minimal toxicity among all SWCNTs.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115
| | - Carlo Alberto Amadei
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Na Gou
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Dr., Ithaca, NY 14853
| | - Yishan Lin
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Dr., Ithaca, NY 14853
| | - Jiaqi Lan
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Corresponding authors: ,
| | - Chad D. Vecitis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - April Z. Gu
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Dr., Ithaca, NY 14853
- Corresponding authors: ,
| |
Collapse
|
10
|
Jeong S, Yang D, Beyene AG, Del Bonis-O’Donnell JT, Gest AMM, Navarro N, Sun X, Landry MP. High-throughput evolution of near-infrared serotonin nanosensors. SCIENCE ADVANCES 2019; 5:eaay3771. [PMID: 31897432 PMCID: PMC6920020 DOI: 10.1126/sciadv.aay3771] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/30/2019] [Indexed: 05/11/2023]
Abstract
Imaging neuromodulation with synthetic probes is an emerging technology for studying neurotransmission. However, most synthetic probes are developed through conjugation of fluorescent signal transducers to preexisting recognition moieties such as antibodies or receptors. We introduce a generic platform to evolve synthetic molecular recognition on the surface of near-infrared fluorescent single-wall carbon nanotube (SWCNT) signal transducers. We demonstrate evolution of molecular recognition toward neuromodulator serotonin generated from large libraries of ~6.9 × 1010 unique ssDNA sequences conjugated to SWCNTs. This probe is reversible and produces a ~200% fluorescence enhancement upon exposure to serotonin with a K d = 6.3 μM, and shows selective responsivity over serotonin analogs, metabolites, and receptor-targeting drugs. Furthermore, this probe remains responsive and reversible upon repeat exposure to exogenous serotonin in the extracellular space of acute brain slices. Our results suggest that evolution of nanosensors could be generically implemented to develop other neuromodulator probes with synthetic molecular recognition.
Collapse
Affiliation(s)
- Sanghwa Jeong
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Darwin Yang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Abraham G. Beyene
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Anneliese M. M. Gest
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicole Navarro
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiaoqi Sun
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Institute (IGI), Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
11
|
Cui X, Wan B, Yang Y, Xin Y, Xie YC, Guo LH, Mantell LL. Carbon Nanomaterials Stimulate HMGB1 Release From Macrophages and Induce Cell Migration and Invasion. Toxicol Sci 2019; 172:398-410. [DOI: 10.1093/toxsci/kfz190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Carbon nanomaterials (CNMs) are widely used in industrial and medical sectors. The increasing exposure of CNMs necessitates the studies of their potential environmental and health effects. High-mobility group box-1 (HMGB1) is a nuclear DNA-binding protein, but when released from cells, may cause sustained inflammatory response and promote cell migration and invasion. In this work, we found that 7-day exposure of 2.5 mg/kg/day CNMs, including C60, single-walled carbon nanotubes, and graphene oxides significantly elevated the level of HMGB1 in blood and lung lavage fluids in C57BL/6 mice. Subsequently, cellular effects and underlying mechanism were explored by using Raw264.7. The results showed that noncytotoxic CNMs enhanced HMGB1 intracellular translocation and release via activating P2X7 receptor. Released HMGB1 further activated receptor for advanced glycation endproducts (RAGE) and downstream signaling pathway by upregulating RAGE and Rac1 expression. Simultaneously, CNMs prepared the cells for migration and invasion by modulating MMP2 and TIMP2 gene expression as well as cytoskeleton reorganization. Intriguingly, released HMGB1 from macrophages promoted the migration of nearby lung cancer cell, which can be efficiently inhibited by neutralizing antibodies against HMGB1 and RAGE. Taken together, our work demonstrated that CNMs stimulated HMGB1 release and cell migration/invasion through P2X7R-HMGB1-RAGE pathway. The revealed mechanisms might facilitate a better understanding on the inflammatory property and subsequent cell functional alteration of CNMs.
Collapse
Affiliation(s)
- Xuejing Cui
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Wan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yan Xin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Chun Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang-Hong Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy, Queens, NY 11439
| |
Collapse
|
12
|
Chen M, Zhou S, Zhu Y, Sun Y, Zeng G, Yang C, Xu P, Yan M, Liu Z, Zhang W. Toxicity of carbon nanomaterials to plants, animals and microbes: Recent progress from 2015-present. CHEMOSPHERE 2018; 206:255-264. [PMID: 29753288 DOI: 10.1016/j.chemosphere.2018.05.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Nanotechnology has gained significant development over the past decades, which led to the revolution in the fields of information, medicine, industry, food security and aerospace aviation. Nanotechnology has become a new research hot spot in the world. However, we cannot only pay attention to its benefit to the society and economy, because its wide use has been bringing potential environmental and health effects that should be noticed. This paper reviews the recent progress from 2015-present in the toxicity of various carbon nanomaterials to plants, animals and microbes, and lays the foundation for further study on the environmental and ecological risks of carbon nanomaterials.
Collapse
Affiliation(s)
- Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Shuang Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yi Zhu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Yingzhu Sun
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
13
|
Khorsandi L, Orazizadeh M, Moradi-Gharibvand N, Hemadi M, Mansouri E. Beneficial effects of quercetin on titanium dioxide nanoparticles induced spermatogenesis defects in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5595-5606. [PMID: 28035607 DOI: 10.1007/s11356-016-8325-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Many recent studies have demonstrated that most nanoparticles (NPs) have an adverse or toxic action on male germ cells. In present study, protective effect of quercetin (Que) on titanium dioxide nanoparticle (NTiO2)-induced spermatogenesis defects in mice was investigated. Thirty-two Naval Medical Research Institute (NMRI) mice were randomly divided into four groups. Que group received 75 mg/kg of Que for 42 days. NTiO2 group received 300 mg/kg NTiO2 for 35 days. NTiO2 + Que group initially received 75 mg/kg Que for 7 days and was followed by concomitant administration of 300 mg/kg NTiO2 for 35 days. Control group received only normal saline for 42 days. Sperm parameters, testosterone concentration, histological criteria, and apoptotic index were assessed. Product of lipid peroxidation (MDA), superoxide dismutase (SOD), and catalase (CAT) activities were also evaluated for oxidative stress in testicular tissue. Administration of NTiO2 significantly induced histological changes in testicular tissue; increased apoptotic index; and decreased testicular weight, testosterone concentration, and sperm quality (p < 0.01). In the testis, NTiO2 increased oxidative stress through an increase in lipid peroxidation and a decrease in SOD and CAT activities (p < 0.05). Que pretreatment could significantly attenuate testicular weight; apoptotic index; and histological criteria including vacuolization, detachment, and sloughing of germ cells in seminiferous tubules. Serum and tissue testosterone levels were significantly increased in Que-pretreated mice (p < 0.01). Sperm parameters including sperm number, motility, and percentage of abnormality were also effectively improved by Que pretreatment (p < 0.01). Pretreatment of Que significantly ameliorated oxidative stress and increased the activities of SOD and CAT in testicular tissue. These results indicate that sperm production can be increased by Que pretreatment in NTiO2-intoxicated mice. The improved sperm quality and reverse testis histology by Que pretreatment may be a consequence of elevation testosterone concentration, reduction in germ cell apoptosis, and suppression of oxidative stress in testicular tissue.
Collapse
Affiliation(s)
- Layasadat Khorsandi
- Cell and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, P. O. Box: 61335, Ahvaz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mahmoud Orazizadeh
- Cell and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, P. O. Box: 61335, Ahvaz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nahid Moradi-Gharibvand
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Hemadi
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cell and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, P. O. Box: 61335, Ahvaz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
14
|
Suzuki Y, Tada-Oikawa S, Hayashi Y, Izuoka K, Kataoka M, Ichikawa S, Wu W, Zong C, Ichihara G, Ichihara S. Single- and double-walled carbon nanotubes enhance atherosclerogenesis by promoting monocyte adhesion to endothelial cells and endothelial progenitor cell dysfunction. Part Fibre Toxicol 2016; 13:54. [PMID: 27737702 PMCID: PMC5064793 DOI: 10.1186/s12989-016-0166-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The use of carbon nanotubes has increased lately. However, the cardiovascular effect of exposure to carbon nanotubes remains elusive. The present study investigated the effects of pulmonary exposure to single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) on atherosclerogenesis using normal human aortic endothelial cells (HAECs) and apolipoprotein E-deficient (ApoE-/-) mice, a model of human atherosclerosis. METHODS HAECs were cultured and exposed to SWCNTs or DWCNTs for 16 h. ApoE-/- mice were exposed to SWCNTs or DWCNTs (10 or 40 μg/mouse) once every other week for 10 weeks by pharyngeal aspiration. RESULTS Exposure to CNTs increased the expression level of adhesion molecule (ICAM-1) and enhanced THP-1 monocyte adhesion to HAECs. ApoE-/- mice exposed to CNTs showed increased plaque area in the aorta by oil red O staining and up-regulation of ICAM-1 expression in the aorta, compared with vehicle-treated ApoE-/- mice. Endothelial progenitor cells (EPCs) are mobilized from the bone marrow into the circulation and subsequently migrate to the site of endothelial damage and repair. Exposure of ApoE-/- mice to high-dose SWCNTs or DWCNTs reduced the colony-forming units of EPCs in the bone marrow and diminished their migration function. CONCLUSION The results suggested that SWCNTs and DWCNTs enhanced atherosclerogenesis by promoting monocyte adhesion to endothelial cells and inducing EPC dysfunction.
Collapse
Affiliation(s)
- Yuka Suzuki
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu, 514-8507, Japan
| | - Saeko Tada-Oikawa
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu, 514-8507, Japan
| | - Yasuhiko Hayashi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Kiyora Izuoka
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu, 514-8507, Japan
| | - Misa Kataoka
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu, 514-8507, Japan
| | - Shunsuke Ichikawa
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu, 514-8507, Japan
| | - Wenting Wu
- Department of Occupational and Environmental Health, Nagoya Univeristy Graduate School of Medicine, Nagoya, Japan
| | - Cai Zong
- Department of Occupational and Environmental Health, Nagoya Univeristy Graduate School of Medicine, Nagoya, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Tokyo Univeristy of Science, Noda, Japan
| | - Sahoko Ichihara
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu, 514-8507, Japan.
| |
Collapse
|
15
|
Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A. Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity. J Med Chem 2016; 59:8149-67. [DOI: 10.1021/acs.jmedchem.5b01770] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Reem Alshehri
- Center of Nanotechnology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Asad Muhammad Ilyas
- Center of Excellence in Genomic Medical Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Engineering and Department of Mechanical Engineering,
Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
- Biomaterials
Innovation Research Center, Division of Biomedical Engineering, Department
of Medicine, Brigham and Women’s Hospital, Harvard Medical
School, Boston Massachusetts 02115, United States
| | - Adnan Arnaout
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Farid Ahmed
- Center of Excellence in Genomic Medical Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|