1
|
Li SY, Ma D, Shi WJ, Zhang JG, Tang B, Lu ZJ, Yao CR, Long XB, Liu X, Huang CS, Ying GG. New Psychoactive Substance Esketamine Causes Endocrine-Disrupting Effects and Developmental Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8417-8427. [PMID: 40263251 DOI: 10.1021/acs.est.5c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Esketamine (ESK), a new psychoactive substance known for its strong hallucinogenic effect, has been detected in surface water worldwide. The toxicity of ESK to fish at a certain environmental concentration remains unclear. In this study, zebrafish embryos and ZF4 cells were exposed to ESK (0, 0.12, 1.02, and 10.6 μg L-1, marked by SC, LC, MC, and HC, respectively) for 14 days post fertilization (dpf) and 24 h, respectively. Biphasic dose responses induced by ESK were observed after 24 h of exposure. ESK-LC and ESK-MC obviously increased embryo area and length, height, and volume of yolk sac, whereas ESK-HC had the opposite effect. ESK-LC and ESK-MC appreciably upregulated the transcription and expression levels of vtg, disrupting the cell cycle after 24 h of exposure. After 14 dpf exposure, KEGG analysis indicated that circadian rhythm, nucleotide excision repair, and estrogen signaling pathways were the top three impacted pathways, with ESK significantly enhancing gene transcription in these three pathways, except for cyp7a1 and bh1he41. Correspondingly, ESK notably increased the VTG level, aligning with the relatively high affinity of estrogen receptors, as analyzed through molecular docking. Our research demonstrated that ESK exhibits developmental toxicity and endocrine-disrupting effects in zebrafish, highlighting the need to address its ecological toxicity in fish.
Collapse
Affiliation(s)
- Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dongdong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Bo Tang
- School of Physics, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chong-Rui Yao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xin Liu
- Anti-Drug Technology Center of Guangdong Province, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Chu-Shu Huang
- Anti-Drug Technology Center of Guangdong Province, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
2
|
Shen M, Cao S, Long X, Xiao L, Yang L, Zhang P, Li L, Chen F, Lei T, Gao H, Ye F, Bu H. DNAJC12 causes breast cancer chemotherapy resistance by repressing doxorubicin-induced ferroptosis and apoptosis via activation of AKT. Redox Biol 2024; 70:103035. [PMID: 38306757 PMCID: PMC10847378 DOI: 10.1016/j.redox.2024.103035] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Chemotherapy is a primary treatment for breast cancer (BC), yet many patients develop resistance over time. This study aims to identify critical factors contributing to chemoresistance and their underlying molecular mechanisms, with a focus on reversing this resistance. METHODS We utilized samples from the Gene Expression Omnibus (GEO) and West China Hospital to identify and validate genes associated with chemoresistance. Functional studies were conducted using MDA-MB-231 and MCF-7 cell lines, involving gain-of-function and loss-of-function approaches. RNA sequencing (RNA-seq) identified potential mechanisms. We examined interactions between DNAJC12, HSP70, and AKT using co-immunoprecipitation (Co-IP) assays and established cell line-derived xenograft (CDX) models for in vivo validations. RESULTS Boruta analysis of four GEO datasets identified DNAJC12 as highly significant. Patients with high DNAJC12 expression showed an 8 % pathological complete response (pCR) rate, compared to 38 % in the low expression group. DNAJC12 inhibited doxorubicin (DOX)-induced cell death through both ferroptosis and apoptosis. Combining apoptosis and ferroptosis inhibitors completely reversed DOX resistance caused by DNAJC12 overexpression. RNA-seq suggested that DNAJC12 overexpression activated the PI3K-AKT pathway. Inhibition of AKT reversed the DOX resistance induced by DNAJC12, including reduced apoptosis and ferroptosis, restoration of cleaved caspase 3, and decreased GPX4 and SLC7A11 levels. Additionally, DNAJC12 was found to increase AKT phosphorylation in an HSP70-dependent manner, and inhibiting HSP70 also reversed the DOX resistance. In vivo studies confirmed that AKT inhibition reversed DNAJC12-induced DOX resistance in the CDX model. CONCLUSION DNAJC12 expression is closely linked to chemoresistance in BC. The DNAJC12-HSP70-AKT signaling axis is crucial in mediating resistance to chemotherapy by suppressing DOX-induced ferroptosis and apoptosis. Our findings suggest that targeting AKT and HSP70 activities may offer new therapeutic strategies to overcome chemoresistance in BC.
Collapse
Affiliation(s)
- Mengjia Shen
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China; Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shiyu Cao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xinyi Long
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lin Xiao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Libo Yang
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China; Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Peichuan Zhang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fei Chen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting Lei
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Hongwei Gao
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Feng Ye
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China; Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Yu G, Song X, Chen Q, Zhou Y. Silencing of peroxiredoxin III inhibits formaldehyde-induced oxidative damage of bone marrow cells in BALB/c mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:2836-2844. [PMID: 37584494 DOI: 10.1002/tox.23915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Formaldehyde (FA) is associated with the occurrence of leukemia, and oxidative stress is considered to be a major reason. As an endogenous biomarker of oxidative stress, few studies focus on the relationship between peroxiredoxin III (PrxIII) and FA toxicity. Our previous research observed high expression of PrxIII occurred in the process of apoptosis of bone marrow cells (BMCs) induced by FA, however the exact mechanism is unclear. Therefore, this paper aimed to explore the possible association between FA toxicity and PrxIII gene. METHODS We first, used a Cell Counting Kit-8 (CCK-8) to detect the viability of BMCs after they were exposed to different doses of FA (50, 100, 200 μmol/L) for different exposure time (12, 24, 48 h), then chose 24 h as an exposure time to detect the expression of PrxIII for exposing different doses of FA by Quantitative reverse transcription-PCR (qRT-PCR) and Western blot analysis. Based on our preliminary experimental results, we chose 100 μmol/L FA as an exposure dose to expose for 24 h, and used a small interfering RNA (siRNA) to silenced PrxIII to examine the cell viability by CCK-8, reactive oxygen species (ROS) level by DCFH-DA, apoptosis by Annexin V/PI double staining and cell cycle by flow cytometry (FCM) so as to explore the possible regulatory effect of PrxIII silencing on FA-induced bone marrow toxicity. RESULTS High expression of PrxIII occurred in the process of FA-induced oxidative stress. Silencing of PrxIII prevented FA from inducing oxidative stress, thus increasing cell viability, decreasing ROS level, rescuing G0 -G1 and G2 -M arrest, and reducing cell apoptosis. CONCLUSION PrxIII silencing might be a potential target for alleviating FA-induced oxidative damage.
Collapse
Affiliation(s)
- Guangyan Yu
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| | - Xiangfu Song
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| | - Qiang Chen
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| | - Yutong Zhou
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
4
|
Wang X, Han X, Fan L, Li L, Wang C, Gong S, Qi J, Ge T, Liu H, Li X, Cao Y, Liu M, Wang Q, Su L, Yao X, Wang X. The relationship of residential formaldehyde pollution in 11 Chinese cities to schoolchildren pneumonia prevalence in actual living condition. ENVIRONMENTAL RESEARCH 2022; 214:114162. [PMID: 36027964 DOI: 10.1016/j.envres.2022.114162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Residential formaldehyde pollution is one of the leading residential harmful pollutants with a large production and consumption globally and remains much uncertainty in Chinese families with huge health burden for children worldwide. A multi-center observation study from 11 cities was conducted to investigate residential formaldehyde pollution levels measured by phenol reagent spectrophotometry. Data on household characteristics and schoolchildren's health were collected by questionnaire. The median concentration of residential formaldehyde was 0.025 (0.002-0.281) mg/m3 among 11 cities with the total exceeding standard rate of 7.40% according to the reference value of 0.10 mg/m3 (1-h average). Residential formaldehyde pollution in warm season, bedrooms and northern cities was more serious than that in cold season, living rooms and southern cities, respectively. The potential influencing factors of residential formaldehyde included household characteristics (distance from a traffic road, building history, residence duration, window glass layers, decoration and furniture) and use of air conditioner. The positive regulation effect of temperature on residential formaldehyde was explored with the approximately turning-point temperature of 28.9 °C for peak concentration. Long-term exposure to residential formaldehyde of low concentrations (0.010-0.090 mg/m3) would increase the prevalence of childhood pneumonia and a more stringent criteria value for residential formaldehyde should be discussed cautiously.
Collapse
Affiliation(s)
- Xinqi Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, #7 Panjiayuan Nanli Road, Chaoyang District, Beijing, 100021, PR China.
| | - Xu Han
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, #7 Panjiayuan Nanli Road, Chaoyang District, Beijing, 100021, PR China.
| | - Lin Fan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, #7 Panjiayuan Nanli Road, Chaoyang District, Beijing, 100021, PR China.
| | - Li Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, #7 Panjiayuan Nanli Road, Chaoyang District, Beijing, 100021, PR China.
| | - Chong Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, #7 Panjiayuan Nanli Road, Chaoyang District, Beijing, 100021, PR China.
| | - Shuhan Gong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, #7 Panjiayuan Nanli Road, Chaoyang District, Beijing, 100021, PR China.
| | - Jing Qi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, #7 Panjiayuan Nanli Road, Chaoyang District, Beijing, 100021, PR China.
| | - Tanxi Ge
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, #7 Panjiayuan Nanli Road, Chaoyang District, Beijing, 100021, PR China.
| | - Hang Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, #7 Panjiayuan Nanli Road, Chaoyang District, Beijing, 100021, PR China.
| | - Xu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, #7 Panjiayuan Nanli Road, Chaoyang District, Beijing, 100021, PR China.
| | - Yun Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, #7 Panjiayuan Nanli Road, Chaoyang District, Beijing, 100021, PR China.
| | - Mengmeng Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, #7 Panjiayuan Nanli Road, Chaoyang District, Beijing, 100021, PR China.
| | - Qin Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, #7 Panjiayuan Nanli Road, Chaoyang District, Beijing, 100021, PR China.
| | - Liqin Su
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, #7 Panjiayuan Nanli Road, Chaoyang District, Beijing, 100021, PR China.
| | - Xiaoyuan Yao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, #7 Panjiayuan Nanli Road, Chaoyang District, Beijing, 100021, PR China.
| | - Xianliang Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, #7 Panjiayuan Nanli Road, Chaoyang District, Beijing, 100021, PR China.
| |
Collapse
|
5
|
FAT10 Combined with Miltefosine Inhibits Mitochondrial Apoptosis and Energy Metabolism in Hypoxia-Induced H9C2 Cells by Regulating the PI3K/AKT Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4388919. [PMID: 36034957 PMCID: PMC9410791 DOI: 10.1155/2022/4388919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022]
Abstract
Hypoxia-induced cardiomyocyte apoptosis is the main contributor to heart diseases. Human leukocyte antigen F-associated transcript 10 (FAT10), the small ubiquitin-like protein family subtype involved in apoptosis, is expressed in the heart and exhibits cardioprotective functions. This study explored the impact of FAT10 on hypoxia-induced cardiomyocyte apoptosis and the involved mechanisms. The cardiomyocyte cell line H9C2 was cultivated in hypoxia-inducing conditions (94% N2, 5% CO2, and 1% O2) and the expression of FAT10 in hypoxia-stimulated H9C2 cells was identified. For this, FAT10 overexpression/interference vectors were exposed to transfection into H9C2 cells with/without the PI3K/AKT inhibitor, miltefosine. The results indicated that hypoxia exposure decreased the FAT10 expression, suppressed H9C2 cell growth, disrupted mitochondrial metabolism, and promoted H9C2 cell apoptosis and oxidative stress. However, these impacts were reversed by the FAT10 overexpression. In addition, the inhibition of PI3K/AKT in FAT10-overexpressing cells suppressed cell proliferation, impaired mitochondrial metabolism, and promoted apoptosis and oxidative stress response. The findings demonstrated that FAT10 inhibited mitochondrial apoptosis and energy metabolism in hypoxia-stimulated H9C2 cells through the PI3K/AKT pathway. This finding can be utilized for developing therapeutic targets for treating heart disorders associated with hypoxia-induced apoptosis.
Collapse
|
6
|
Yang P, Yang Y, He X, Sun P, Zhang Y, Song X, Tian Y, Zong T, Ma J, Chen X, Lv Q, Yu T, Jiang Z. miR-153-3p Targets βII Spectrin to Regulate Formaldehyde-Induced Cardiomyocyte Apoptosis. Front Cardiovasc Med 2022; 8:764831. [PMID: 34977182 PMCID: PMC8714842 DOI: 10.3389/fcvm.2021.764831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Formaldehyde (FA) is ubiquitous in the environment and can be transferred to the fetus through placental circulation, causing miscarriage and congenital heart disease (CHD). Studies have shown that βII spectrin is necessary for cardiomyocyte survival and differentiation, and its loss leads to heart development defects and cardiomyocyte apoptosis. Additionally, previous studies have demonstrated that miRNA is essential in heart development and remodeling. However, whether miRNA regulates FA-induced CHD and cardiomyocyte apoptosis remains unclear. Methods: Using commercially available rat embryonic cardiomyocytes and a rat model of fetal cardiomyocyte apoptosis. Real-time quantitative PCR (RT-qPCR) and Western blot were performed to examine the level of miR-153-3p, βII spectrin, caspase 7, cleaved caspase7, Bax, Bcl-2 expression in embryonic cardiomyocytes and a rat model of fetal cardiomyocyte apoptosis. Apoptotic cell populations were evaluated by flow cytometry and Tunel. Luciferase activity assay and RNA pull-down assay were used to detect the interaction between miR-153-3p and βII spectrin. Masson's trichrome staining detects the degree of tissue fibrosis. Fluorescence in situ hybridization (FISH) and Immunohistochemistry were used to detect the expression of miR-153-3p and βII spectrin in tissues. Results: Using commercially available rat embryonic cardiomyocytes and a rat model of fetal cardiomyocyte apoptosis, our studies indicate that miR-153-3p plays a regulatory role by directly targeting βII spectrin to promote cardiomyocyte apoptosis. miR-153-3p mainly regulates cardiomyocyte apoptosis by regulating the expression of caspase7, further elucidating the importance of apoptosis in heart development. Finally, the results with our animal model revealed that targeting the miR-153-3p/βII spectrin pathway effectively regulated FA-induced damage during heart development. Recovery experiments with miR-153-3p antagomir resulted in the reversal of FA-induced cardiomyocyte apoptosis and fetal cardiac fibrosis. Conclusion: This study investigated the molecular mechanism underpinning the role of βII spectrin in FA-induced CHD and the associated upstream miRNA pathway. The study findings suggest that miR-153-3p may provide a potential target for the clinical diagnosis and treatment of CHD.
Collapse
Affiliation(s)
- Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao, China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Pin Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoxia Song
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Tian
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianmin Ma
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofei Chen
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qifeng Lv
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhirong Jiang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Feng R, Chen L, Chen K. Cytotoxicity and changes in gene expression under aluminium potassium sulfate on Spodoptera frugiperda 9 cells. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:2056-2070. [PMID: 34546441 DOI: 10.1007/s10646-021-02478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Aluminium, a substance found in large amounts in nature, has been widely used for various purposes, especially food additives. The effects of long-term and excessive exposure to aluminium on human health are receiving increasing attention. The extensive human use of aluminium food additives can also cause aluminium to enter the ecosystem, where it has significant impacts on insects. This study explored the cytotoxicity and changes in gene expression under aluminium potassium sulfate toward Spodoptera frugiperda 9 cells. We found that high concentrations of aluminium resulted in cell enlargement and cell membrane breakage, decreased cell vitality, and apoptosis. Through RNA-Seq transcriptomics, we found that aluminium ions may inhibit the expression of regulatory-associated protein of mTOR, tdIns-dependent protein kinase-1, and small heat shock proteins (heat shock 70 kDa protein and crystallin alpha B), leading to changes in mTOR-related pathways (such as the longevity regulation pathway and PI3K-Akt signalling pathway), and promoting cell apoptosis. On the other hand, aluminium ions lead to the overexpression of GSH S-transferase, prostaglandin-H2 D-isomerase and pyrimidodiazepine synthase, and induce intracellular oxidative damage, which ultimately affects cell growth and apoptosis through a series of cascade reactions.
Collapse
Affiliation(s)
- Rong Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu province, China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu province, China
| | - Keping Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu province, China.
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu province, China.
| |
Collapse
|
8
|
Papakonstantinou E, Koletsa T, Zhou L, Fang L, Roth M, Karakioulaki M, Savic S, Grize L, Tamm M, Stolz D. Bronchial thermoplasty in asthma: an exploratory histopathological evaluation in distinct asthma endotypes/phenotypes. Respir Res 2021; 22:186. [PMID: 34183014 PMCID: PMC8240300 DOI: 10.1186/s12931-021-01774-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
Background Bronchial thermoplasty regulates structural abnormalities involved in airway narrowing in asthma. In the present study we aimed to investigate the effect of bronchial thermoplasty on histopathological bronchial structures in distinct asthma endotypes/phenotypes.
Methods Endobronchial biopsies (n = 450) were collected from 30 patients with severe uncontrolled asthma before bronchial thermoplasty and after 3 sequential bronchial thermoplasties. Patients were classified based on blood eosinophils, atopy, allergy and smoke exposure. Tissue sections were assessed for histopathological parameters and expression of heat-shock proteins and glucocorticoid receptor. Proliferating cells were determined by Ki67-staining. Results In all patients, bronchial thermoplasty improved asthma control (p < 0.001), reduced airway smooth muscle (p = 0.014) and increased proliferative (Ki67 +) epithelial cells (p = 0.014). After bronchial thermoplasty, airway smooth muscle decreased predominantly in patients with T2 high asthma endotype. Epithelial cell proliferation was increased after bronchial thermoplasty in patients with low blood eosinophils (p = 0.016), patients with no allergy (p = 0.028) and patients without smoke exposure (p = 0.034).
In all patients, bronchial thermoplasty increased the expression of glucocorticoid receptor in epithelial cells (p = 0.018) and subepithelial mesenchymal cells (p = 0.033) and the translocation of glucocorticoid receptor in the nucleus (p = 0.036). Furthermore, bronchial thermoplasty increased the expression of heat shock protein-70 (p = 0.002) and heat shock protein-90 (p = 0.001) in epithelial cells and decreased the expression of heat shock protein-70 (p = 0.009) and heat shock protein-90 (p = 0.002) in subepithelial mesenchymal cells. The effect of bronchial thermoplasty on the expression of heat shock proteins -70 and -90 was distinctive across different asthma endotypes/phenotypes. Conclusions Bronchial thermoplasty leads to a diminishment of airway smooth muscle, to epithelial cell regeneration, increased expression and activation of glucocorticoid receptor in the airways and increased expression of heat shock proteins in the epithelium. Histopathological effects appear to be distinct in different endotypes/phenotypes indicating that the beneficial effects of bronchial thermoplasty are achieved by diverse molecular targets associated with asthma endotypes/phenotypes. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01774-0.
Collapse
Affiliation(s)
- Eleni Papakonstantinou
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel and Department of Biomedicine, University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Laboratory of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Triantafyllia Koletsa
- Department of Pathology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Liang Zhou
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel and Department of Biomedicine, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Lei Fang
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel and Department of Biomedicine, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Michael Roth
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel and Department of Biomedicine, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Meropi Karakioulaki
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel and Department of Biomedicine, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Spasenija Savic
- Department of Pathology, University Hospital of Basel, Basel, Switzerland
| | - Leticia Grize
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel and Department of Biomedicine, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Michael Tamm
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel and Department of Biomedicine, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Daiana Stolz
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel and Department of Biomedicine, University of Basel, Petersgraben 4, 4031, Basel, Switzerland.
| |
Collapse
|
9
|
Fang L, Li J, Papakonstantinou E, Karakioulaki M, Sun Q, Schumann D, Tamm M, Stolz D, Roth M. Secreted heat shock proteins control airway remodeling: Evidence from bronchial thermoplasty. J Allergy Clin Immunol 2021; 148:1249-1261.e8. [PMID: 33675818 DOI: 10.1016/j.jaci.2021.02.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Increased airway smooth muscle mass is a key pathology in asthma. Bronchial thermoplasty is a treatment for severe asthma based on selective heating of the airways that aims to reduce the mass of airway smooth muscle cells (ASMCs), and thereby bronchoconstriction. However, short heat exposure is insufficient to explain the long-lasting effect, and heat shock proteins (HSPs) have been suggested to play a role. OBJECTIVE We sought to determine the role of HSP70 and HSP90 in the control of airway wall remodeling by bronchial thermoplasty. METHODS Bronchoalveolar lavage fluid and endobronchial biopsies of 20 patients with severe asthma were obtained before and after thermoplasty. Isolated epithelial cells and ASMCs were exposed to 65oC for 10 seconds, mimicking thermoplasty. Proteins were determined by immunohistochemistry, Western blotting, immunofluorescence, and ELISA; proliferation by cell counts and antigen Ki67 (MKI67) expression. RESULTS Thermoplasty significantly increased the expression of HSP70 and HSP90 in the epithelium and bronchoalveolar lavage fluid. In ASMCs, thermoplasty reduced both HSPs. These cell-type-specific effects were detectable even 1 month after thermoplasty in tissue sections. In epithelial cells, ex vivo exposure to heat (65oC, 10 seconds) increased the expression and secretion of HSP70 and HSP90. In addition, epithelial cell proliferation was upregulated by heat or treatment with human recombinant HSP70 or HSP90. In ASMCs, heat exposure or exogenous HSPs reduced proliferation and differentiation. In both cell types, HSP70 and HSP90 activated the signaling cascade of serine/threonine-protein kinase →mammalian target of rapamycin→ribosomal protein S6 kinase 1 and CCAAT/enhancer binding protein-β→protein arginine methyltransferase 1→ mitochondria activity. CONCLUSIONS Epithelial cell-derived HSP70 and HSP90 improve the function of epithelial cells, but block ASMC remodeling.
Collapse
Affiliation(s)
- Lei Fang
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Department of Biomedicine, University of Basel & University Hospital of Basel, Basel, Switzerland
| | - Junling Li
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Department of Biomedicine, University of Basel & University Hospital of Basel, Basel, Switzerland; The affiliated Dongguan Shilong People's Hospital of Southern Medical University, Guangdong, China
| | - Eleni Papakonstantinou
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Department of Biomedicine, University of Basel & University Hospital of Basel, Basel, Switzerland
| | - Meropi Karakioulaki
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Department of Biomedicine, University of Basel & University Hospital of Basel, Basel, Switzerland
| | - Qingzhu Sun
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Desiree Schumann
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Department of Biomedicine, University of Basel & University Hospital of Basel, Basel, Switzerland
| | - Michael Tamm
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Department of Biomedicine, University of Basel & University Hospital of Basel, Basel, Switzerland
| | - Daiana Stolz
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Department of Biomedicine, University of Basel & University Hospital of Basel, Basel, Switzerland
| | - Michael Roth
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Department of Biomedicine, University of Basel & University Hospital of Basel, Basel, Switzerland.
| |
Collapse
|
10
|
Activation of HSP70 impedes tert-butyl hydroperoxide (t-BHP)-induced apoptosis and senescence of human nucleus pulposus stem cells via inhibiting the JNK/c-Jun pathway. Mol Cell Biochem 2021; 476:1979-1994. [PMID: 33511552 DOI: 10.1007/s11010-021-04052-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 01/09/2021] [Indexed: 01/07/2023]
Abstract
The endogenous repair failure of degenerated intervertebral disk (IVD) is highly related to the exhaustion of nucleus pulposus stem cells (NPSCs). Excessive oxidative stress could induce apoptosis and senescence of NPSCs, thus, declining the quantity and quality of NPSCs. Heat shock protein 70 (HSP70) is a family of cytoprotective and antioxidative proteins. However, there is no report on the protective effects of HSP70 on oxidative stress-induced NPSC impairments and underlying mechanisms. In the present study, we treated NPSCs with tert-butyl hydroperoxide (t-BHP) in vitro to simulate an oxidative stress condition. HSP70 inducer TRC051384 was used to evaluate the cytoprotective effects of HSP70. The results suggested that HSP70 impeded t-BHP-mediated cell viability loss and protected the ultrastructure of NPSCs. Moreover, t-BHP could induce mitochondrial apoptosis and p53/p21-mediated senescence of NPSCs, both of which were significantly inhibited in HSP70 activation groups. Excessive oxidative stress and mitochondrial dysfunction reinforced each other and contributed to the cellular damage processes. HSP70 decreased reactive oxygen species (ROS) production, rescued mitochondrial membrane potential (MMP) collapse, and blocked ATP depletion. Finally, our data showed that HSP70 downregulated the JNK/c-Jun pathway. Taken together, activation of HSP70 could protect against t-BHP-induced NPSC apoptosis and senescence, thus, improving the quantity and quality of NPSCs. Therefore, HSP70 may be a promising therapeutic target for IVD degeneration.
Collapse
|
11
|
Chen Y, Wang K, Di J, Guan C, Wang S, Li Q, Qu Y. Mutation of the BAG-1 domain decreases its protective effect against hypoxia/reoxygenation by regulating HSP70 and the PI3K/AKT signalling pathway in SY-SH5Y cells. Brain Res 2020; 1751:147192. [PMID: 33152339 DOI: 10.1016/j.brainres.2020.147192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
BCL-2-associated athanogene-1 (BAG-1) is a multifunctional protein that was first identified as a binding partner of BCL-2. Our previous results indicated that BAG-1 large (BAG-1L) overexpression significantly increases cell viability and decreases apoptosis by upregulating HSP70 and p-AKT in response to hypoxia/reoxygenation in SY-SH5Y cells. However, the functional domain of BAG-1L that exerts these protective effects against hypoxic damage has not been identified. In this study, we examined changes in HSP70 and p-AKT protein levels in SH-SY5Y cells with or without BAG-1L domain mutation after six hours of hypoxia/reoxygenation treatment. The BAG-1 domain mutant (BAG-1MUT) attenuated neuronal viability and proliferation while enhancing apoptosis after hypoxia/reoxygenation, which was achieved in part by inhibiting the HSP70 and p-AKT signalling pathways. This evidence illustrates that the BAG-1 domain plays a key role in protecting cells from hypoxia/reoxygenation injury.
Collapse
Affiliation(s)
- Ying Chen
- School of Nursing, Medical College of Qingdao University, Qingdao 26600, Shandong, China; Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Keke Wang
- Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Jie Di
- School of Nursing, Medical College of Qingdao University, Qingdao 26600, Shandong, China; Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Chun Guan
- Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Sumei Wang
- Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Qingshu Li
- Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong, China.
| | - Yan Qu
- Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong, China
| |
Collapse
|
12
|
Zuo ZT, Ma Y, Sun Y, Bai CQ, Ling CH, Yuan FL. The Protective Effects of Helicobacter pylori Infection on Allergic Asthma. Int Arch Allergy Immunol 2020; 182:53-64. [PMID: 33080611 DOI: 10.1159/000508330] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
As an ancient Gram-negative bacterium, Helicobacter pylori has settled in human stomach. Eradicating H. pylori increases the morbidities of asthma and other allergic diseases. Therefore, H. pylori might play a protective role against asthma. The "disappearing microbiota" hypothesis suggests that the absence of certain types of the ancestral microbiota could change the development of immunology, metabolism, and cognitive ability in our early life, contributing to the development of some diseases. And the Hygiene Hypothesis links early environmental and microbial exposure to the prevalence of atopic allergies and asthma. Exposure to the environment and microbes can influence the growing immune system and protect subsequent immune-mediated diseases. H. pylori can inhibit allergic asthma by regulating the ratio of helper T cells 1/2 (Th1/Th2), Th17/regulatory T cells (Tregs), etc. H. pylori can also target dendritic cells to promote immune tolerance and enhance the protective effect on allergic asthma, and this effect relies on highly suppressed Tregs. The remote regulation of lung immune function by H. pylori is consistent with the gut-lung axis theory. Perhaps, H. pylori also protects against asthma by altering levels of stomach hormones, affecting the autonomic nervous system and lowering the expression of heat shock protein 70. Therapeutic products from H. pylori may be used to prevent and treat asthma. This paper reviews the possible protective influence of H. pylori on allergic asthma and the possible application of H. pylori in treating asthma.
Collapse
Affiliation(s)
- Zhi Tong Zuo
- Department of Respiratory Disease, The Hospital Affiliated to Jiangnan University, Wuxi, China,
| | - Ya Ma
- Wuxi Medical College of Jiangnan University, Wuxi, China
| | - Yan Sun
- Department of Respiratory Disease, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Cui Qing Bai
- Department of Respiratory Disease, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Chun Hua Ling
- Department of Respiratory Disease, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Lai Yuan
- Department of Orthopaedics and Central Laboratory, The Hospital Affiliated to Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Zhang S, Zhang J, Cheng W, Chen H, Wang A, Liu Y, Hou H, Hu Q. Combined cell death of co-exposure to aldehyde mixtures on human bronchial epithelial BEAS-2B cells: Molecular insights into the joint action. CHEMOSPHERE 2020; 244:125482. [PMID: 31812766 DOI: 10.1016/j.chemosphere.2019.125482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Aldehydes are common air pollutants and metabolites of the organism, which widely exist in many in vivo (e.g. Alzheimer's disease) and in vitro (e.g. cigarette smoke) situations. Individual aldehydes have been studied well alone, while their combined toxicity is still obscure. Here, we examined the combined apoptosis of aldehyde mixtures in BEAS-2B cells at smoking-related environmental/physiologically relevant concentrations, and the potential mechanism was investigated further based on the related signaling pathway. Co-exposure to aldehyde mixtures demonstrated significant synergistic interaction on apoptosis in a concentration-dependent manner, which differed from the expectation based on single aldehydes. Moreover, formaldehyde significantly potentiated the induction of death receptor-5, caspase 8/10, cleaved caspase 3/7/9, pro-apoptotic proteins (Bim, Bad and Bax), depolarization of MMP (mitochondrial membrane potential) and AIF (apoptosis-inducing factor) induced by acrolein, and synergistically decreased expressions of pro-survival proteins (Bcl-2 and Bcl-XL) and poly ADP-ribose polymerase. Therefore, aldehyde mixture-induced synergistic apoptosis was mediated both by TRAIL death receptor and mitochondrial pathway. Additionally, reactive oxygen species, Ca2+ levels, DNA damage, and phosphorylated MDM2 were all synergistically induced by aldehyde mixtures, while total p53, phosphorylated p53 and phosphorylated AKT (serine/threonine kinase) were inhibited. Antioxidants N-acetylcysteine suppressed the aldehyde mixture-induced ROS, DNA damage and apoptosis, and blocked the TRAIL death receptor and mitochondrial pathway, while it did not rescue the p53 and AKT pathway. Briefly, aldehyde mixtures induced synergistic apoptosis even at smoking-related environmental/physiologically relevant concentrations, which could be enhanced through ROS-mediated death receptor/mitochondrial pathway, and the down-regulation of phosphorylated AKT.
Collapse
Affiliation(s)
- Sen Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China; Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Jingni Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China; Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Wanyan Cheng
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China; Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China
| | - An Wang
- Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Yong Liu
- Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China.
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China.
| |
Collapse
|
14
|
Fang L, Sun Q, Roth M. Immunologic and Non-Immunologic Mechanisms Leading to Airway Remodeling in Asthma. Int J Mol Sci 2020; 21:ijms21030757. [PMID: 31979396 PMCID: PMC7037330 DOI: 10.3390/ijms21030757] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Asthma increases worldwide without any definite reason and patient numbers double every 10 years. Drugs used for asthma therapy relax the muscles and reduce inflammation, but none of them inhibited airway wall remodeling in clinical studies. Airway wall remodeling can either be induced through pro-inflammatory cytokines released by immune cells, or direct binding of IgE to smooth muscle cells, or non-immunological stimuli. Increasing evidence suggests that airway wall remodeling is initiated early in life by epigenetic events that lead to cell type specific pathologies, and modulate the interaction between epithelial and sub-epithelial cells. Animal models are only available for remodeling in allergic asthma, but none for non-allergic asthma. In human asthma, the mechanisms leading to airway wall remodeling are not well understood. In order to improve the understanding of this asthma pathology, the definition of “remodeling” needs to be better specified as it summarizes a wide range of tissue structural changes. Second, it needs to be assessed if specific remodeling patterns occur in specific asthma pheno- or endo-types. Third, the interaction of the immune cells with tissue forming cells needs to be assessed in both directions; e.g., do immune cells always stimulate tissue cells or are inflamed tissue cells calling immune cells to the rescue? This review aims to provide an overview on immunologic and non-immunologic mechanisms controlling airway wall remodeling in asthma.
Collapse
Affiliation(s)
- Lei Fang
- Pulmonary Cell Research & Pneumology, University Hospital & University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland;
| | - Qinzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China;
| | - Michael Roth
- Pulmonary Cell Research & Pneumology, University Hospital & University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland;
- Correspondence: ; Tel.: +41-61-265-2337
| |
Collapse
|
15
|
Ma L, Zhang L, Guo A, Liu LC, Yu F, Diao N, Xu C, Wang D. Overexpression of FER1L4 promotes the apoptosis and suppresses epithelial-mesenchymal transition and stemness markers via activating PI3K/AKT signaling pathway in osteosarcoma cells. Pathol Res Pract 2019; 215:152412. [PMID: 31000382 DOI: 10.1016/j.prp.2019.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/18/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022]
Abstract
Novel long non-coding RNA Fer-1-like protein 4 (FER1L4) has been identified as a tumor suppressor in endometrial carcinoma, ovarian cancer, hepatocellular carcinoma, esophageal squamous cell carcinoma. However, the function of FER1L4 in osteosarcoma has not been clear. The aim of the research was to explore the effects of FER1L4 in osteosarcoma. Results showed that FER1L4 was observed to be lowly expressed in osteosarcoma cell lines (US-O2, MG-63 and SaOS-2 cells), especially MG63 cells. Besides, overexpression of FER1L4 remarkably repressed the proliferation, migration and invasion of MG63 cells. FER1L4-induced apoptotic cell death leaded to the activation of caspase-3 and Bax/Bcl2. Moreover, epithelial-mesenchymal transition (EMT) was tremendously suppressed by increased FER1L4, evidences were the increased E-cadherin and reduced vimentin and fibronectin. Blocking FER1L4 expression by sh-FER1L4 treatment increased the expression of SOX9, CD44, ALDH1, Nanog and Oct4, indicating that FER1L4 could effectively decrease cell stemness in osteosarcoma. Furthermore, the protein levels of p-AKT and p-PI3K were remarkably suppressed when FER1L4 was knocked down. In conclusion, the study indicated that FER1L4 acted as a tumor suppressor in osteosarcoma via activating PI3K/AKT pathway may be a new prognostic biomarker and potential therapeutic target for osteosarcoma intervention.
Collapse
Affiliation(s)
- Lifeng Ma
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 100050, PR China
| | - Liang Zhang
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 100050, PR China
| | - Ai Guo
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 100050, PR China.
| | - Lijun C Liu
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Ohio, 43614, USA
| | - Fei Yu
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 100050, PR China
| | - Naicheng Diao
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 100050, PR China
| | - Chongyang Xu
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 100050, PR China
| | - Difan Wang
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 100050, PR China
| |
Collapse
|