1
|
Zhou J, Zheng X, Xi C, Tang X, Jiang Y, Xie M, Fu X. Cr(VI) induced hepatocyte apoptosis through the CTH/H 2S/Drp1 signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175332. [PMID: 39117219 DOI: 10.1016/j.scitotenv.2024.175332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Hexavalent chromium [Cr(VI)] is a highly hazardous heavy metal with multiple toxic effects. Occupational studies indicate that its accumulation in humans can lead to liver damage. However, the exact mechanism underlying Cr(VI)-induced hepatotoxicity remains unknown. In this study, we explored the role of CTH/H2S/Drp1 pathway in Cr(VI)-induced oxidative stress, mitochondrial dysfunction, apoptosis, and liver injury. Our data showed that Cr(VI) triggered apoptosis, accompanied by H2S reduction, reactive oxygen species (ROS) accumulation, and mitochondrial dysfunction in both AML12 cells and mouse livers. Moreover, Cr(VI) reduced cystathionine γ-lyase (CTH) and dynamin related protein 1 (Drp1) S-sulfhydration levels, and elevated Drp1 phosphorylation levels at Serine 616, which promoted Drp1 mitochondrial translocation and Drp1-voltage-dependent anion channel 1 (VDAC1) interactions, ultimately leading to mitochondria-dependent apoptosis. Elevated hydrogen sulfide (H2S) levels eliminated Drp1 phosphorylation at Serine 616 by increasing Drp1 S-sulfhydration, thereby preventing Cr(VI)-induced Drp1-VDAC1 interaction and hepatotoxicity. These findings indicated that Cr(VI) induced mitochondrial apoptosis and hepatotoxicity by inhibiting CTH/H2S/Drp1 pathway and that targeting either CTH/H2S pathway or Drp1 S-sulfhydration could serve as a potential therapy for Cr(VI)-induced liver injury.
Collapse
Affiliation(s)
- Jie Zhou
- School of Medicine, Yichun University,576 XueFu Road, Yuanzhou District, Yichun 336000, PR China.
| | - Xin Zheng
- School of Medicine, Yichun University,576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Chen Xi
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Xinyi Tang
- School of Medicine, Yichun University,576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Yinjie Jiang
- School of Medicine, Yichun University,576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Minjuan Xie
- School of Medicine, Yichun University,576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Xiaoyi Fu
- School of Medicine, Yichun University,576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| |
Collapse
|
2
|
Zhang M, Zhou H, Liu L, Song W. Biological effect of U(VI) exposure on lung epithelial BEAS-2B cells. CHEMOSPHERE 2024; 366:143451. [PMID: 39362378 DOI: 10.1016/j.chemosphere.2024.143451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
In this study, the biological effects of U(VI) exposure on lung epithelial cells were investigated by MTT assay, immunofluorescence, flow cytometry, and Western blotting. U(VI)-induced stress triggers oxidative stress in cells, activates MAPK signaling pathways, and promotes inflammation. Additionally, U(VI) causes damage to the cell membrane structure and severe DNA injury, impacting the accuracy of transcription and translation. The results demonstrate that U(VI) exposure significantly inhibits cell proliferation and migration. This is attributed to the disruption of the PI3K/AKT/GSK-3β/β-catenin signaling pathway and the reduction in CyclinD1 expression, leading to a delayed cell cycle, decreased growth rate, mitochondrial damage, and reduced energy metabolism. This study provides a comprehensive understanding of the molecular mechanisms underlying uranium-induced cellular toxicity in lung epithelial cells.
Collapse
Affiliation(s)
- Mingxia Zhang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Han Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lei Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Wencheng Song
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China; Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
3
|
Su Z, Zhang Y, Hong S, Zhang Q, Xu J, Hu G, Zhu X, Yuan F, Yu S, Wang T, Jia G. Relationships between blood chromium exposure and liver injury: Exploring the mediating role of systemic inflammation in a chromate-exposed population. J Environ Sci (China) 2024; 143:224-234. [PMID: 38644019 DOI: 10.1016/j.jes.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 04/23/2024]
Abstract
Hexavalent chromium and its compounds are prevalent pollutants, especially in the work environment, pose a significant risk for multisystem toxicity and cancers. While it is known that chromium accumulation in the liver can cause damage, the dose-response relationship between blood chromium (Cr) and liver injury, as well as the possible potential toxic mechanisms involved, remains poorly understood. To address this, we conducted a follow-up study of 590 visits from 305 participants to investigate the associations of blood Cr with biomarkers for liver injury, including serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and direct bilirubin (DBIL), and to evaluate the mediating effects of systemic inflammation. Platelet (PLT) and the platelet-to-lymphocyte ratio (PLR) were utilized as biomarkers of systemic inflammation. In the linear mixed-effects analyses, each 1-unit increase in blood Cr level was associated with estimated effect percentage increases of 0.82% (0.11%, 1.53%) in TBIL, 1.67% (0.06%, 3.28%) in DBIL, 0.73% (0.04%, 1.43%) in ALT and 2.08% (0.29%, 3.87%) in AST, respectively. Furthermore, PLT mediated 10.04%, 11.35%, and 10.77% increases in TBIL, DBIL, and ALT levels induced by chromate, respectively. In addition, PLR mediated 8.26% and 15.58% of the association between blood Cr and TBIL or ALT. These findings shed light on the mechanisms underlying blood Cr-induced liver injury, which is partly due to worsening systemic inflammation.
Collapse
Affiliation(s)
- Zekang Su
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Shiyi Hong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Qiaojian Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Jiayu Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Guiping Hu
- School of Engineering Medicine and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Xiaojun Zhu
- National Center for Occupational Safety and Health, Beijing 102308, China
| | - Fang Yuan
- Department of Occupational Health and Radiological Health, Chongqing Centers for Disease Control and Prevention, Chongqing 400042, China
| | - Shanfa Yu
- Henan Institute for Occupational Medicine, Zhengzhou 450052, China
| | - Tianchen Wang
- Department of Clinical Laboratory, Third Hospital of Peking University, Beijing 100191, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
4
|
Okail HA, Anjum S, Emam NM, Abdel‐Gaber R, Dkhil MA, El‐Ashram S, Ibrahim MA. Ameliorative effect of aqueous avocado seed extract against chromium-induced oxidative stress and cellular damage in rabbit kidney. Food Sci Nutr 2024; 12:5799-5814. [PMID: 39139953 PMCID: PMC11317667 DOI: 10.1002/fsn3.4210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/14/2024] [Accepted: 04/26/2024] [Indexed: 08/15/2024] Open
Abstract
The accumulation of chromium in renal tissues promotes the generation of reactive oxygen species (ROS), leading to oxidative stress, genomic and cellular harm, and ultimately necrotic and apoptotic cell death induced by free radicals. Hence, the utilization of antioxidant phytochemicals becomes crucial for cellular defense against oxidative damage. This study endeavors to explore the potential protective effects of an aqueous avocado seed extract (ASE) on rabbit kidneys exposed to chromium-induced damage. Fifteen adult rabbits were distributed into three groups: Group 1 was kept as the control. The second and third groups received a daily dose of K2Cr2O7 (5 mg/kg) intraperitoneally for 2 weeks. While the third group was given an oral dose of ASE (400 mg/kg). In rabbits administered with Cr (VI), kidney homogenates showed a marked increase in Malondialdehyde (MDA) (69.3 ± 4.1 nmol/g) along with a decrease in glutathione (59 ± 5.8 nmol/mg) content and the activity superoxide dismutase (SOD) (0.5 ± 0.05 U/mg protein), glutathione peroxidase (GPx) (16.7 ± 1.1 μmol/mg protein), and catalase (CAT) (73.8 ± 3.9 U/g protein) compared to the levels in control group. Also, the gene expression data for the enzymes SOD, GPx, and CAT dropped dramatically in kidney tissue following Cr (VI) injection. Additionally, Bowman's capsule and glomerulus showed degenerative alterations in the kidney's histopathology and immunohistochemistry. ASE treatment when administered along with Cr (VI) enhanced the activity and gene expression of antioxidant enzymes and improved histopathological conditions. The findings of this study unequivocally show that avocado seed extract, which is rich in phenolic derivatives, is a potent nephroprotective agent that inhibits nephrotoxicity induced by Cr (VI) in rabbits.
Collapse
Affiliation(s)
- Hanan A. Okail
- Department of Zoology, Faculty of ScienceSohag UniversitySohagEgypt
| | - Sadia Anjum
- Biology Department, Faculty of ScienceHail UniversityHailSaudi Arabia
| | - Nahed M. Emam
- Department of Zoology, Faculty of ScienceAl‐Arish UniversityArishEgypt
| | - Rewaida Abdel‐Gaber
- Department of Zoology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Mohamed A. Dkhil
- Department of Zoology, Faculty of ScienceHelwan UniversityCairoEgypt
- Applied Science Research CenterApplied Science Private UniversityAmmanJordan
| | - Saeed El‐Ashram
- College of Life Science and EngineeringFoshan UniversityFoshanGuangdong ProvinceChina
| | - Mona A. Ibrahim
- Department of Zoology, Faculty of ScienceHelwan UniversityCairoEgypt
| |
Collapse
|
5
|
Kim JA, Kim MJ, Park YS, Kang CK, Kim JH, Choi CY. Effects of microfiber and bead microplastic exposure in the goldfish Carassius auratus: Bioaccumulation, antioxidant responses, and cell damage. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106684. [PMID: 37677861 DOI: 10.1016/j.aquatox.2023.106684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
We confirmed antioxidant-related gene expression, bioaccumulation, and cell damage following exposure to various microplastics in vivo and in vitro in the goldfish Carassius auratus. Exposure of C. auratus to a 500 µm fiber-type microplastic environment (MF; 10 and 100 fibers/L) and two sizes (0.2 and 1.0 µm) of beads (MB; 10 and 100 beads/L) for 120 h increased superoxide dismutase (SOD) mRNA expression in the liver until 24 h followed by a decrease. Whereas, catalase (CAT) mRNA expression increased from 12 h to the end of the in vivo experiment. In vitro experiments were conducted with diluted microfibers (1 and 5 fibers/L) and microbeads (1 and 5 beads/L) using cultured liver cells. The results of SOD and CAT mRNA expression analysis conducted in vitro showed a tendency similar to those of experiments conducted in vivo. The H2O2 level increased in the high-concentration experimental groups compared with that in the low-concentration groups of 0.2-µm beads. In addition, the H2O2 level increased in both MF and MB groups from 12 h of exposure. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in plasma were used as indicators of liver damage in fish. The ALT and AST levels increased up to 120 h after exposure. Caspase-3 (casp-3) mRNA expression was higher in the MB group than in the MF group. We visually confirmed liver casp-3 mRNA signals using in situ hybridization. The degree of DNA damage in the MF and MB high-concentration groups increased with the exposure time. The tail length and percent of DNA in the tail of the MB group were significantly higher than those of the MF group, confirming that DNA damage was greater in the MB group. Both fiber- and bead-type microplastics induced oxidative stress in C. auratus, but the bead-type induced greater stress than the fiber-type.
Collapse
Affiliation(s)
- Jin A Kim
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea
| | - Min Ju Kim
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea
| | - Young-Su Park
- Department of Nursing, Catholic University of Pusan, Busan 46252, Korea
| | - Chang-Keun Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jun-Hwan Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - Cheol Young Choi
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea; Division of Marine BioScience, Korea Maritime and Ocean University, Busan 49112, Korea.
| |
Collapse
|
6
|
Chen Q, Guo J, Qiu T, Zhou J. Mechanism of ASK1 involvement in liver diseases and related potential therapeutic targets: A critical pathway molecule worth investigating. J Gastroenterol Hepatol 2023; 38:378-385. [PMID: 36533997 DOI: 10.1111/jgh.16087] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 12/30/2022]
Abstract
Since the discovery of apoptosis signal-regulated kinase 1 (ASK1), the signal transduction mechanism and pathophysiological process involved in its regulation have been continuously revealed. Many previous studies have identified that ASK1 is involved and plays a critical role in the development of diseases affecting the nervous, cardiac, renal, and other systems. As a mitogen-activated protein kinase (MAPK) kinase kinase, ASK1 mediates apoptosis, necrosis, inflammation, and other pathological processes by activating its downstream c-Jun N-terminal kinase (JNK)/p38 MAPK. Owing to the important role of ASK1, an increasing number of studies in recent years have focused on its status in liver-related diseases. In this paper, we review the mechanisms and targets of ASK1 in liver-related diseases to emphasize its important role in the development of liver disease.
Collapse
Affiliation(s)
- Qi Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province, China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province, China
| | - Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
7
|
Teschke R. Aluminum, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Mercury, Molybdenum, Nickel, Platinum, Thallium, Titanium, Vanadium, and Zinc: Molecular Aspects in Experimental Liver Injury. Int J Mol Sci 2022; 23:12213. [PMID: 36293069 PMCID: PMC9602583 DOI: 10.3390/ijms232012213] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Experimental liver injury with hepatocelluar necrosis and abnormal liver tests is caused by exposure to heavy metals (HMs) like aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, platinum, thallium, titanium, vanadium, and zinc. As pollutants, HMs disturb the ecosystem, and as these substances are toxic, they may affect the health of humans and animals. HMs are not biodegradable and may be deposited preferentially in the liver. The use of animal models can help identify molecular and mechanistic steps leading to the injury. HMs commonly initiate hepatocellular overproduction of ROS (reactive oxygen species) due to oxidative stress, resulting in covalent binding of radicals to macromolecular proteins or lipids existing in membranes of subcellular organelles. Liver injury is facilitated by iron via the Fenton reaction, providing ROS, and is triggered if protective antioxidant systems are exhausted. Ferroptosis syn pyroptosis was recently introduced as mechanistic concept in explanations of nickel (Ni) liver injury. NiCl2 causes increased iron deposition in the liver, upregulation of cyclooxygenase 2 (COX-2) protein and mRNA expression levels, downregulation of glutathione eroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), nuclear receptor coactivator 4 (NCOA4) protein, and mRNA expression levels. Nickel may cause hepatic injury through mitochondrial damage and ferroptosis, defined as mechanism of iron-dependent cell death, similar to glutamate-induced excitotoxicity but likely distinct from apoptosis, necrosis, and autophagy. Under discussion were additional mechanistic concepts of hepatocellular uptake and biliary excretion of mercury in exposed animals. For instance, the organic anion transporter 3 (Oat3) and the multidrug resistance-associated protein 2 (Mrp2) were involved in the hepatic handling of mercury. Mercury treatment modified the expression of Mrp2 and Oat3 as assessed by immunoblotting, partially explaining its impaired biliary excretion. Concomitantly, a decrease in Oat3 abundance in the hepatocyte plasma membranes was observed that limits the hepatic uptake of mercury ions. Most importantly and shown for the first time in liver injury caused by HMs, titanium changed the diversity of gut microbiota and modified their metabolic functions, leading to increased generation of lipopolysaccharides (LPS). As endotoxins, LPS may trigger and perpetuate the liver injury at the level of gut-liver. In sum, mechanistic and molecular steps of experimental liver injury due to HM administration are complex, with ROS as the key promotional compound. However, additional concepts such as iron used in the Fenton reaction, ferroptosis, modification of transporter systems, and endotoxins derived from diversity of intestinal bacteria at the gut-liver level merit further consideration.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt, 63450 Hanau, Germany
| |
Collapse
|
8
|
Cuevas-Magaña MY, Vega-García CC, León-Contreras JC, Hernández-Pando R, Zazueta C, García-Niño WR. Ellagic acid ameliorates hexavalent chromium-induced renal toxicity by attenuating oxidative stress, suppressing TNF-α and protecting mitochondria. Toxicol Appl Pharmacol 2022; 454:116242. [PMID: 36108929 DOI: 10.1016/j.taap.2022.116242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
Nephrotoxicity is an important adverse effect of oxidative stress induced by hexavalent chromium [Cr(VI)]. The effect of ellagic acid, a dietary polyphenolic compound with potent antioxidant activity, was investigated in Cr(VI)-induced kidney injury. Six groups of male Wistar rats were treated intragastrically with vehicle or ellagic acid (15 and 30 mg/kg) for 10 days. On day 10, rats received saline or Cr(VI) (K2Cr2O7 15 mg/kg) subcutaneously. Cr(VI) significantly increased kidney weight, affected kidney function assessed by biomarkers in blood and urine (protein, creatinine and urea nitrogen), caused histological changes (tubular injury and glomerular capillary tuft damage), increased markers of oxidative stress and reduced the activity of antioxidant enzymes. In addition, Cr(VI) altered mitochondrial ultrastructure, impaired mitochondrial respiration, increased lipid peroxidation, and inhibited the function of mitochondrial enzymes. Pretreatment with ellagic acid (30 mg/kg) attenuated all the aforementioned alterations. Furthermore, we explored whether ellagic acid might regulate the tumor necrosis factor-alpha (TNF-α)/receptor-interacting protein kinase 3 (RIPK3) pathway, reducing Cr(VI)-induced tubular necrosis. Cr(VI) upregulated both TNF-α and RIPK3, but ellagic acid only decreased TNF-α levels, having no effect on RIPK3 content. Therefore, understanding the mechanisms through which Cr(VI) promotes necroptosis is crucial for future studies, in order to design strategies to mitigate kidney damage. In conclusion, ellagic acid attenuated Cr(VI)-induced renal alterations by preventing oxidative stress, supporting enzymatic activities, suppressing TNF-α, and preserving mitochondrial ultrastructure and function, most likely due to its antioxidant properties.
Collapse
Affiliation(s)
- Mayra Yael Cuevas-Magaña
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City 14080, Mexico
| | - Claudia Cecilia Vega-García
- Department of Biology of Reproduction, National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City 14000, Mexico
| | - Juan Carlos León-Contreras
- Experimental Pathology Section. National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City 14000, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Section. National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City 14000, Mexico
| | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City 14080, Mexico
| | - Wylly Ramsés García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City 14080, Mexico.
| |
Collapse
|