1
|
Ji J, Li M, Yan K, Ma J, Wei D, Zhang F, Qiao S, Huang P, Zhang W, Li L, Zheng W, Ren L. circSTIL mediates pirarubicin inhibiting the malignant phenotype of triple-negative breast cancer and acts as a biomarker in plasma exosomes. Mol Immunol 2025; 180:86-95. [PMID: 40022852 DOI: 10.1016/j.molimm.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
In clinical practice, pirarubicin (THP) is a widely used triple-negative breast cancer (TNBC) agent. It has been found that circular RNAs (circRNAs) are involved in cancer treatment and progression. However, the biological function of circRNAs in TNBC and the relationship between THP and circRNAs remain poorly studied. circSTIL (hsa_circ_0000069) was screened and validated by bioinformatics analysis, demonstrating that it was highly expressed in TNBC cell lines and plasma exosomes, and correlated with a poor prognosis of patients. The expression level of circSTIL in patients' plasma exosomes has potential diagnostic value in distinguishing TNBC from non-TNBC. In vitro studies confirmed that overexpression of circSTIL promotes the proliferation, migration, and invasion of MDA-MB-231 cells whereas silicification of circSTIL shows the reverse effect. Also, circSTIL mediates THP inhibiting the malignant phenotype of MDA-MB-231 cells. The above results suggested that circSTIL is a possible biomarker for the diagnosis, treatment, and prognosis of TNBC.
Collapse
Affiliation(s)
- Jiahua Ji
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Min Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Kaixu Yan
- Ultrasound Department, Obstetrics and Gynaecology Hospital of Jilin City, 53, Guanghua Road, Jilin City, Jilin 132000, China
| | - Jiulong Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Dexian Wei
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Fan Zhang
- General Surgery Center, Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Sennan Qiao
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Peng Huang
- School of Agroforestry and Medicine, The Open University of China, Beijing 100000, China
| | - Wenqing Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Lu Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Wentao Zheng
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China.
| |
Collapse
|
2
|
Chen P, Zhang J, Wu S, Zhang X, Zhou W, Guan Z, Tang H. CircRNAs: a novel potential strategy to treat breast cancer. Front Immunol 2025; 16:1563655. [PMID: 40176810 PMCID: PMC11961433 DOI: 10.3389/fimmu.2025.1563655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 04/04/2025] Open
Abstract
Breast cancer is among the most prevalent malignant tumors worldwide, with triple-negative breast cancer (TNBC) being the most aggressive subtype and lacking effective treatment options. Circular RNAs (circRNAs) are noncoding RNAs that play crucial roles in the development of tumors, including breast cancer. This article examines the progress of research on circRNAs in breast cancer, focusing on four main areas: 1) breast cancer epidemiology, classification, and treatment; 2) the structure, discovery process, characteristics, formation, and functions of circRNAs; 3) the expression, mechanisms, clinical relevance, and recent advances in the study of circRNAs in breast cancer cells and the immune microenvironment, particularly in TNBC; and 4) the challenges and future prospects of the use of circRNAs in BC research.
Collapse
Affiliation(s)
- Pangzhou Chen
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Jinhui Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Song Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoyu Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen Zhou
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Ziyun Guan
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
3
|
Chen T, Meng J, Yu K, Huang T, Zhao J. Chromatin Licensing and DNA Replication Factor 1 (CDT1) Is a Potential Prognostic Biomarker Involved in the Malignant Biological Behavior of Glioma. ACS Pharmacol Transl Sci 2024; 7:3131-3143. [PMID: 39416957 PMCID: PMC11475523 DOI: 10.1021/acsptsci.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
Glioma is the primary malignant tumor with the highest incidence rate in the adult central nervous system. The application of bioinformatics methods to analyze the RNA sequences of multiple gliomas revealed that the CDT1 gene has a significant impact on the cell cycle of glioma cells. Subsequently, we comprehensively and systematically investigated the expression of CDT1 in gliomas through bioinformatics analysis, clinical tissue specimens, and in vitro functional experiments. Our study is the first to report the expression of CDT1 in glioma. Our findings demonstrate that CDT1 plays a crucial role in the proliferation and invasion of glioma. Additionally, our bioinformatics analysis identified several other genes and signaling pathways that are dysregulated in multifocal gliomas, providing potential targets for further research and drug development.
Collapse
Affiliation(s)
- Tiange Chen
- Department
of Neurosurgery, Hainan General Hospital/Hainan
Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Jiawei Meng
- Department
of Laboratory Medicine, The Third Xiangya
Hospital, Central South University, Changsha, Hunan 410013, China
| | - Ke Yu
- Department
of Laboratory Medicine, The Third Xiangya
Hospital, Central South University, Changsha, Hunan 410013, China
| | - Tianxiang Huang
- Department
of Neurosurgery, and National Clinical Research Center of Geriatric
Disorders, Xiangya Hospital, Central South
University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Jiannong Zhao
- Department
of Neurosurgery, Hainan General Hospital/Hainan
Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| |
Collapse
|
4
|
Li R, Ji Y, Ye R, Tang G, Wang W, Chen C, Yang Q. Potential therapies for non-coding RNAs in breast cancer. Front Oncol 2024; 14:1452666. [PMID: 39372872 PMCID: PMC11449682 DOI: 10.3389/fonc.2024.1452666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024] Open
Abstract
Breast cancer (BC) is one of the frequent tumors that seriously endanger the physical and mental well-being in women with strong heterogeneity, and its pathogenesis involves multiple risk factors. Depending on the type of BC, hormonal therapy, targeted therapy, and immunotherapy are the current systemic treatment options along with conventional chemotherapy. Despite significant progress in understanding BC pathogenesis and therapeutic options, there is still a need to identify new therapeutic targets and develop more effective treatments. According to recent sequencing and profiling studies, non-coding (nc) RNAs genes are deregulated in human cancers via deletion, amplification, abnormal epigenetic, or transcriptional regulation, and similarly, the expression of many ncRNAs is altered in breast cancer cell lines and tissues. The ability of single ncRNAs to regulate the expression of multiple downstream gene targets and related pathways provides a theoretical basis for studying them for cancer therapeutic drug development and targeted delivery. Therefore, it is far-reaching to explore the role of ncRNAs in tumor development and their potential as therapeutic targets. Here, our review outlines the potential of two major ncRNAs, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) as diagnostic and prognostic biomarkers as well as targets for new therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Ruonan Li
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Yuxin Ji
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Ruyin Ye
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Guohui Tang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Wenrui Wang
- Department of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Changjie Chen
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Qingling Yang
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
5
|
Bashari N, Naghizadeh M, Chegini MK, Sadeghi ES, Zamani A, Mahdevar M. Therapeutic Potential of PLK1, KIF4A, CDCA5, UBE2C, CDT1, SKA3, AURKB, and PTTG1 Genes in Triple-Negative Breast Cancer: Correlating Their Expression with Sensitivity to GSK 461364 and IKK 16 Drugs. Biochem Genet 2024:10.1007/s10528-024-10907-1. [PMID: 39214909 DOI: 10.1007/s10528-024-10907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The treatment of triple-negative breast cancer (TNBC) has been associated with challenges due to the lack of expression of ER, PR, and HER2 receptors in tumor cells. This study aimed to identify genes with potential therapeutic targets in TNBC. Data from the cancer genome atlas regarding breast cancer (BC) were downloaded. After initial preprocessing, cancer samples were categorized into four groups: TNBC, HER2-positive, luminal A, and luminal B. Gene expression differences between these groups were calculated, focusing on genes that showed differential expression in TNBC. A protein-protein interaction network was conducted to identify hub genes among the candidate genes related to TNBC. The protein expression of candidate genes was assessed using immunohistochemistry data from the human protein atlas. Drug resistance and sensitivity associated with hub genes were identified using data from PharmacoDB. TNBC samples and the RT-qPCR method were used to confirm the results. Our findings revealed that eight genes, namely PLK1, KIF4A, CDCA5, UBE2C, CDT1, SKA3, AURKB, and PTTG1, had significant upregulation at the RNA level in TNBC subgroup compared to other subgroups and could be considered hub genes in TNBC. Compared to other subgroups, their expression level in TNBC samples had high sensitivity and specificity. RT-qPCR results also demonstrated a significant increase in levels of SKA3 and PTTG1 in the TNBC compared to healthy tissue and other subgroups. The protein expression of these genes was notably high in some BC samples. PharmacoDB data showed that some candidate genes were closely linked to drug sensitivity of GSK 461364 and IKK 16. The results of this study showed a significant increase in the expression level of PLK1, KIF4A, CDCA5, UBE2C, CDT1, SKA3, AURKB, and PTTG1 in TNBC compared to other BC subgroups. These genes show considerable promise as therapeutic targets for the TNBC subgroup.
Collapse
Affiliation(s)
- Najmeh Bashari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran
| | - Mohammadamin Naghizadeh
- Dalian Medical University, Liaoning, China
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran
| | - Mehrnaz Kalhor Chegini
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran
| | | | - Atefeh Zamani
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran.
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohammad Mahdevar
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran.
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Xu A, Zhu L, Yao C, Zhou W, Guan Z. The therapeutic potential of circular RNA in triple-negative breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:13. [PMID: 38835343 PMCID: PMC11149105 DOI: 10.20517/cdr.2023.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 06/06/2024]
Abstract
Triple-negative breast cancer (TNBC) is among the most aggressive subtypes of the disease that does not express estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Circular RNAs (circRNAs) are a type of non-coding RNA with a circular shape formed by non-standard splicing or reverse splicing. Numerous circRNAs exhibit abnormal expression in various malignancies, showing their critical role in the emergence and growth of tumors. Recent studies have shown evidence supporting the idea that certain circRNAs regulate the proliferation and metastasis of TNBC. In addition, circRNAs alter metabolism and the immune microenvironment to promote or inhibit the development of TNBC. Notably, circRNAs may affect the efficacy of clinical drug therapy, serve as therapeutic targets, and be used as molecular biomarkers in the future. Herein, we will first summarize the biogenesis and function of circRNAs. Then, we will explain current research on circRNAs related to TNBC and their potential to serve as therapeutic targets or biomarkers for future drug development, providing a new direction and idea for TNBC therapy.
Collapse
Affiliation(s)
- Aiqi Xu
- Department of Breast Oncology, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
- Authors contributed equally
| | - Lewei Zhu
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
- Authors contributed equally
| | - Chengcai Yao
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, Guangdong, China
| | - Wen Zhou
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, Guangdong, China
| | - Ziyun Guan
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, Guangdong, China
| |
Collapse
|
7
|
Bao H, Li J, Zhao Q, Yang Q, Xu Y. Circular RNAs in Breast Cancer: An Update. Biomolecules 2024; 14:158. [PMID: 38397395 PMCID: PMC10887059 DOI: 10.3390/biom14020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Breast cancer (BC), characterized by high heterogeneity, is the most commonly reported malignancy among females across the globe. Every year, many BC patients die owing to delayed diagnosis and treatment. Increasing researches have indicated that aberrantly expressed circular RNAs (circRNAs) are implicated in the tumorigenesis and progression of various tumors, including BC. Hence, this article provides a summary of the biogenesis and functions of circRNAs, as well as an examination of how circRNAs regulate the progression of BC. Moreover, circRNAs have aroused incremental attention as potential diagnostic and prognostic biomarkers for BC. Exosomes enriched with circRNAs can be secreted into the tumor microenvironment to mediate intercellular communication, affecting the progression of BC. Detecting the expression levels of exosomal circRNAs may provide reference for BC diagnosis and prognosis prediction. Illuminating insights into the earlier diagnosis and better treatment regimens of BC will be potentially available following elucidation of deeper regulatory mechanisms of circRNAs in this malignancy.
Collapse
Affiliation(s)
- Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qihang Zhao
- Department of Mammary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qingling Yang
- Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, Bengbu 233030, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, Bengbu 233030, China
- State Key Laboratory of Oncology in South China, Cancer Center of Sun Yat-Sen University, Guangzhou 510060, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
- Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
8
|
Ni Z, Liu W, Pan G, Mao A, Liu J, Zhang Q, Li J, Liu L, Li H. Circular forms of dedicator of cytokinesis 1 promotes breast cancer progression by derepressing never in mitosis related kinase 2 via sponging miR-128-3p. ENVIRONMENTAL TOXICOLOGY 2023; 38:1712-1722. [PMID: 37040338 DOI: 10.1002/tox.23799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The conjecture of breast cancer is uncertain because of its explosive growth and the complicated molecular mechanisms. Circular RNAs (circRNAs) are regulatory RNA sequences present in the genome and their regulatory mechanism involves the sponging of microRNAs (miRNAs). In this study, we explored the regulation between circular forms of dedicator of cytokinesis 1 (circDOCK1) (hsa_circ_0007142) and miR-128-3p, and its implication on the pathogenesis of breast cancer modulated by never in mitosis (NIMA) related kinase 2 (NEK2). We revealed an increase in circDOCK1 and NEK2 expression, and a decrease in miR-128-3p expression in breast cancer tissues and cell lines. Bioinformatics analysis and experimental validation indicated a positive correlation between circDOCK1 and NEK2 expression but a negative correlation was recorded between miR-128-3p and circDOCK1 or NEK2, respectively. Furthermore, inhibition of circDOCK1 expression was followed by an increase in miR-128-3p and a decrease in NEK2 levels in vitro and in vivo. The luciferase assay concluded that miR-128-3p was a direct target of circDOCK1 while NEK2 was the direct target of miR-128-3p. Furthermore, circDOCK1 inhibition hindered breast cancer development by repressing NEK2 and thus promoting the increased expression of miR-128-3p both in vitro and in vivo. We therefore conclude that circDOCK1 promotes breast cancer progression by targeting miR-128-3p-mediated downregulation of NEK2 and that the circDOCK1/hsa-miR-128-3p/NEK2 axis may be a novel therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Zhaoxian Ni
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| | - Weiyan Liu
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| | - Gaofeng Pan
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| | - Anwei Mao
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| | - Jiazhe Liu
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| | - Qing Zhang
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| | - Jindong Li
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| | - Limin Liu
- Department of Medical Rehabilitation, Heze Domestic Professional College, Middle Xueyuan Road, Shanxian Development Zone, Heze, Shandong, 274300, China
| | - Hongchang Li
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| |
Collapse
|
9
|
Meng F, Shen F, Chu X, Ling H, Qiao Y, Liu D. Hsa_circ_0008500 inhibits apoptosis of adipose-derived stem cells under high glucose through hsa-miR-1273h-5p/ELK1 axis. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37014014 DOI: 10.1002/tox.23801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Preliminary researches have confirmed that the number of apoptosis of adipose tissue-derived stem cells (ADSCs) in patients with diabetes is significantly increased, leading to a difficult healing wound. Increasing researches revealed that circular RNAs (circRNAs) can control apoptosis. However, it is still unclear whether and how circRNAs are critical for regulating ADSCs apoptosis. In this study, we utilized in vitro model in which ADSCs were cultivated with normal glucose (NG) (5.5 mM) or high glucose (HG) (25 mM) medium, respectively, and found that more apoptotic ADSCs were observed in HG medium comparing to ADSCs in NG medium. Furthermore, we found that hsa_circ_0008500 attenuated HG-mediated ADSCs apoptosis. In addition, Hsa_circ_0008500 could directly interact with hsa-miR-1273h-5p, acting as a miRNA sponge, which subsequently suppressed Ets-like protein-1(ELK1) expression, the downstream target of hsa-miR-1273h-5p. Thus, these results indicated that targeting the hsa_circ_0008500/hsa-miR-1273h-5p/ELK1 signaling pathway in ADSCs may be a potential target for repairing diabetic wounds.
Collapse
Affiliation(s)
- Fandong Meng
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Fengjie Shen
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Xuan Chu
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Hongwei Ling
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yun Qiao
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
10
|
Jia Y, Yang H, Yu J, Li Z, Jia G, Ding B, Lv C. Crocin suppresses breast cancer cell proliferation by down-regulating tumor promoter miR-122-5p and up-regulating tumor suppressors FOXP2 and SPRY2. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36988377 DOI: 10.1002/tox.23789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Crocin has been reported to have antitumor activity in several tumors including breast cancer. Nevertheless, the mechanism of action of crocin on breast cancer remains unclear. The cytotoxicity of crocin was evaluated by CCK-8 assay. Cell proliferation was assessed using EdU incorporation assay and western blot analysis. Breast cancer-related genes were extracted from GEPIA. miR-122-5p targets were predicted using Targetscan, starbase, and miRDB softwares. Luciferase reporter assay was employed to confirm whether miR-122-5p targeted sprouty2 (SPRY2) and forkhead box P2 (FOXP2). Results showed that crocin exhibited cytotoxicity and suppressed the proliferation in breast cancer cells. miR-122-5p was upregulated in breast cancer tissues and cells. Crocin suppressed miR-122-5p to block the proliferation of breast cancer cells. Seven targets of miR-122-5p were identified in breast cancer. SPRY2 and FOXP2 were selected for further experiments due to their involvement in breast cancer. miR-122-5p targeted SPRY2 and FOXP2 to inhibit their expression. miR-122-5p knockdown restrained breast cancer cell proliferation by targeting SPRY2 and FOXP2. Additionally, crocin increased SPRY2 and FOXP2 expression by inhibiting miR-122-5p expression. Together, our results suggested that crocin inhibited proliferation of breast cancer cells through decreasing miR-122-5p expression and the subsequent increase of SPRY2 and FOXP2 expression.
Collapse
Affiliation(s)
- Yunhao Jia
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Han Yang
- Department of Endocrinology, Nanshi Hospital Affiliated to Henan University, Nanyang, Henan, 473065, China
| | - Jinsong Yu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
- Key Laboratory of Thyroid Tumor Prevention and Treatment of Nanyang, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Zhong Li
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Guangwei Jia
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Bo Ding
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Chunliu Lv
- Department of Breast Tumor Plastic Surgery (Department of Head and Neck Surgery), Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| |
Collapse
|
11
|
Tumor-Suppressive and Oncogenic Roles of microRNA-149-5p in Human Cancers. Int J Mol Sci 2022; 23:ijms231810823. [PMID: 36142734 PMCID: PMC9501226 DOI: 10.3390/ijms231810823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022] Open
Abstract
Malignant tumors are always a critical threat to human health, with complex pathogenesis, numerous causative factors, and poor prognosis. The features of cancers, such as gene mutations, epigenetic alterations, and the activation and inhibition of signaling pathways in the organism, play important roles in tumorigenesis and prognosis. MicroRNA (miRNA) enables the control of various molecular mechanisms and plays a variety of roles in human cancers, such as radiation sensitivity and tumor immunity, through the regulation of target genes. MiR-149-5p participates in the process and is closely related to lipogenesis, the migration of vascular endothelial cells, and the expression of stem-cell-related proteins. In recent years, its role in cancer has dramatically increased. In this review, we summarize the regular physiological roles of miRNAs, specifically miR-149-5p, in the organism and discuss the tumor-suppressive or oncogenic roles of miR-149-5p in different human cancers with respect to signaling pathways involved in regulation. Possible clinical applications of miR-149-5p in future targeted therapies and prognosis improvement in oncology are suggested.
Collapse
|
12
|
Foruzandeh Z, Dorabadi DG, Sadeghi F, Zeinali-Sehrig F, Zaefizadeh M, Rahmati Y, Alivand MR. Circular RNAs as novel biomarkers in triple-negative breast cancer: a systematic review. Mol Biol Rep 2022; 49:9825-9840. [PMID: 35534586 DOI: 10.1007/s11033-022-07502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
More effective prognostic and diagnostic tools are urgently required for early detecting and treating triple-negative breast cancer, which is the most acute type of breast cancer because of its lower survival rate, aggressiveness, and non-response to various common treatments. So, it remains the most harmful malignancy for women worldwide. Recently, circular RNAs, as a group of non-coding RNAs, with covalently closed loop and high stability have been discovered, which can modulate gene expression through competing with endogenous microRNA sponges. This finding provided further insight into novel approaches for controlling genes affected in many disorders and malignancies. This review concentrates on the dysregulated expression of circRNAs like their diagnostic and prognostic values in TNBC. This review aims to focus on the abnormal expression of circRNAs and their diagnostic and prognostic values in TNBC. We used PubMed, Embase, and Web of Science databases and ClinicalTrials.gov to systematically search for all relevant clinical studies. This review is based on articles published in databases up to April 2022 with the following keywords: "Circular RNA", "CircRNA", "Triple-Negative Breast Cancer" and "TNBC". We conducted a review of published CircRNA profiled-research articles to identify candidate CircRNA biomarkers for TNBC. The review is registered on JBI at https://jbi.global/systematic-review-register . Accumulating evidence has shown that several circRNAs are downregulated and some are upregulated in TNBC. The results of these studies confirm that circRNAs might be potential biomarkers with the diagnostic, prognostic, and therapeutic target value for TNBC. We also consider the connection between circRNAs and TNBC cell proliferation, apoptosis, metastasis, and chemotherapy resistance and sensitivity.
Collapse
Affiliation(s)
- Zahra Foruzandeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Ghavi Dorabadi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Sadeghi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Fatemeh Zeinali-Sehrig
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yazdan Rahmati
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Alivand
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Eye Research Center, the Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Tang Y, Wang H, He Q, Chen Y, Wang J. Bioinformatics Method Was Used to Analyze the Highly Expressed Gene FAM83A of Breast Cancer in Young Women. Appl Bionics Biomech 2022; 2022:5358030. [PMID: 35392358 PMCID: PMC8983250 DOI: 10.1155/2022/5358030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022] Open
Abstract
Objectives Preliminary analysis of breast cancer related to unknown functional gene FAM83A through bioinformatics knowledge to inform further experimental studies. Select high expression genes for breast cancer and use bioinformatics methods to predict the biological function of FAM83A. Methods Genes with significant differences in expression between breast tumors and normal breast tissue libraries were selected from CGAP's SAGE Digital Gene Expression Displayer (DGED) database. An unknown functional gene, FAM83A, which is highly expressed in breast cancer, was screened. We performed an analysis of the gene structure, subcellular localization, physicochemical properties of the encoding products, functional sites, protein structure, and functional domains. Results Through SAGE DGED, a total of 185 genes with expression differences were found. The structure and function of FAM83A have ideal predictions, and it is generally determined that this gene encodes a nuclear protein with a nucleoprotein. The active site of PLDc and the functional domain of DUF1669 can be involved in signal transduction and gene expression regulation in tumorigenesis and metastasis. Digital gene representation of the Tumor Genome Project Data Library was used to select differentially expressed genes in breast cancer tissue and breast benign tumor tissue. Conclusion Studies show that FAM83A is a potential research target associated with tumorigenesis and metastasis. Initial tests confirmed the expression of this gene. Lay a solid foundation for further research learning. FAM83A is a highly expressed gene in breast cancer and can serve as a target for studying molecular mechanisms in breast cancer.
Collapse
Affiliation(s)
- Yongzhe Tang
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Hao Wang
- Teaching Center of Experimental Medicine, Shanghai Medical College, Fudan University, 138 Yixueyuan Rd, Shanghai 200032, China
| | - Qi He
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yuanyuan Chen
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Jie Wang
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|
14
|
NSD2 activates the E2F transcription factor 1/Y-box binding protein 2 axis to promote the malignant development of oral squamous cell carcinoma. Arch Oral Biol 2022; 138:105412. [DOI: 10.1016/j.archoralbio.2022.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022]
|