1
|
Fan Y, Sun N, Lv S, Jiang H, Zhang Z, Wang J, Xie Y, Yue X, Hu B, Ju B, Yu P. Prediction of developmental toxic effects of fine particulate matter (PM 2.5) water-soluble components via machine learning through observation of PM 2.5 from diverse urban areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174027. [PMID: 38906297 DOI: 10.1016/j.scitotenv.2024.174027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The global health implications of fine particulate matter (PM2.5) underscore the imperative need for research into its toxicity and chemical composition. In this study, zebrafish embryos exposed to the water-soluble components of PM2.5 from two cities (Harbin and Hangzhou) with differences in air quality, underwent microscopic examination to identify primary target organs. The Harbin PM2.5 induced dose-dependent organ malformation in zebrafish, indicating a higher level of toxicity than that of the Hangzhou sample. Harbin PM2.5 led to severe deformities such as pericardial edema and a high mortality rate, while the Hangzhou sample exhibited hepatotoxicity, causing delayed yolk sac absorption. The experimental determination of PM2.5 constituents was followed by the application of four algorithms for predictive toxicological assessment. The random forest algorithm correctly predicted each of the effect classes and showed the best performance, suggesting that zebrafish malformation rates were strongly correlated with water-soluble components of PM2.5. Feature selection identified the water-soluble ions F- and Cl- and metallic elements Al, K, Mn, and Be as potential key components affecting zebrafish development. This study provides new insights into the developmental toxicity of PM2.5 and offers a new approach for predicting and exploring the health effects of PM2.5.
Collapse
Affiliation(s)
- Yang Fan
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Nannan Sun
- Hangzhou SanOmics AI Co., Ltd, Hangzhou 311103, China
| | - Shenchong Lv
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hui Jiang
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ziqing Zhang
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junjie Wang
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiyi Xie
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaomin Yue
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Baolan Hu
- College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bin Ju
- Hangzhou SanOmics AI Co., Ltd, Hangzhou 311103, China.
| | - Peilin Yu
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
2
|
Giammona A, Remedia S, Porro D, Lo Dico A, Bertoli G. The biological interplay between air pollutants and miRNAs regulation in cancer. Front Cell Dev Biol 2024; 12:1343385. [PMID: 38434617 PMCID: PMC10905188 DOI: 10.3389/fcell.2024.1343385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/18/2024] [Indexed: 03/05/2024] Open
Abstract
Air pollution, especially fine particulate matter (PM2.5, with an aerodynamic diameter of less than 2.5 μm), represents a risk factor for human health. Many studies, regarding cancer onset and progression, correlated with the short and/or long exposition to PM2.5. This is mainly mediated by the ability of PM2.5 to reach the pulmonary alveoli by penetrating into the blood circulation. This review recapitulates the methodologies used to study PM2.5 in cellular models and the downstream effects on the main molecular pathways implicated in cancer. We report a set of data from the literature, that describe the involvement of miRNAs or long noncoding RNAs on the main biological processes involved in oxidative stress, inflammation, autophagy (PI3K), cell proliferation (NFkB, STAT3), and EMT (Notch, AKT, Wnt/β-catenin) pathways. microRNAs, as well as gene expression profile, responds to air pollution environment modulating some key genes involved in epigenetic modification or in key mediators of the biological processes described below. In this review, we provide some scientific evidences about the thigh correlation between miRNAs dysregulation, PM2.5 exposition, and gene pathways involved in cancer progression.
Collapse
Affiliation(s)
- Alessandro Giammona
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Sofia Remedia
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Segrate, Italy
| | - Danilo Porro
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Alessia Lo Dico
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
3
|
He B, Xu HM, Liu HW, Zhang YF. Unique regulatory roles of ncRNAs changed by PM 2.5 in human diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114812. [PMID: 36963186 DOI: 10.1016/j.ecoenv.2023.114812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
PM2.5 is a type of particulate matter with an aerodynamic diameter smaller than 2.5 µm, and exposure to PM2.5 can adversely damage human health. PM2.5 may impair health through oxidative stress, inflammatory reactions, immune function alterations and chromosome or DNA damage. Through increasing in-depth studies, researchers have found that noncoding RNAs (ncRNAs), particularly microRNAs (miRNAs), circular RNAs (circRNAs) as well as long noncoding RNAs (lncRNAs), might play significant roles in PM2.5-related human diseases via some of the abovementioned mechanisms. Therefore, in this review, we mainly discuss the regulatory function of ncRNAs altered by PM2.5 in human diseases and summarize the potential molecular mechanisms. The findings reveal that these ncRNAs might induce or promote diseases via inflammation, the oxidative stress response, cell autophagy, apoptosis, cell junction damage, altered cell proliferation, malignant cell transformation, disruption of synaptic function and abnormalities in the differentiation and status of immune cells. Moreover, according to a bioinformatics analysis, the altered expression of potential genes caused by these ncRNAs might be related to the development of some human diseases. Furthermore, some ncRNAs, including lncRNAs, miRNAs and circRNAs, or processes in which they are involved may be used as biomarkers for relevant diseases and potential targets to prevent these diseases. Additionally, we performed a meta-analysis to identify more promising diagnostic ncRNAs as biomarkers for related diseases.
Collapse
Affiliation(s)
- Bo He
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Medicine, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Hao-Wen Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
4
|
Ko HM, Choi SH, Jee W, Lee SH, Park D, Jung JH, Lee BJ, Kim KI, Jung HJ, Jang HJ. Rosa laevigata Attenuates Allergic Asthma Exacerbated by Water-Soluble PM by Downregulating the MAPK Pathway. Front Pharmacol 2022; 13:925502. [PMID: 35837279 PMCID: PMC9274115 DOI: 10.3389/fphar.2022.925502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to water-soluble particulate matter (WPM) containing heavy metals can cause severe inflammatory responses and trigger and exacerbate the onset of asthma. As a follow-up study of Rosa laevigata (RL), this study analyzed the therapeutic effects and mechanisms of oral and intratracheal administration of RL and demonstrated anti-inflammatory effects in asthma models. Worse T-helper cell type 2 (Th2)-related inflammatory and pro-inflammatory responses were observed after simultaneous challenge with ovalbumin (OVA) and WPM. To establish a model of asthma exacerbated by WPM, BALB/c mice were sensitized with OVA + aluminum hydroxide and challenged with OVA + WPM. To confirm the therapeutic efficacy of RL, it was administered both orally and intratracheally. Histopathological analysis of H&E staining confirmed that oral and intratracheal administration of RL alleviated inflammatory cell infiltration in the airways aggravated by OVA + WPM. RL effectively reduced the number of inflammatory cells obtained from the bronchoalveolar lavage fluid. In addition, enzyme-linked immunosorbent assay (ELISA) and multiplex analysis of serum samples confirmed that the administration of RL reduced the levels of immuno-globulin E (IgE), Th2-related cytokines, and pro-inflammatory cytokines. Furthermore, real-time PCR analysis of lung tissue samples confirmed that the release of MUC5AC (Mucin 5AC, Oligomeric Mucus/Gel-Forming) and pro-inflammatory cytokines was reduced by RL, and western blotting confirmed that the administration of RL reduced the phosphorylation of ERK and p38 in the MAPK pathway. In conclusion, oral and intratracheal administration of RL appears to have an anti-asthmatic effect by reducing the secretion of Th2-related cytokines, pro-inflammatory cytokines, and IgE by downregulating the MAPK pathway. Thus, RL has further demonstrated potential for development as an oral and inhaled therapeutic for asthma symptoms exacerbated by WPM exposure.
Collapse
Affiliation(s)
- Hyun Min Ko
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Seung-Han Choi
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Department of Biological Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Wona Jee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Seung-Hyeon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Doil Park
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Beom-Joon Lee
- Department of Biological Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Kwan-Il Kim
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hee-Jae Jung
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hyeung-Jin Jang
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
- *Correspondence: Hyeung-Jin Jang,
| |
Collapse
|
5
|
Zhao L, Zhang M, Bai L, Zhao Y, Cai Z, Yung KKL, Dong C, Li R. Real-world PM 2.5 exposure induces pathological injury and DNA damage associated with miRNAs and DNA methylation alteration in rat lungs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28788-28803. [PMID: 34988794 DOI: 10.1007/s11356-021-17779-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Fine particulate matter (PM2.5) has been demonstrated to threaten public health and increase lung cancer risk. DNA damage is involved in the pathogenesis of lung cancer. However, the mechanisms of epigenetic modification of lung DNA damage are still unclear. This study developed a real-world air PM2.5 inhalation system and exposed rats for 1 and 2 months, respectively, and investigated rat lungs pathological changes, inflammation, oxidative stress, and DNA damage effects. OGG1 and MTH1 expression was measured, along with their DNA methylation status and related miRNAs expression. The results showed that PM2.5 exposure led to pathological injury, influenced levels of inflammatory cytokines and oxidative stress factors in rat lungs. Of note, 2-month PM2.5 exposure aggravated pathological injury. Besides, PM2.5 significantly elevated OGG1 expression and suppressed MTH1 expression, which was correlated to oxidative stress and partially mediated by reducing OGG1 DNA methylation status and increasing miRNAs expression related to MTH1 in DNA damage with increases of γ-H2AX, 8-OHdG and GADD153. PM2.5 also activated c-fos and c-jun levels and inactivated PTEN levels in rat lungs. These suggested that epigenetic modification was probably a potential mechanism by which PM2.5-induced genotoxicity in rat lungs.
Collapse
Affiliation(s)
- Lifang Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Mei Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Lirong Bai
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Yufei Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ken Kin Lam Yung
- Institute of Environmental Science, Shanxi University, Taiyuan, China
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, China.
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China.
| |
Collapse
|
6
|
An J, Tang W, Wang L, Xue W, Yao W, Zhong Y, Qiu X, Li Y, Chen Y, Wang H, Shang Y. Transcriptomics changes and the candidate pathway in human macrophages induced by different PM 2.5 extracts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117890. [PMID: 34358868 DOI: 10.1016/j.envpol.2021.117890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Ambient fine particulate matter (PM2.5) is a worldwide environmental problem and is posing a serious threat to human health. Until now, the molecular toxicological mechanisms and the crucial toxic components of PM2.5 remain to be clarified. This study investigated the whole transcriptomic changes in THP-1 derived macrophages treated with different types of PM2.5 extracts using RNA sequencing technique. Bioinformatics analyses covering biological functions, signal pathways, protein networks and node genes were performed to explore the candidate pathways and critical genes, and to find the potential molecular mechanisms. Results of Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes pathway (KEGG), and protein-protein interaction (PPI) networks revealed that water extracts (WEs) of PM2.5 obviously influenced genes and molecular pathways responded to oxidative stress and inflammation. Dichloromethane extracts (DEs) specifically affected genes and signal cascades related to cell cycle progress process. Furthermore, compared with WEs collected in heating season, non-heating season WEs induced much higher expression levels of Ca-associated genes (including phosphodiesterase 4B and cyclooxygenase-2), which may consequently result in more severe inflammatory responses. While, for DEs exposure, the heating season (DH) group showed extensive induction of deferentially expressed genes (DEGs) related to cell cycle pathway, which may be caused by the higher polycyclic aromatic hydrocarbons (PAHs) contents in DH samples than those from non-heating season. In conclusion, the oxidative stress and inflammation response are closely correlated with cellular responses in THP-1 derived macrophages induced by water soluble components of PM2.5, and cell cycle dysregulation may play an important role in biological effects induced by organic components. The different transcriptomic changes induced by seasonal PM2.5 extracts may partially depend on the contents of PAHs and metal ions, respectively.
Collapse
Affiliation(s)
- Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Waner Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Lu Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wanlei Xue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Weiwei Yao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yufang Zhong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yi Li
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai, 200233, China
| | - Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China; State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai, 200233, China.
| |
Collapse
|
7
|
Xu L, Zhao Q, Li D, Luo J, Ma W, Jin Y, Li C, Chen J, Zhao K, Zheng Y, Yu D. MicroRNA-760 resists ambient PM 2.5-induced apoptosis in human bronchial epithelial cells through elevating heme-oxygenase 1 expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117213. [PMID: 33933780 DOI: 10.1016/j.envpol.2021.117213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
PM2.5 (particles matter smaller aerodynamic diameter of 2.5 μm) exposure, a major environmental risk factor for the global burden of diseases, is associated with high risks of respiratory diseases. Heme-oxygenase 1 (HMOX1) is one of the major molecular antioxidant defenses to mediate cytoprotective effects against diverse stressors, including PM2.5-induced toxicity; however, the regulatory mechanism of HMOX1 expression still needs to be elucidated. In this study, using PM2.5 as a typical stressor, we explored whether microRNAs (miRNAs) might modulate HMOX1 expression in lung cells. Systematic bioinformatics analysis showed that seven miRNAs have the potentials to target HMOX1 gene. Among these, hsa-miR-760 was identified as the most responsive miRNA to PM2.5 exposure. More importantly, we revealed a "non-conventional" miRNA function in hsa-miR-760 upregulating HMOX1 expression, by targeting the coding region and interacting with YBX1 protein. In addition, we observed that exogenous hsa-miR-760 effectively elevated HMOX1 expression, reduced the reactive oxygen agents (ROS) levels, and rescued the lung cells from PM2.5-induced apoptosis. Our results revealed that hsa-miR-760 might play an important role in protecting lung cells against PM2.5-induced toxicity, by elevating HMOX1 expression, and offered new clues to elucidate the diverse functions of miRNAs.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Qianwen Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Jing Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Zhang S, Zhang J, Guo D, Peng C, Tian M, Pei D, Wang Q, Yang F, Cao J, Chen Y. Biotoxic effects and gene expression regulation of urban PM 2.5 in southwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141774. [PMID: 33207436 DOI: 10.1016/j.scitotenv.2020.141774] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/16/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric fine particulate matter (PM2.5) causes severe haze in China and is regarded as a threat to human health. The health effects of PM2.5 vary location by location due to the variation in size distribution, chemical composition, and sources. In this study, the cytotoxicity effect, oxidative stress, and gene expression regulation of PM2.5 in Chengdu and Chongqing, two typical urban areas in southern China, were evaluated. Urban PM2.5 in summer and winter significantly inhibited cell viability and increased reactive oxygen species (ROS) levels in A549 cells. Notably, PM2.5 in winter exhibited higher cytotoxicity and ROS level than summer. Moreover, in this study, PM2.5 commonly induced cancer-related gene expression such as cell adhesion molecule 1 (PECAM1), interleukin 24 (IL24), and cytochrome P450 (CYP1A1); meanwhile, PM2.5 commonly acted on cancer-related biological functions such as cell-substrate junction, cell-cell junction, and focal adhesion. In particular, PM2.5 in Chengdu in summer had the highest carcinogenic potential among PM2.5 at the two sites in summer and winter. Importantly, cancer-related genes were uniquely targeted by PM2.5, such as epithelial splicing regulatory protein 1 (ESRP1) and membrane-associated ring-CH-type finger 1 (1-Mar) by Chengdu summer PM2.5; collagen type IX alpha 3 chain (COL9A3) by Chengdu winter PM2.5; SH2 domain-containing 1B (SH2D1B) by Chongqing summer PM2.5; and interleukin 1 receptor-like 1 (IL1RL1) and zinc finger protein 42 (ZNF423) by Chongqing winter PM2.5. Meanwhile, important cancer-related biological functions were specially induced by PM2.5, such as cell cycle checkpoint by Chengdu summer PM2.5; macromolecule methylation by Chengdu winter PM2.5; endoplasmic reticulum-Golgi intermediate compartment membrane by Chongqing summer PM2.5; and cellular lipid catabolic process by Chongqing winter PM2.5. Conclusively, in the typical urban areas of southern China, both summer and winter PM2.5 illustrated significant gene regulation effects. This study contributes to evaluating the adverse health effects of PM2.5 in southern China and providing public health suggestions for policymakers.
Collapse
Affiliation(s)
- Shumin Zhang
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jingping Zhang
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Dongmei Guo
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Chao Peng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Mi Tian
- School of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400044, China
| | - Desheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Qiyuan Wang
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG) and Key Laboratory of Aerosol Chemistry and Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Junji Cao
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG) and Key Laboratory of Aerosol Chemistry and Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Yang Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
9
|
Zhang C, Gong Y, Li N, Liu X, Zhang Y, Ye F, Guo Q, Zheng J. Long noncoding RNA Kcnq1ot1 promotes sC5b-9-induced podocyte pyroptosis by inhibiting miR-486a-3p and upregulating NLRP3. Am J Physiol Cell Physiol 2020; 320:C355-C364. [PMID: 33296289 DOI: 10.1152/ajpcell.00403.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Podocytes are epithelial cells adhering glomerular capillaries, which regulate the integrity of glomerular filtration barrier. Irreversible podocyte injury induces glomerular inflammation and causes chronic renal diseases. Kcnq1ot1, a long noncoding RNA, participates in the pathogenesis of diabetic retinopathy and cardiomyopathy. However, its function in podocyte injury is elusive. Pyroptosis of murine podocyte MPC5 was triggered by sublytic complement C5b-9 (sC5b-9) for subsequent in vitro functional and mechanistic investigation. Gain/loss-of-function analysis was conducted to examine the functional role of Kcnq1ot1 in podocyte pyroptosis. Meanwhile, the molecular mechanism of Kcnq1ot1's effect on podocyte injury was explored by identifying downstream molecules and their intermediate interactions. Kcnq1ot1 was upregulated in sC5b-9-induced podocytes, and silencing Kcnq1ot1 could inhibit sC5b-9's effect on podocyte pyroptosis. We also identified the interaction between Kcnq1ot1 and miR-486a-3p, through which Kcnq1ot1 mediated miR-486a-3p inhibition by sC5b-9. Furthermore, miR-486a-3p reduced the transcriptional activity of NLRP3, while the overexpression of NLRP3 enhanced sC5b-9's effect on podocyte pyroptosis through activating NLRP3 inflammasome. sC5b-9 induces pyroptosis in podocytes through modulating the Kcnq1ot1/miR-486a-3p/NLRP3 regulatory axis, and these uncovered key molecules might facilitate podocyte-targeted treatment for renal inflammatory diseases.
Collapse
Affiliation(s)
- Chunjian Zhang
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Yimeng Gong
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Na Li
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Xiaoyan Liu
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Yunzhu Zhang
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Fangze Ye
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Qiang Guo
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Jiaxin Zheng
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
10
|
Zhao C, Wang Y, Su Z, Pu W, Niu M, Song S, Wei L, Ding Y, Xu L, Tian M, Wang H. Respiratory exposure to PM2.5 soluble extract disrupts mucosal barrier function and promotes the development of experimental asthma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:139145. [PMID: 32402975 DOI: 10.1016/j.scitotenv.2020.139145] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Air pollutants are important factors that contribute to the development and exacerbation of asthma, but experimental evidence still needs to be collected and the mechanisms still need to be addressed. In this study, we aimed to assess the association between PM2.5 exposure and asthma development. The effects of PM2.5 exposure on the barrier functions of airway epithelial cells were also determined. METHODS PM2.5 was collected from Nanjing, China, and its soluble extract was prepared. Human lung epithelial cells (BEAS-2B) were treated with different concentrations of soluble PM2.5 extract, and cell viability was detected by FACS using Annexin V-FITC staining. PM2.5-induced oxidative stress and inflammatory events were assessed by DCF-DA staining and qPCR. PM2.5-induced dysfunction of the airway epithelial barrier was assessed by measuring the expression of tight junction molecules. In vivo, BALB/c mice were treated with OVA in the presence or absence of PM2.5 solution, followed by exposure to OVA aerosols. Allergy-induced airway inflammation and lung injury were assessed by histopathological analyses. RESULTS Soluble PM2.5 extract exposure in vitro decreased the viability and increased apoptosis of airway epithelial cells. Soluble PM2.5 extract induced oxidative stress and enhanced pro-inflammatory factor expression by activating the NF-κB and MAPK signalling pathways, which were accompanied by reduced airway barrier function. The in vivo data demonstrated that PM2.5 exposure increased the effects of allergy sensitization after respiratory exposure to allergens, which led to the development of asthma. CONCLUSION This study suggests that exposure to soluble PM2.5 extract contributes to airway barrier dysfunction. The soluble mediators generated by airway epithelial cells in response to PM2.5 exposure orchestrate the breaking of inhalational tolerance and sensitization to allergic antigens, leading to the exacerbated development of asthma.
Collapse
Affiliation(s)
- Chen Zhao
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Ye Wang
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Zhonglan Su
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Wenyuan Pu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Mengyuan Niu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Shiyu Song
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Lulu Wei
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Yibing Ding
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Lizhi Xu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Man Tian
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China.
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
11
|
Cheng M, Wang B, Yang M, Ma J, Ye Z, Xie L, Zhou M, Chen W. microRNAs expression in relation to particulate matter exposure: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113961. [PMID: 32006883 DOI: 10.1016/j.envpol.2020.113961] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/27/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNAs with a post-transcriptional regulatory function on gene expression and cell processes, including proliferation, apoptosis and differentiation. In recent decades, miRNAs have attracted increasing interest to explore the role of epigenetics in response to air pollution. Air pollution, which always contains kinds of particulate matters, are able to reach respiratory tract and blood circulation and then causing epigenetics changes. In addition, extensive studies have illustrated that miRNAs serve as a bridge between particulate matter exposure and health-related effects, like inflammatory cytokines, blood pressure, vascular condition and lung function. The purpose of this review is to summarize the present knowledge about the expression of miRNAs in response to particulate matter exposure. Epidemiological and experimental studies were reviewed in two parts according to the size and source of particles. In this review, we also discussed various functions of the altered miRNAs and predicted potential biological mechanism participated in particulate matter-induced health effects. More rigorous studies are worth conducting to understand contribution of particulate matter on miRNAs alteration and the etiology between environmental exposure and disease development.
Collapse
Affiliation(s)
- Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zi Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Xie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Yun J, Yang H, Li X, Sun H, Xu J, Meng Q, Wu S, Zhang X, Yang X, Li B, Chen R. Up-regulation of miR-297 mediates aluminum oxide nanoparticle-induced lung inflammation through activation of Notch pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113839. [PMID: 31918133 DOI: 10.1016/j.envpol.2019.113839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/23/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Exposure to Aluminum oxide nanoparticles (Al2O3 NPs) has been associated with pulmonary inflammation in recent years; however, the underlying mechanism that causes adverse effects remains unclear. In the present study, we characterized microRNA (miRNA) expression profiling in human bronchial epithelial (HBE) cells exposed to Al2O3 NPs by miRNA microarray. Among the differentially expressed miRNAs, miR-297, a homologous miRNA in Homo sapiens and Mus musculus, was significantly up-regulated following exposure to Al2O3 NPs, compared with that in control. On combined bioinformatic analysis, proteomics analysis, and mRNA microarray, NF-κB-activating protein (NKAP) was found to be a target gene of miR-297 and it was significantly down-regulated in Al2O3 NPs-exposed HBE cells and murine lungs, compared with that in control. Meanwhile, inflammatory cytokines, including IL-1β and TNF-α, were significantly increased in bronchoalveolar lavage fluid (BALF) from mice exposed to Al2O3 NPs. Then we set up a mouse model with intranasal instillation of antagomiR-297 to further confirm that inhibition of miR-297 expression can rescue pulmonary inflammation via Notch pathway suppression. Collectively, our findings suggested that up-regulation of miR-297 expression was an upstream driver of Notch pathway activation, which might be the underlying mechanism involved in lung inflammation induced by exposure to Al2O3 NPs.
Collapse
Affiliation(s)
- Jun Yun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Hongbao Yang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Hao Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jie Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qingtao Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shenshen Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xinwei Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xi Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Bin Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
13
|
Wang J, Zhu M, Ye L, Chen C, She J, Song Y. MiR-29b-3p promotes particulate matter-induced inflammatory responses by regulating the C1QTNF6/AMPK pathway. Aging (Albany NY) 2020; 12:1141-1158. [PMID: 31955152 PMCID: PMC7053628 DOI: 10.18632/aging.102672] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/25/2019] [Indexed: 12/17/2022]
Abstract
Inflammatory responses are considered to be the critical mechanism underlying particulate matter (PM)-induced development and exacerbation of chronic respiratory diseases. MiR-29b-3p has been found to participate in various biological processes, but its role in PM-induced inflammatory responses was previously unknown. Here, we constructed a miRNA PCR array to find that miR-29b-3p was the most highly expressed in human bronchial epithelial cells (HBECs) exposed to PM. MiR-29b-3p promoted PM-induced pro-inflammatory cytokines (IL-1β, IL-6, and IL-8) expression via inhibiting the AMPK signaling pathway in HBECs. RNA sequencing and luciferase reporter assay identified that miR-29b-3p targeted complement C1q tumor necrosis factor-related protein 6 (C1QTNF6), a protein that protected from PM-induced inflammatory responses via activating the AMPK signaling pathway. In vivo, miR-29b-3p antagomirs delivered via the tail vein prior to PM exposure significantly counteracted PM-induced miR-29b-3p upregulation and C1QTNF6 downregulation in lung tissues. Furthermore, miR-29b-3p inhibition alleviated inflammatory cells infiltration and pro-inflammatory cytokines secretion in the lung of PM-exposed mice. These findings firstly revealed that miR-29b-3p acted as a novel modulator of PM-induced inflammatory responses by targeting the C1QTNF6/AMPK signaling pathway, which contributes to a better understanding of the biological mechanisms underlying adverse PM-induced respiratory health effects.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Mengchan Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Ling Ye
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Jun She
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| |
Collapse
|
14
|
Quezada-Maldonado EM, Sánchez-Pérez Y, Chirino YI, Vaca-Paniagua F, García-Cuellar CM. miRNAs deregulation in lung cells exposed to airborne particulate matter (PM 10) is associated with pathways deregulated in lung tumors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:351-358. [PMID: 29852438 DOI: 10.1016/j.envpol.2018.05.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/10/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Particulate matter (PM) is an environmental pollutant that has been associated with an increased risk for lung cancer. PM exposure induces cellular alterations and the deregulation of cell signaling pathways. However other mechanisms such as microRNAs deregulation, might be involved in the development and progression of some types of epithelial cancer. The aim of this work was to evaluate miRNA expression in epithelial lung cells after exposure to PM10 and to identify the possible gene targets of deregulated miRNAs. We measured the expression of 2538 miRNAs using a microarray platform after 72 h of PM10 exposure; the potential biological function was inferred with bioinformatics analysis and we validated the relative expression of 10 selected miRNAs with real-time PCR. We found that the expression of 74 miRNAs was significantly changed: 45 miRNAs were downregulated and were involved in proliferation, cell cycle, cytoskeleton modification and autophagy; meanwhile, 29 miRNAs related to apoptosis, DNA damage repair and xenobiotic metabolism were upregulated.
Collapse
Affiliation(s)
- Ericka Marel Quezada-Maldonado
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP, 14080, Ciudad de México, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP, 14080, Ciudad de México, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, FES-Iztacala, Universidad Nacional Autónoma de México, CP, 54059, Estado de México, Mexico
| | - Felipe Vaca-Paniagua
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP, 14080, Ciudad de México, Mexico; Unidad de Biomedicina, FES-Iztacala, Universidad Nacional Autónoma de México, CP, 54059, Estado de México, Mexico; Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Universidad Nacional Autónoma de México, CP, 54059, Estado de México, Mexico
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP, 14080, Ciudad de México, Mexico.
| |
Collapse
|
15
|
Wang Y, Xiong L, Wu T, Zhang T, Kong L, Xue Y, Tang M. Analysis of differentially changed gene expression in EA.hy926 human endothelial cell after exposure of fine particulate matter on the basis of microarray profile. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:213-220. [PMID: 29753823 DOI: 10.1016/j.ecoenv.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/29/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
Epidemiological studies have illustrated that PM2.5 is closely related to cardiovascular disease (CVD), but underlying toxicological mechanisms are not yet clear. The main purpose of this study is to disclose the potential biological mechanisms responsible for PM2.5-dependent adverse cardiovascular outcomes through the appliance of genome-wide transcription microarray. From results, compared with the control group, there are 97 genes significantly altered in 2.5 μg/cm2 PM2.5 treated group and 440 differentially expressed genes in 10 μg/cm2 group. Of note, when 2.5 μg/cm2 and 10 μg/cm2 group were respectively compared with the control group, 46 significantly altered genes showed a consistent tendency in two treated groups, of which 31 genes were upregulated while 15 genes were meanwhile downregulated. Based on Gene Ontology (GO) annotation, altered genes are mainly gathered in functions of cellular processes and immune regulation. Pathway analysis indicated that TNF signaling pathway, NOD-like receptor (NLRs) signaling pathway, MAPK signaling pathway and gap junction are vital pathways involved in PM2.5-induced toxicity in EA.hy926. Moreover, results from RT-qPCR further corroborated that changed genes are implicated in oxidative stress, inflammation and metabolic disorder. In addition, metabolism of xenobiotics by cytochrome P450 pathway is the critical pathway which may serve as a target to prevent PM2.5-induced CVD. To sum up, our effort provides a fundamental data for further studies regarding mechanisms of PM2.5-induced cardiovascular toxicity on the basis of genome-wide screening.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Lilin Xiong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Department of Environmental Health, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, 210003, China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Lu Kong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
16
|
Li J, Zhou Q, Liang Y, Pan W, Bei Y, Zhang Y, Wang J, Jiao Z. miR-486 inhibits PM2.5-induced apoptosis and oxidative stress in human lung alveolar epithelial A549 cells. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:209. [PMID: 30023372 DOI: 10.21037/atm.2018.06.09] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Environmental exposure to particulate matter 2.5 (PM2.5) threatens public health, which has caused worldwide concerns. MicroRNAs (miRNAs, miRs) participate in multiple biological regulation. Among them, miR-486 has been reported to be a beneficial molecule for cell survival in various cell types. However, the potential function of miR-486 in PM2.5-induced cytotoxic is still uncertain. Methods The expression of miR-486 was detected by quantitative real-time polymerase chain reaction (qRT-PCR) after A549 cells incubated with PM2.5. Then TUNEL staining and DCFH-DA fluorescence were used to test the apoptosis and ROS generation of A549 cells after exposed to PM2.5 with miR-486 mimic. Western blot was performed to determine the expression of Bax/Bcl2 ratio. In addition, western blot and rescue experiments were conducted to determine the target gene of miR-486. Results After treated with PM2.5, the expression of miR-486 was decreased. And miR-486 mimic treatment reduced cell apoptosis and reactive oxygen species (ROS) generation induced by PM2.5 exposure. Further studies showed that miR-486 negatively regulated the protein levels of PTEN and FOXO1. Rescue experiments demonstrated that PTEN and FOXO1 mediated the protective effects of miR-486 in PM2.5-treated human lung alveolar epithelial A549 cells. Conclusions Collectively, our findings identify that miR-486 relieves PM2.5-induced cell injury by targeting PTEN and FOXO1 in human lung alveolar epithelial A549 cells.
Collapse
Affiliation(s)
- Jin Li
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Qiulian Zhou
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yajun Liang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Wen Pan
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yihua Bei
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yuhui Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jinhua Wang
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zheng Jiao
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
17
|
Ouyang Y, Xu Z, Fan E, Li Y, Miyake K, Xu X, Zhang L. Changes in gene expression in chronic allergy mouse model exposed to natural environmental PM2.5-rich ambient air pollution. Sci Rep 2018; 8:6326. [PMID: 29679058 PMCID: PMC5910422 DOI: 10.1038/s41598-018-24831-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/11/2018] [Indexed: 02/07/2023] Open
Abstract
Particulate matter (PM) air pollution has been associated with an increase in the incidence of chronic allergic diseases; however, the mechanisms underlying the effect of exposure to natural ambient air pollution in chronic allergic diseases have not been fully elucidated. In the present study, we aimed to investigate the cellular responses induced by exposure to natural ambient air pollution, employing a mouse model of chronic allergy. The results indicated that exposure to ambient air pollution significantly increased the number of eosinophils in the nasal mucosa. The modulation of gene expression profile identified a set of regulated genes, and the Triggering Receptor Expressed on Myeloid cells1(TREM1) signaling canonical pathway was increased after exposure to ambient air pollution. In vitro, PM2.5 increased Nucleotide-binding oligomerization domain-containing protein 1 (Nod1) and nuclear factor (NF)-κB signaling pathway activation in A549 and HEK293 cell cultures. These results suggest a novel mechanism by which, PM2.5 in ambient air pollution may stimulate the innate immune system through the PM2.5-Nod1-NF-κB axis in chronic allergic disease.
Collapse
Affiliation(s)
- Yuhui Ouyang
- Department of Otolaryngology Head and Neck Surgery and department of Allergy, Beijing TongRen Hospital, Affiliated to the Capital University of Medical Science, Beijing, 100730, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China
| | - Zhaojun Xu
- Department of Environmental Medicine, Quanzhou Medical College, Quanzhou, Fujian, 362011, China.,Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Erzhong Fan
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China
| | - Ying Li
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China
| | - Kunio Miyake
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Xianyan Xu
- Department of Environmental Medicine, Quanzhou Medical College, Quanzhou, Fujian, 362011, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery and department of Allergy, Beijing TongRen Hospital, Affiliated to the Capital University of Medical Science, Beijing, 100730, China. .,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China.
| |
Collapse
|
18
|
Miguel V, Cui JY, Daimiel L, Espinosa-Díez C, Fernández-Hernando C, Kavanagh TJ, Lamas S. The Role of MicroRNAs in Environmental Risk Factors, Noise-Induced Hearing Loss, and Mental Stress. Antioxid Redox Signal 2018; 28:773-796. [PMID: 28562070 PMCID: PMC5911706 DOI: 10.1089/ars.2017.7175] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE MicroRNAs (miRNAs) are important regulators of gene expression and define part of the epigenetic signature. Their influence on every realm of biomedicine is established and progressively increasing. The impact of environment on human health is enormous. Among environmental risk factors impinging on quality of life are those of chemical nature (toxic chemicals, heavy metals, pollutants, and pesticides) as well as those related to everyday life such as exposure to noise or mental and psychosocial stress. Recent Advances: This review elaborates on the relationship between miRNAs and these environmental risk factors. CRITICAL ISSUES The most relevant facts underlying the role of miRNAs in the response to these environmental stressors, including redox regulatory changes and oxidative stress, are highlighted and discussed. In the cases wherein miRNA mutations are relevant for this response, the pertinent literature is also reviewed. FUTURE DIRECTIONS We conclude that, even though in some cases important advances have been made regarding close correlations between specific miRNAs and biological responses to environmental risk factors, a need for prospective large-cohort studies is likely necessary to establish causative roles. Antioxid. Redox Signal. 28, 773-796.
Collapse
Affiliation(s)
- Verónica Miguel
- 1 Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) , Madrid, Spain
| | - Julia Yue Cui
- 2 Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, Washington
| | - Lidia Daimiel
- 3 Instituto Madrileño de Estudios Avanzados-Alimentación (IMDEA-Food) , Madrid, Spain
| | - Cristina Espinosa-Díez
- 4 Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University , Portland, Oregon
| | | | - Terrance J Kavanagh
- 2 Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, Washington
| | - Santiago Lamas
- 1 Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) , Madrid, Spain
| |
Collapse
|
19
|
Sharma P, Saraya A, Sharma R. Serum-based six-miRNA signature as a potential marker for EC diagnosis: Comparison with TCGA miRNAseq dataset and identification of miRNA-mRNA target pairs by integrated analysis of TCGA miRNAseq and RNAseq datasets. Asia Pac J Clin Oncol 2018; 14:e289-e301. [PMID: 29380534 DOI: 10.1111/ajco.12847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/21/2017] [Indexed: 12/24/2022]
Abstract
AIM To evaluate the diagnostic potential of a six microRNAs (miRNAs) panel consisting of miR-21, miR-144, miR-107, miR-342, miR-93 and miR-152 for esophageal cancer (EC) detection. METHODS The expression of miRNAs was analyzed in EC sera samples using quantitative real-time PCR. Risk score analysis was performed and linear regression models were then fitted to generate the six-miRNA panel. In addition, we made an effort to identify significantly dysregulated miRNAs and mRNAs in EC using the Cancer Genome Atlas (TCGA) miRNAseq and RNAseq datasets, respectively. Further, we identified significantly correlated miRNA-mRNA target pairs by integrating TCGA EC miRNAseq dataset with RNAseq dataset. RESULTS The panel of circulating miRNAs showed enhanced sensitivity (87.5%) and specificity (90.48%) in terms of discriminating EC patients from normal subjects (area under the curve [AUC] = 0.968). Pathway enrichment analysis for potential targets of six miRNAs revealed 48 significant (P < 0.05) pathways, viz. pathways in cancer, mRNA surveillance, MAPK, Wnt, mTOR signaling, and so on. The expression data for mRNAs and miRNAs, downloaded from TCGA database, lead to identification of 2309 differentially expressed genes and 189 miRNAs. Gene ontology and pathway enrichment analysis showed that cell-cycle processes were most significantly enriched for differentially expressed mRNA. Integrated analysis of TCGA miRNAseq and RNAseq datasets resulted in identification of 53 063 significantly and negatively correlated miRNA-mRNA pairs. CONCLUSION In summary, a novel and highly sensitive signature of serum miRNAs was identified for EC detection. Moreover, this is the first report identifying miRNA-mRNA target pairs from EC TCGA dataset, thus providing a comprehensive resource for understanding the interactions existing between miRNA and their target mRNAs in EC.
Collapse
Affiliation(s)
- Priyanka Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Anoop Saraya
- Department of Gastroenterology, All India Institute of Medical Science, Ansari Nagar, New Delhi, India
| | - Rinu Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| |
Collapse
|
20
|
Shin DY, Jeong MH, Bang IJ, Kim HR, Chung KH. MicroRNA regulatory networks reflective of polyhexamethylene guanidine phosphate-induced fibrosis in A549 human alveolar adenocarcinoma cells. Toxicol Lett 2018; 287:49-58. [PMID: 29337256 DOI: 10.1016/j.toxlet.2018.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/26/2017] [Accepted: 01/11/2018] [Indexed: 12/28/2022]
Abstract
Polyhexamethylene guanidine phosphate (PHMG-phosphate), an active component of humidifier disinfectant, is suspected to be a major cause of pulmonary fibrosis. Fibrosis, induced by recurrent epithelial damage, is significantly affected by epigenetic regulation, including microRNAs (miRNAs). The aim of this study was to investigate the fibrogenic mechanisms of PHMG-phosphate through the profiling of miRNAs and their target genes. A549 cells were treated with 0.75 μg/mL PHMG-phosphate for 24 and 48 h and miRNA microarray expression analysis was conducted. The putative mRNA targets of the miRNAs were identified and subjected to Gene Ontology analysis. After exposure to PHMG-phosphate for 24 and 48 h, 46 and 33 miRNAs, respectively, showed a significant change in expression over 1.5-fold compared with the control. The integrated analysis of miRNA and mRNA microarray results revealed the putative targets that were prominently enriched were associated with the epithelial-mesenchymal transition (EMT), cell cycle changes, and apoptosis. The dose-dependent induction of EMT by PHMG-phosphate exposure was confirmed by western blot. We identified 13 putative EMT-related targets that may play a role in PHMG-phosphate-induced fibrosis according to the Comparative Toxicogenomic Database. Our findings contribute to the comprehension of the fibrogenic mechanism of PHMG-phosphate and will aid further study on PHMG-phosphate-induced toxicity.
Collapse
Affiliation(s)
- Da Young Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Mi Ho Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - In Jae Bang
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Ha Ryong Kim
- College of Pharmacy, Catholic University of Daegu, Gyeongsan, Gyeongsangbuk-do, 38430, Republic of Korea.
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
21
|
Liu Q, Wu J, Song J, Liang P, Zheng K, Xiao G, Liu L, Zouboulis CC, Lei T. Particulate matter 2.5 regulates lipid synthesis and inflammatory cytokine production in human SZ95 sebocytes. Int J Mol Med 2017; 40:1029-1036. [PMID: 28849137 PMCID: PMC5593471 DOI: 10.3892/ijmm.2017.3109] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/21/2017] [Indexed: 12/31/2022] Open
Abstract
A large body of evidence indicates that particulate matter (PM)2.5 is associated with various negative effects on human health. However, the impact and molecular mechanism of PM2.5 on the skin have not been elucidated. Therefore, the present study aimed to investigate the effects of two types of PM2.5 [water-soluble extracts (W-PM2.5) and non-water-soluble extracts (NW-PM2.5)] on cell proliferation, cell cycle progression, lipid synthesis, and inflammatory cytokine production of human SZ95 sebocytes. The results demonstrated that NW-PM2.5 and W-PM2.5 exposure dose-dependently inhibited SZ95 sebocyte proliferation by inducing G1 cell arrest. Furthermore, NW-PM2.5 and W-PM2.5 significantly reduced sebaceous lipid synthesis and markedly promoted the production of inflammatory cytokines, including interleukin-1α (IL-1α), IL-6 and IL-8 in SZ95 sebocytes. Additionally, the expression of aryl hydrocarbon (Ah) receptor (AhR), AhR nuclear translocator protein (ARNT), as well as cytochrome P450 1A1 were significantly increased following PM2.5 exposure. Thus, these findings indicate that PM2.5 exerts inhibitory effects on cell proliferation and lipid synthesis, and stimulatory effects on inflammatory cytokine production and AhR signaling activation in human SZ95 sebocytes.
Collapse
Affiliation(s)
- Qin Liu
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430060, P.R. China
| | - Jianbo Wu
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| | - Jiquan Song
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| | - Pin Liang
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| | - Kaiping Zheng
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| | - Guifeng Xiao
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| | - Lanting Liu
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| | - Christos C Zouboulis
- Department of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Theodore Fontane Medical University of Brandenburg, Dessau D-06847, Germany
| | - Tiechi Lei
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
22
|
An J, Zhou Q, Qian G, Wang T, Wu M, Zhu T, Qiu X, Shang Y, Shang J. Comparison of gene expression profiles induced by fresh or ozone-oxidized black carbon particles in A549 cells. CHEMOSPHERE 2017; 180:212-220. [PMID: 28410501 DOI: 10.1016/j.chemosphere.2017.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/11/2017] [Accepted: 04/01/2017] [Indexed: 05/23/2023]
Abstract
Epidemiological studies have showed an association between black carbon (BC) exposure and adverse health effects. This study intends to investigate the influence of oxidation processes in atmosphere on the initial cellular responses of BC. The changes of gene expressions induced by fresh BC (FBC) and ozone-oxidized BC (OBC) in human lung epithelial A549 cells were analyzed. And their toxic effects presented by viability, LDH release and DNA damage were compared. Totally 47, 000 genes in A549 cells were examined using Affymetrix Human U133 plus 2.0 chips. Some of the differentially expressed genes were verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The results showed that 1446 genes (including 756 up-regulated and 690 down-regulated) and 1594 genes (including 788 up-regulated and 806 down-regulated genes) were significantly changed by FBC and OBC respectively. Only 4 of 14 (FBC)/15 (OBC) oxidative stress related genes, up- or down-regulated by FBC and OBC, were identical; 13 of 29 (FBC)/31 (OBC) inflammation related genes, and 6 of 20 (FBC)/18 (OBC) autophagy related genes were identical. No obvious differences were observed between the toxic effects of FBC and OBC. The cytotoxicity of OBC and FBC in A549 cells is at least partially induced by oxidative stress and consequent inflammation or autophagy process. Previous studies indicated that OBC may be more toxic than FBC. However, our results suggested that FBC and OBC might lead to diverse toxic endpoints through activating different molecular pathways.
Collapse
Affiliation(s)
- Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qian Zhou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Tiantian Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Meiying Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Tong Zhu
- State Key Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- State Key Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Jing Shang
- State Key Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|