1
|
Żynda W, Ruczaj A, Galicka A. Natural Compounds with Beneficial Effects on Skin Collagen Type I and Mechanisms of Their Action. Antioxidants (Basel) 2025; 14:389. [PMID: 40298643 PMCID: PMC12024060 DOI: 10.3390/antiox14040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
The skin, as the largest external organ, is exposed to many environmental factors, such as sunlight and pollution, as well as some synthetic ingredients in cosmetic products used in excess by most people of all ages throughout their lives. Under the influence of these factors and with age, the amount of the key building protein, collagen type I, decreases, which leads to a deterioration in the appearance and condition of the skin. Currently, when the average life expectancy increases, the esthetic aspect and maintaining healthy skin are particularly important. In the cosmetic and pharmaceutical industries, attempts have long been made to prevent skin aging by the application of products containing natural compounds, mainly due to their high antioxidant activity. This review collects natural compounds, mainly polyphenols, with stimulating and protective effects on collagen type I in human skin fibroblasts, along with a description of the mechanisms of their action. Some of them have been tested on mice and rats, as well as in clinical trials, and in most cases, the results have been very promising. Nevertheless, there is still a need for an intensification of clinical studies in order to determine their appropriate dosage, safety, and effectiveness.
Collapse
Affiliation(s)
| | | | - Anna Galicka
- Department of Medical Chemistry, Medical University of Bialystok, ul. Mickiewicza 2A, 15-222 Bialystok, Poland; (W.Ż.); (A.R.)
| |
Collapse
|
2
|
Aleksandrova Y, Neganova M. Antioxidant Senotherapy by Natural Compounds: A Beneficial Partner in Cancer Treatment. Antioxidants (Basel) 2025; 14:199. [PMID: 40002385 PMCID: PMC11851806 DOI: 10.3390/antiox14020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Aging is a general biological process inherent in all living organisms. It is characterized by progressive cellular dysfunction. For many years, aging has been widely recognized as a highly effective mechanism for suppressing the progression of malignant neoplasms. However, in recent years, increasing evidence suggests a "double-edged" role of aging in cancer development. According to these data, aging is not only a tumor suppressor that leads to cell cycle arrest in neoplastic cells, but also a cancer promoter that ensures a chronic proinflammatory and immunosuppressive microenvironment. In this regard, in our review, we discuss recent data on the destructive role of senescent cells in the pathogenesis of cancer. We also identify for the first time correlations between the modulation of the senescence-associated secretory phenotype and the antitumor effects of naturally occurring molecules.
Collapse
Affiliation(s)
| | - Margarita Neganova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, Bld. 1, Moscow 119991, Russia;
| |
Collapse
|
3
|
Wen SY, Ng SC, Noriega L, Chen TJ, Chen CJ, Lee SD, Huang CY, Kuo WW. Echinacoside promotes collagen synthesis and survival via activation of IGF-1 signaling to alleviate UVB-induced dermal fibroblast photoaging. Biofactors 2025; 51:e2152. [PMID: 39780317 DOI: 10.1002/biof.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Ultraviolet (UV) irradiation is a major factor contributing to skin photoaging, including the formation of reactive oxygen species (ROS), collagen breakdown, and overall skin damage. Insulin-like growth factor-I (IGF-1) is a polypeptide hormone that regulates dermal survival and collagen synthesis. Echinacoside (Ech), a natural phenylethanoid glycoside, is the most abundant active compound in Cistanches. However, its potential benefits for the skin and the underlying molecular mechanisms remain unclear. The objective of this research is to investigate the protective effect of Ech on human dermal fibroblast cells (HDFs) against UVB-induced skin photodamage. In this study, we demonstrated that Ech promotes IGF-1/IGF-1R/ERK-mediated collagen synthesis and IGF-1/IGF-1R/PI3K-mediated survival pathways, as well as induces IGF-1 secretion to counteract UVB-induced aging in HDFs. Furthermore, UVB-induced accumulation of SA-β-gal-positive cells, ROS, and impaired collagen synthesis were attenuated following Ech treatment. However, the protective effects of Ech were significantly diminished when IGF-1 and IGF-1R expression was silenced using small interfering RNA, indicating that Ech exerts its antiaging effects primarily by activating the IGF-1/IGF-1R signaling pathway. Our findings provide evidence of the antiaging effects of Ech on UVB-induced skin photodamage and suggest its potential development as a supplement in cosmetic dermal protective products.
Collapse
Affiliation(s)
- Su-Ying Wen
- Department of Dermatology, Taipei City Hospital, Zhongxing Branch, Taipei, Taiwan, ROC
- Department of Cosmetic Applications and Management, Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan, ROC
- Department of Health and Welfare, University of Taipei, Taipei, Taiwan, ROC
| | - Shang-Chuan Ng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC
| | - Lloyd Noriega
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC
| | - Tzu-Jung Chen
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC
| | - Chih-Jung Chen
- Surgical Department, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Shin-Da Lee
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan, ROC
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
- PhD Program in Healthcare Science, College of Healthcare Science, China Medical University, Taiwan, ROC
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, ROC
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan, ROC
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan, ROC
- School of pharmacy, China Medical University, Taichung, Taiwan, ROC
| |
Collapse
|
4
|
Wen SY, Ng SC, Chiu YT, Tai PY, Chen TJ, Chen CJ, Huang CY, Kuo WW. Enhanced SIRT1 Activity by Galangin Mitigates UVB-Induced Senescence in Dermal Fibroblasts via p53 Acetylation Regulation and Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23286-23294. [PMID: 39401943 DOI: 10.1021/acs.jafc.4c05945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Human skin aging, a complex process influenced by intrinsic aging and extrinsic photoaging, is marked by the accumulation of reactive oxygen species (ROS) that cause DNA damage, impaired dermal fibroblast function, and wrinkle formation. External stressors, such as ultraviolet (UV) radiation, can trigger cellular senescence. Sirtuin-1 (SIRT1), an NAD+-dependent enzyme in the sirtuin family, plays a crucial role in deacetylating p53, thereby inhibiting its nuclear translocation and reducing skin senescence. Galangin, a flavonoid found in honey and Alpinia officinarum root, has antioxidant and anti-inflammatory properties. This study investigates the protective mechanism of galangin against UVB-induced senescence in human dermal fibroblasts (HDFs) by examining its effects on SIRT1 and its target, acetylated-p53. An in vitro model of UVB-induced senescence using HDFs and an in vivo model using nude mice were employed to assess the dermal protective effects of galangin. The results demonstrate that while UVB exposure does not decrease SIRT1 protein levels, it impairs its enzymatic function. However, galangin treatment counteracts these adverse effects. Additionally, UVB exposure significantly reduces cell viability and upregulates senescence markers like p16, p21, and p53 nuclear transactivation. An increase in senescence-associated β-galactosidase (SA-β-gal) positive cells was observed in UVB-exposed dermal fibroblasts. Galangin treatment mitigates UVB-induced cellular senescence by enhancing SIRT1-mediated p53 deacetylation, thereby inhibiting nuclear translocation and reducing dermal senescence. These findings suggest that galangin is a promising agent for alleviating UVB-induced skin aging and could be a potential component in antiaging cosmetic formulations.
Collapse
Affiliation(s)
- Su-Ying Wen
- Department of Dermatology, Taipei City Hospital, Zhongxing Branch, Taipei 103, Taiwan, ROC
- Department of Cosmetic Applications and Management, Mackay Junior College of Medicine, Nursing, and Management, Taipei 112, Taiwan, ROC
- Department of Health and Welfare, University of Taipei, Taipei 111, Taiwan, ROC
| | - Shang-Chuan Ng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 406, Taiwan, ROC
| | - Yen-Tun Chiu
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 406, Taiwan, ROC
| | - Pei-Yu Tai
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 406, Taiwan, ROC
| | - Tzu-Jung Chen
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 406, Taiwan, ROC
| | - Chih-Jung Chen
- Surgical Department, China Medical University Hospital, Taichung 404, Taiwan, ROC
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, ROC
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan, ROC
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413, Taiwan, ROC
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 406, Taiwan, ROC
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung 406, Taiwan, ROC
- School of Pharmacy, China Medical University, Taichung 406, Taiwan, ROC
| |
Collapse
|
5
|
Lee C, Cho H, Kim M, Kim B, Jang YP, Park J. Evaluating the Dermatological Benefits of Snowberry ( Symphoricarpos albus): A Comparative Analysis of Extracts and Fermented Products from Different Plant Parts. Int J Mol Sci 2024; 25:9660. [PMID: 39273607 PMCID: PMC11394855 DOI: 10.3390/ijms25179660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Skin ageing is influenced by both intrinsic and extrinsic factors, with excessive ultraviolet (UV) exposure being a significant contributor. Such exposure can lead to moisture loss, sagging, increased wrinkling, and decreased skin elasticity. Prolonged UV exposure negatively impacts the extracellular matrix by reducing collagen, hyaluronic acid, and aquaporin 3 (AQP-3) levels. Fermentation, which involves microorganisms, can produce and transform beneficial substances for human health. Natural product fermentation using lactic acid bacteria have demonstrated antioxidant, anti-inflammatory, antibacterial, whitening, and anti-wrinkle properties. Snowberry, traditionally used as an antiemetic, purgative, and anti-inflammatory agent, is now also used as an immune stimulant and for treating digestive disorders and colds. However, research on the skin benefits of Fermented Snowberry Extracts remains limited. Thus, we aimed to evaluate the skin benefits of snowberry by investigating its moisturising and anti-wrinkle effects, comparing extracts from different parts of the snowberry plant with those subjected to fermentation using Lactobacillus plantarum. Chlorophyll-free extracts were prepared from various parts of the snowberry plant, and ferments were created using Lactobacillus plantarum. The extracts and ferments were analysed using high-performance liquid chromatography (HPLC) to determine and compare their chemical compositions. Moisturising and anti-ageing tests were conducted to assess the efficacy of the extracts and ferments on the skin. The gallic acid content remained unchanged across all parts of the snowberry before and after fermentation. However, Fermented Snowberry Leaf Extracts exhibited a slight decrease in chlorogenic acid content but a significant increase in ferulic acid content. The Fermented Snowberry Fruit Extract demonstrated increased chlorogenic acid and a notable rise in ferulic acid compared to its non-fermented counterpart. Skin efficacy tests revealed that Fermented Snowberry Leaf and Fruit Extracts enhanced the expression of AQP-3, HAS-3, and COL1A1. These extracts exhibited distinct phenolic component profiles, indicating potential skin benefits such as improved moisture retention and protection against ageing. These findings suggest that Fermented Snowberry Extracts could be developed into effective skincare products, providing a natural alternative for enhancing skin hydration and reducing signs of ageing.
Collapse
Affiliation(s)
- Chanwoo Lee
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Miglim Co., Ltd., A-1309, 30, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Hana Cho
- Technology R&D Institute, ICBIO, 1 Naeyuri 1-gil, Ipjang-meyon, Seobuk-gu, Cheonan-si 31027, Republic of Korea
| | - Myunsoo Kim
- Technology R&D Institute, ICBIO, 1 Naeyuri 1-gil, Ipjang-meyon, Seobuk-gu, Cheonan-si 31027, Republic of Korea
| | - Boae Kim
- Department of Cosmetic Engineering, Collage of Technology Sciences, Mokwon University, Daejeon 35349, Republic of Korea
| | - Young-Pyo Jang
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junseong Park
- Department of Engineering Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
6
|
Wang D, Chen J, Pu L, Yu L, Xiong F, Sun L, Yu Q, Cao X, Chen Y, Peng F, Peng C. Galangin: A food-derived flavonoid with therapeutic potential against a wide spectrum of diseases. Phytother Res 2023; 37:5700-5723. [PMID: 37748788 DOI: 10.1002/ptr.8013] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023]
Abstract
Galangin is an important flavonoid with natural activity, that is abundant in galangal and propolis. Currently, various biological activities of galangin have been disclosed, including anti-inflammation, antibacterial effect, anti-oxidative stress and aging, anti-fibrosis, and antihypertensive effect. Based on the above bioactivities, more and more attention has been paid to the role of galangin in neurodegenerative diseases, rheumatoid arthritis, osteoarthritis, osteoporosis, skin diseases, and cancer. In this paper, the natural sources, pharmacokinetics, bioactivities, and therapeutic potential of galangin against various diseases were systematically reviewed by collecting and summarizing relevant literature. In addition, the molecular mechanism and new preparation of galangin in the treatment of related diseases are also discussed, to broaden the application prospect and provide reference for its clinical application. Furthermore, it should be noted that current toxicity and clinical studies of galangin are insufficient, and more evidence is needed to support its possibility as a functional food.
Collapse
Affiliation(s)
- Daibo Wang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Pu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Xiong
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyao Sun
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Wen SY, Wu YS, Liu H, Ng SC, Padma VV, Huang CY, Kuo WW. Paeoniflorin found in Paeonia lactiflora root extract inhibits melanogenesis by regulating melanin-related signal transduction in B16F10 cells. J Cosmet Dermatol 2023; 22:2824-2830. [PMID: 37288793 DOI: 10.1111/jocd.15789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 03/09/2023] [Accepted: 04/11/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Skin pigmentation is modulated by various processes, with melanogenesis playing a key role. Melanin is synthesized by the catalysis of melanogenesis-related enzymes, such as tyrosinase and tyrosine-related proteins TRP-1 and TRP-2. Paeoniflorin is the main bioactive component of Paeonia suffruticosa Andr., Paeonia lactiflora., or Paeonia veitchii Lynch and has been used for centuries for its anti-inflammatory, anti-oxidant, and anti-carcinogenic properties. AIMS & METHODS In this study, melanin biosynthesis in mouse melanoma (B16F10) cells was induced using α-melanocyte-stimulating hormone (α-MSH), and then cells were co-treated with paeoniflorin to evaluate its potential anti-melanogenic effect. RESULTS α-MSH stimulation increased melanin content, tyrosinase activity, and melanogenesis-related markers in a dose-dependent manner. However, treatment with paeoniflorin reversed α-MSH-induced upregulation of melanin content and tyrosinase activity. Furthermore, paeoniflorin inhibited cAMP response element-binding protein activation and TRP-1, TRP-2, and microphthalmia-associated transcription factor protein expression in α-MSH-stimulated B16F10 cells. CONCLUSION Overall, these findings show the potential of paeoniflorin as a depigmenting agent for cosmetic products.
Collapse
Affiliation(s)
- Su-Ying Wen
- Department of Dermatology, Taipei City Hospital, Taipei, Taiwan,ROC
- Center for General Education, Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan, ROC
| | - Ya-Shian Wu
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan, ROC
| | - Hsun Liu
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan, ROC
| | - Shang-Chuan Ng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan, ROC
| | - Viswanadha Vijaya Padma
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Buddhist Tzu Chi Medical Foundation, Hualien Tzu Chi Hospital, Hualien, Taiwan, ROC
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, China Medical University, Taiwan, ROC
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, ROC
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan, ROC
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan, ROC
| |
Collapse
|
8
|
Shao L, Jiang S, Li Y, Yu L, Liu H, Ma L, Yang S. Aqueous extract of Cordyceps cicadae (Miq.) promotes hyaluronan synthesis in human skin fibroblasts: A potential moisturizing and anti-aging ingredient. PLoS One 2023; 18:e0274479. [PMID: 37418356 PMCID: PMC10328226 DOI: 10.1371/journal.pone.0274479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/29/2022] [Indexed: 07/09/2023] Open
Abstract
Cordyceps cicadae (Miq.) is an edible fungus with unique and valuable medicinal properties that is commonly used in traditional Chinese medicine, but its anti-aging effects on the skin fibroblast are not well studied. The aim of the present study was to analyze the active components of aqueous C. cicadae extract (CCE), determine the effects of CCE on hyaluronan synthesis in human skin fibroblasts, and explore the underlying mechanisms. The results of this study indicate that CCE was rich in polysaccharides, five alditols (mainly mannitol), eight nucleosides, protein, and polyphenols, which were present at concentrations of 62.7, 110, 8.26, 35.7, and 3.8 mg/g, respectively. The concentration of extract required to inhibit 50% of 2,2-azino-bis (3-ethylbenzothiazo-line-6-sulphonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazil (DPPH) radical scavenging capacities were 0.36 ± 0.03 and 4.54 ± 0.10 mg/mL, respectively, indicating that CCE exhibits excellent antioxidant activities. CCE showed no cytotoxicity to skin fibroblasts at concentrations ≤ 100 μg/mL, and promoted HA synthesis in fibroblasts. Treatment of fibroblast cells with 100 μg/mL CCE enhances the HA content to 1293 ± 142 ng/mL, which is significantly more than that in the non-treatment (NT) group (p = 0.0067). Further, RNA sequencing detected 1,192 differentially expressed genes (DEGs) in CCE-treated fibroblasts, among which 417 were upregulated and 775 were downregulated. Kyoto Encyclopedia of Genes (KEGG) and Genomes pathway (GO) analysis based on RNA sequencing revealed that CCE mainly affected cytokine-cytokine receptor interaction regulated by HA synthesis-related genes. CCE upregulated HA synthase 2 (HAS2), epidermal growth factor (EGF)-related genes, heparin-binding EGF-like growth factor, C-C motif chemokine ligand 2, interleukin 1 receptor-associated kinase 2, and other genes related to fibroblast differentiation and proliferation. CCE downregulated the gene of matrix metallopeptidase 12 (MMP12), which leads to cell matrix loss. RT-qPCR further verified CCE significantly upregulated HAS2 expression and significantly downregulated MMP12 expression, thus promoting hyaluronan synthesis. CCE shows potential as a moisturizer and anti-aging agent in functional foods and cosmetics.
Collapse
Affiliation(s)
- Li Shao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Sujing Jiang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Yan Li
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd, Jinan, China
| | - Ling Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Hui Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Laiji Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Suzhen Yang
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd, Jinan, China
| |
Collapse
|
9
|
Chen M, Xu Z, Chen Y, Yang Q, Lu R, Dong Y, Li X, Xie J, Xu R, Jia H, Kang Y, Wu Y. EGFR marks a subpopulation of dermal mesenchymal cells highly expressing IGF1 which enhances hair follicle regeneration. J Cell Mol Med 2023; 27:1697-1707. [PMID: 37165726 PMCID: PMC10273066 DOI: 10.1111/jcmm.17766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023] Open
Abstract
The skin harbours transcriptionally and functionally heterogeneous mesenchymal cells that participate in various physiological activities by secreting biochemical cues. In this study, we aimed to identify a new subpopulation of dermal mesenchymal cells that enhance hair follicle regeneration through a paracrine mechanism. Integrated single-cell RNA sequencing (scRNA-seq) data analysis revealed epidermal growth factor receptor (EGFR) as a marker of distinct fibroblast subpopulation in the neonatal murine dermis. Immunofluorescence staining and fluorescence-activated cell sorting (FACS) were used to validate the existence of the cell population in Krt14-rtTA-H2BGFP mouse. The difference of gene expression between separated cell subpopulation was examined by real-time PCR. Potential effect of the designated factor on hair follicle regeneration was observed after the application on excisional wounds in Krt14-rtTA-H2BGFP mouse. Immunofluorescence staining demonstrated the existence of dermal EGFR+ cells in neonatal and adult mouse dermis. The EGFR+ mesenchymal population, sorted by FACS, displayed a higher expression level of Igf1 (insulin-like growth factor 1). Co-localisation of IGF1 with EGFR in the mouse dermis and upregulated numbers of hair follicles in healed wounds following the application of exogenous IGF1 illustrated the contribution of EGFR+ cells in promoting wound-induced hair follicle neogenesis. Our results indicate that EGFR identifies a subpopulation of dermal fibroblasts that contribute to IGF1 promotion of hair follicle neogenesis. It broadens the understanding of heterogeneity and the mesenchymal cell function in skin and may facilitate the potential translational application of these cells.
Collapse
Affiliation(s)
- Min Chen
- Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Zaoxu Xu
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yu Chen
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Qingyang Yang
- Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina
| | - Ruiqing Lu
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Yankai Dong
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Xiaosong Li
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Jundong Xie
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Ren‐He Xu
- Faculty of Health SciencesUniversity of MacauTaipaChina
| | | | - Yan Kang
- Shanghai Jahwa United Co., LtdShanghaiChina
| | - Yaojiong Wu
- Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| |
Collapse
|
10
|
Talachi N, Afzal E, Nouri M, Abroun S, Zarrabi M, Jahandar H. Protective effect of human amniotic membrane extract against hydrogen peroxide-induced oxidative damage in human dermal fibroblasts. Int J Cosmet Sci 2023; 45:73-82. [PMID: 36129819 DOI: 10.1111/ics.12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE One of the main approaches to preventing skin ageing is to protect fibroblast cells from oxidative stress. The promoting effect of the human amniotic membrane extract (hAME) on re-epithelization, proliferation and migration of cells in wound healing has been already well studied. This experimental study aimed to investigate the antioxidant activity of hAME against hydrogen peroxide (H2 O2 )-induced dermal fibroblast damage. METHODS Here, to establish the ageing model, human foreskin fibroblasts (HFFs) were exposed to 200 μM H2 O2 for 2 h. HFFs were treated with 0.1 mg/ml AME for 24 or 48 h before or/and after H2 O2 exposure. A total of 48 h following the H2 O2 treatment, we measured cell proliferation, viability, senescence-associated β-galactosidase (SA-β-Gal), antioxidants and preinflammatory cytokine (IL-6) levels, as well as the expression of senescence-associated genes (P53 and P21). RESULTS The obtained results indicated that under oxidative stress, AME significantly increased cellular viability and not only promoted the cell proliferation rate but also attenuated apoptotic induction condition (p < 0.001). AME also significantly reversed the SA-β-Gal levels induced by H2 O2 (p < 0.001). Additionally, both pre- and post-treatment regimen by AME down-regulated the expression of senescence marker genes (p < 0.001). Moreover, AME declined different oxidative stress biomarkers such as superoxide dismutase and catalase and increased the glutathione amount. CONCLUSION Altogether, our results indicated that AME had a remarkable antioxidant and antiageing activity as pre- and post-treatment regimen, pointing to this compound as a potential natural-based cosmeceutical agent to prevent and treat skin ageing conditions.
Collapse
Affiliation(s)
- Negin Talachi
- Faculty of Pharmaceutical Sciences, Department of Pharmacognosy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Department of Research and Development, Royan Stem Cell Technology Company, Tehran, Iran
| | - Elaheh Afzal
- Department of Research and Development, Royan Stem Cell Technology Company, Tehran, Iran
| | - Masoumeh Nouri
- Department of Research and Development, Royan Stem Cell Technology Company, Tehran, Iran
| | - Saeid Abroun
- Faculty of Medical Sciences, Department of Hematology, Tarbiat Modares University, Tehran, Iran
| | - Morteza Zarrabi
- Department of Research and Development, Royan Stem Cell Technology Company, Tehran, Iran.,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hoda Jahandar
- Faculty of Pharmaceutical Sciences, Department of Pharmacognosy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Kahremany S, Hofmann L, Gruzman A, Dinkova-Kostova AT, Cohen G. NRF2 in dermatological disorders: Pharmacological activation for protection against cutaneous photodamage and photodermatosis. Free Radic Biol Med 2022; 188:262-276. [PMID: 35753587 PMCID: PMC9350913 DOI: 10.1016/j.freeradbiomed.2022.06.238] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023]
Abstract
The skin barrier and its endogenous protective mechanisms cope daily with exogenous stressors, of which ultraviolet radiation (UVR) poses an imminent danger. Although the skin is able to reduce the potential damage, there is a need for comprehensive strategies for protection. This is particularly important when developing pharmacological approaches to protect against photocarcinogenesis. Activation of NRF2 has the potential to provide comprehensive and long-lasting protection due to the upregulation of numerous cytoprotective downstream effector proteins that can counteract the damaging effects of UVR. This is also applicable to photodermatosis conditions that exacerbate the damage caused by UVR. This review describes the alterations caused by UVR in normal skin and photosensitive disorders, and provides evidence to support the development of NRF2 activators as pharmacological treatments. Key natural and synthetic activators with photoprotective properties are summarized. Lastly, the gap in knowledge in research associated with photodermatosis conditions is highlighted.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel; The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel; Ben-Gurion University of the Negev, Eilat Campus, Eilat, 8855630, Israel.
| |
Collapse
|
12
|
Lee JH, Park J, Shin DW. The Molecular Mechanism of Polyphenols with Anti-Aging Activity in Aged Human Dermal Fibroblasts. Molecules 2022; 27:molecules27144351. [PMID: 35889225 PMCID: PMC9322955 DOI: 10.3390/molecules27144351] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Skin is the largest organ in the body comprised of three different layers including the epidermis, dermis, and hypodermis. The dermis is mainly composed of dermal fibroblasts and extracellular matrix (ECM), such as collagen and elastin, which are strongly related to skin elasticity and firmness. Skin is continuously exposed to different kinds of environmental stimuli. For example, ultraviolet (UV) radiation, air pollutants, or smoking aggravates skin aging. These external stimuli accelerate the aging process by reactive oxygen species (ROS)-mediated signaling pathways and even cause aging-related diseases. Skin aging is characterized by elasticity loss, wrinkle formation, a reduced dermal-epidermal junction, and delayed wound healing. Thus, many studies have shown that natural polyphenol compounds can delay the aging process by regulating age-related signaling pathways in aged dermal fibroblasts. This review first highlights the relationship between aging and its related molecular mechanisms. Then, we discuss the function and underlying mechanism of various polyphenols for improving skin aging. This study may provide essential insights for developing functional cosmetics and future clinical applications.
Collapse
Affiliation(s)
- Joo Hwa Lee
- College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea;
| | - Jooho Park
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea;
| | - Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea;
- Correspondence: ; Tel.: +82-43-840-3693
| |
Collapse
|
13
|
Repetitive Bathing and Skin Poultice with Hydrogen-Rich Water Improve Wrinkles and Blotches Together with Modulation of Skin Oiliness and Moisture. HYDROGEN 2022. [DOI: 10.3390/hydrogen3020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hydrogen-rich warm water (HW) has not been verified yet for skin anti-aging effects. Daily 10 min HW (dissolved hydrogen: 338–682 μg/mL, 41 °C) bathing and skin poultice with HW-impregnated towels for 11–61 days were demonstrated to improve wrinkle degrees (29 skin-loci) from 3.14 ± 0.52 to 1.52 ± 0.74 (p < 0.001) and blotch degrees (23 loci) from 3.48 ± 0.67 to 1.74 ± 0.86 (p < 0.001) in five healthy subjects (49–66 years old), by densito-/planimetrically evaluating with an Image-J software, and ranked into six hierarchies (0, 1–5). Meanwhile, skin oiliness was evaluated to increase for the oil-poor skins, but inversely decrease for excessively oily skins, suggesting the HW’s function as skin-oiliness modulation, with an appreciably negative correlation in prior oiliness contents versus change after HW application (r = −0.345, 23 loci). Skin moisture increased upon HW application, with a negative correlation (r = −0.090, 23 loci) in prior moisture contents versus post-HW-application moisture-changing rates, meaning that HW application compensated moisture for water-deficient skins (27.5–40% moisture), but not for wet skins (>41% moisture). Thus, the HW bath together with HW poultice exerted beneficial effects on skin appearances such as wrinkles, blotches and moisture/oiliness, some of which might ensue from enhanced antioxidant ability in blood, as was previously demonstrated for the HW bath.
Collapse
|
14
|
Lee JJ, Ng SC, Hsu JY, Liu H, Chen CJ, Huang CY, Kuo WW. Galangin Reverses H 2O 2-Induced Dermal Fibroblast Senescence via SIRT1-PGC-1α/Nrf2 Signaling. Int J Mol Sci 2022; 23:ijms23031387. [PMID: 35163314 PMCID: PMC8836071 DOI: 10.3390/ijms23031387] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 12/25/2022] Open
Abstract
UV radiation and H2O2 are the primary factors that cause skin aging. Both trigger oxidative stress and cellular aging. It has been reported that deacetylase silent information regulator 1 (SIRT1), a longevity gene, enhances activation of NF-E2-related factor-2 (Nrf2), as well as its downstream key antioxidant gene hemeoxygenase-1 (HO-1), to protect cells against oxidative damage by deacetylating the transcription coactivator PPARγ coactivator-1α (PGC-1α). Galangin, a flavonoid, possesses anti-oxidative and anti-inflammatory potential. In the present study, we applied Ultraviolet B/H2O2-induced human dermal fibroblast damage as an in vitro model and UVB-induced photoaging of C57BL/6J nude mice as an in vivo model to investigate the underlying dermo-protective mechanisms of galangin. Our results indicated that galangin treatment attenuates H2O2/UVB-induced cell viability reduction, dermal aging, and SIRT1/PGC-1α/Nrf2 signaling activation. Furthermore, galangin treatment enhanced Nrf2 activation and nuclear accumulation, in addition to inhibiting Nrf2 degradation. Interestingly, upregulation of antioxidant response element luciferase activity following galangin treatment indicated the transcriptional activation of Nrf2. However, knockdown of SIRT1, PGC-1α, or Nrf2 by siRNA reversed the antioxidant and anti-aging effects of galangin. In vivo evidence further showed that galangin treatment, at doses of 12 and 24 mg/kg on the dorsal skin cells of nude mice resulted in considerably reduced UVB-induced epidermal hyperplasia and skin senescence, and promoted SIRT1/PGC-1α/Nrf2 signaling. Furthermore, enhanced nuclear localization of Nrf2 was observed in galangin-treated mice following UVB irradiation. In conclusion, our data indicated that galangin exerts anti-photoaging and antioxidant effects by promoting SIRT1/PGC-1α/Nrf2 signaling. Therefore, galangin is a potentially promising agent for cosmetic skin care products against UV-induced skin aging.
Collapse
Affiliation(s)
- Jian-Jr Lee
- Department of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung 404, Taiwan;
- School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Shang-Chuan Ng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 404, Taiwan; (S.-C.N.); (J.-Y.H.); (H.L.)
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung 404, Taiwan
| | - Jia-Yun Hsu
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 404, Taiwan; (S.-C.N.); (J.-Y.H.); (H.L.)
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung 404, Taiwan
| | - Hsun Liu
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 404, Taiwan; (S.-C.N.); (J.-Y.H.); (H.L.)
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung 404, Taiwan
| | - Chih-Jung Chen
- Division of Breast Surgery, Department of Surgery, China Medical University Hospital, Taichung 404, Taiwan;
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 404, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 404, Taiwan; (S.-C.N.); (J.-Y.H.); (H.L.)
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-4-2205-3366 (ext. 2510); Fax: +886-4-2207-1507
| |
Collapse
|
15
|
Protective effects of galangin against H 2O 2/UVB-induced dermal fibroblast collagen degradation via hsa-microRNA-4535-mediated TGFβ/Smad signaling. Aging (Albany NY) 2021; 13:25342-25364. [PMID: 34890367 PMCID: PMC8714160 DOI: 10.18632/aging.203750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
This study aimed to investigate the mechanism underlying the protective effects of galangin against H2O2/UVB-induced damage using in vitro and in vivo models of photodamage. Moreover, we identified the involvement of miRNA regulation in this process. The H2O2/UVB-treated HS68 human dermal fibroblasts and UVB-induced C57BL/6J nude mice were used as in vitro and in vivo models of photodamage. The results showed that galangin treatment alleviated H2O2/UVB-induced reduction in cell viability, TGFβ/Smad signaling impairment, and dermal aging. Based on the results of microRNA array analyses and database searches, hsa-miR-4535 was identified as a potential candidate miRNA that targets Smad4. In vitro, galangin treatment activated Smad2/3/4 complex and inhibited hsa-miR-4535 expression in H2O2/UVB-exposed cells. In vivo, topical application of low (12 mg/kg) and high doses (24 mg/kg) of galangin to the dorsal skin of C57BL/6J nude mice significantly alleviated UVB-induced skin photodamage by promoting TGFβ/Smad collagen synthesis signaling, reducing epidermal hyperplasia, wrinkle formation, and skin senescence, as well as inhibiting hsa-miR-4535 expression. Taken together, our findings indicate a link between hsa-miR-4535 and TGFβ/Smad collagen synthesis signaling and suggest these factors to be involved in the photo-protective mechanism of galangin in dermal fibroblasts against H2O2/UVB-induced aging. The evidence indicated that galangin with anti-aging properties can be considered as a supplement in skin care products.
Collapse
|
16
|
Hajipour H, Nouri M, Ghorbani M, Bahramifar A, Emameh RZ, Taheri RA. Targeted nanostructured lipid carrier containing galangin as a promising adjuvant for improving cytotoxic effects of chemotherapeutic agents. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2353-2362. [PMID: 34522984 DOI: 10.1007/s00210-021-02152-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023]
Abstract
Resistance to chemotherapeutic drugs is the main limitation of cancer therapy. The combination use of chemotherapeutic agents and galangin (a naturally active flavonoid) amplifies the effectiveness of cancer treatment. This study aimed to prepare arginyl-glycyl-aspartic acid (RGD) containing nanostructured lipid carrier (NLC-RGD) to improve the bioavailability of galangin and explore its ability in improving the cytotoxic effects of doxorubicin (DOX). Galangin-loaded NLC-RGD was prepared by hot homogenization method and characterized by diverse techniques. Then, cytotoxicity, uptake, and apoptosis induction potential of prepared nanoparticles beside the DOX were evaluated on A549 lung cancer cells. Finally, the expression level of some ABC transporter genes was evaluated in galangin-loaded NLC-RGD-treated cells. Nanoparticles with appropriate characteristics of the delivery system (size: 120 nm, polydispersity index: 0.23, spherical morphology, and loading capacity: 59.3 mg/g) were prepared. Uptake experiments revealed that NLC-RGD promotes the accumulation of galangin into cancerous cells by integrin-mediated endocytosis. Results also showed higher cytotoxicity and apoptotic effects of DOX + galangin-loaded NLC-RGD in comparison to DOX + galangin. Gene expression analysis demonstrated that galangin-loaded NLC-RGD downregulates ABCB1, ABCC1, and ABCC2 more efficiently than galangin. These findings indicated that delivery of galangin by NLC-RGD makes it an effective adjuvant to increase the efficacy of chemotherapeutic agents in cancer treatment.
Collapse
Affiliation(s)
- Hamed Hajipour
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Bahramifar
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Yue H, Zhang X, Xia Y. Galangin Alleviates Tumor Progression and Metastasis in Intraperitoneal Ovarian Cancer Model via Inhibiting Janus Kinase 1/Signal Transduction and Activator of Transcription 3 Signaling. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To investigate the impact of galangin on tumor progression and metastasis in intraperitoneal ovarian cancer model. Ovarian cancer cells were treated with DMSO or galectin, cell viability was detected by MTS or acid phosphatase assay, SKOV3 cells were transfected with STAT3 targeted
shRNA and the expression of signal transduction-related proteins in cells was analyzed by immunoblotting assay, the expression of IL-6, IL-2, INF-y was estimated by enzyme-linked immunosorbent assay the peritoneal metastasis model of ovarian cancer was established using shSTAT3 transfected
or untransfected SKOV3 cells and treated with galangin or DMSO. Tumor mass, number of small tumor nodules and ascites volume were detected in the mouse model. Ovarian cancer-bearing mice treated with galangin showed a dramatic decreased tumor burden as demonstrated by the 25 times-reduced
total weight of small tumor nodules, 60%-reduced primary tumors, attenuated luciferase activity and completely blocked ascites production. Moreover, galangin inhibited cell viability in vitro in a concentration-dependent manner. Further, p-STAT3 was suppressed by galangin treatment
both in vivo and vitro. Galangin inhibited the expression of p-JAK1, the upstream signaling of p-STAT3 and IL-6 in the downstream. Meanwhile, knockdown of STAT3 by shSTAT3 transfection mimicked the therapeutic effects of galangin in vivo and vitro. Galangin supresses IL-6 secretion,
peritoneal metastasis and ascites production by inhibiting JAK1/STAT3 signaling.
Collapse
Affiliation(s)
- Hua Yue
- Department of Obstetrics and Gynecology, Xidian Group Hospital, Xian, Shaanxi, 710000, China
| | - Xiuling Zhang
- Department of Obstetrics and Gynecology, Xidian Group Hospital, Xian, Shaanxi, 710000, China
| | - Yali Xia
- Department of Obstetrics and Gynecology, Xianyang Hospital, Yan’an University, Xianyang, Shaanxi, 712000, China
| |
Collapse
|
18
|
Ho CC, Ng SC, Chuang HL, Wen SY, Kuo CH, Mahalakshmi B, Huang CY, Kuo WW. Extracts of Jasminum sambac flowers fermented by Lactobacillus rhamnosus inhibit H 2 O 2 - and UVB-induced aging in human dermal fibroblasts. ENVIRONMENTAL TOXICOLOGY 2021; 36:607-619. [PMID: 33270331 DOI: 10.1002/tox.23065] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Ultraviolet (UV) irradiation is a crucial factor that leads to skin photoaging and results in increased DNA damage, oxidative stress, and collagen degradation. Jasmine flowers have been utilized as a traditional medicine in Asia to treat various diseases, including dermatitis, diarrhea, and fever. Furthermore, the fermented broth of Lactobacillus rhamnosus has been reported to exert protective effects on the skin. In the present study, jasmine flower extract was fermented with L. rhamnosus. We investigated the antioxidant and collagen-promoting effects on UVB/H2 O2 -induced HS68 dermal fibroblast cell damage. The results indicated that treatment with the fermented flower extracts of Jasminum sambac (F-FEJS) could enhance the viability of HS68 cells. Furthermore, the UVB/H2 O2 -induced excessive production of reactive oxygen species, degradation of collagen, activation of MAPKs, including P38, ERK, and JNK, and premature senescence were remarkably attenuated by F-FEJS in dermal fibroblast cells. The nuclear accumulation of p-c-jun, which is downstream of MAPK, and the inactivation of p-smad2/3, which is one of the crucial transcription factors that enhance collagen synthesis, were reversed in response to F-FEJS treatment in UVB/H2 O2 -exposed cells. Notably, the expression of antioxidant genes, such as HO-1, and the nuclear translocation of Nrf2 were further enhanced by F-FEJS in UVB/H2 O2 -treated cells. Interestingly, the F-FEJS-induced increase in ARE luciferase activity indicated the activation of Nrf2/ARE signaling. In conclusion, our findings demonstrated that F-FEJS can effectively ameliorate UVB/H2 O2 -induced dermal cell aging and may be considered a promising ingredient in skin aging therapy.
Collapse
Affiliation(s)
- Chih-Chu Ho
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Shang-Chuan Ng
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Ho-Lin Chuang
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Su-Ying Wen
- Department of Dermatology, Taipei City Hospital, Renai Branch, Taipei, Taiwan
- Department of Cosmetic Applications and Management, Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
- Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei City, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
19
|
Purple passion fruit seeds (Passiflora edulis f. edulis Sims) as a promising source of skin anti-aging agents: Enzymatic, antioxidant and multi-level computational studies. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
20
|
Jin Y, Cheng X, Huang X, Ding F, Lee SR, Wang F, Lu X, Su D, Chen B. The role of Hrd1 in ultraviolet (UV) radiation induced photoaging. Aging (Albany NY) 2020; 12:21273-21289. [PMID: 33168784 PMCID: PMC7695362 DOI: 10.18632/aging.103851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/20/2020] [Indexed: 01/20/2023]
Abstract
The purpose of the present study was to evaluate the role of Hrd1 in the ultraviolet (UV) radiation induced photoaging and explore its potential mechanism. The nude mice were exposed to the UVA/UVB irradiation for 10 weeks. The animals were subcutaneously injected with AAV5-NC, Hrd1-shRNA-AAV5, or Hrd1-overexpression-AAV5. The HSF cells were also transfected with Ad-NC, Ad-shRNA-Hrd1, or Ad-Hrd1, and irradiated by UVA/UVB stimulation. The clinical skin samples were harvested for detecting Hrd1 and IGF-1R expressions. As a result, the knockdown of Hrd1 attenuated the histopathological alteration and collagen degradation in UV-induced nude mice. The inhibition of Hrd1 by Hrd1-shRNA-AAV5 and Ad-shRNA-Hrd1 inhibited the Hrd1 expression and promoted IGF-1R, Type I collagen and type III collagen in mice and HSF cells. The overexpression of Hrd1 exerted the reverse effect. The Co-IP assay also indicated the interaction between Hrd1 and IGF-1R. Hrd1-mediated IGF-1R downregulation and collagen degradation were also observed in clinical skin samples. In conclusion, the present results demonstrated that Hrd1 degraded IGF-1R and collagen formation in UV-induced photoaging.
Collapse
Affiliation(s)
- Yi Jin
- Department of Dermatology and Venereology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xianye Cheng
- Department of Dermatology and Venereology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xin Huang
- Department of Pediatric and Preventive Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Fan Ding
- Department of Dermatology and Venereology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Sae Rom Lee
- Department of Dermatology and Venereology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Fengdi Wang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiaoyi Lu
- Department of Dermatology and Venereology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Dongming Su
- Center of Metabolic Disease Research, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Bin Chen
- Department of Dermatology and Venereology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|