1
|
Singh A, Balech R, Barpete S, Gupta P, Bouhlal O, Tawkaz S, Kaul S, Tripathi K, Amri A, Maalouf F, Gupta S, Kumar S. Wild Lathyrus-A Treasure of Novel Diversity. PLANTS (BASEL, SWITZERLAND) 2024; 13:3028. [PMID: 39519947 PMCID: PMC11548535 DOI: 10.3390/plants13213028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Grasspea (Lathyrus sativus L.) is a climate-smart legume crop with adaptation to fragile agroecosystems. The genus Lathyrus is recognized for its vast genetic diversity, encompassing over 160 species, many of which are cultivated for various purposes across different regions of the world. Among these, Lathyrus sativus is widely cultivated as food, feed, and fodder in South Asia, Sub-Saharan Africa, and the Central and West Asia and North Africa (CWANA) regions. Its global cultivation has declined substantially due to the stigma posed by the presence of neurotoxin β-N-oxalyl-L-α, β-diaminopropionic acid (β-ODAP) in its seeds and green foliage. Overconsumption for a longer period of grasspea seeds harvested from landraces may lead to a neurological disorder called neurolathyrism in humans. ODAP is an obstacle for grasspea expansion, but crop wild relatives (CWRs) have been found to offer a solution. The incorporation of CWRs, particularly Lathyrus cicera, and landraces into breeding programs may reduce the ODAP content in grasspea varieties to a safer level. Recent advances in genomics-assisted breeding have expanded the potential for utilizing challenging CWRs to develop grasspea varieties that combine ultra-low ODAP levels with improved yield, stability, and adaptability. Further progress in omics technologies-such as transcriptomics, proteomics, and metabolomics-along with genome sequencing and editing, has greatly accelerated the development of grasspea varieties with reduced or zero ODAP content, while also enhancing the plant's agronomic value. This review highlights the significance of utilizing CWRs in pre-breeding programs, and harnessing advanced tools and technologies to enhance the performance, adaptability, and resilience of grasspea in response to changing environmental conditions.
Collapse
Affiliation(s)
- Akanksha Singh
- International Center for Agricultural Research in the Dry Areas (ICARDA), New Delhi 110012, India
| | - Rind Balech
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol 1108-2010, Lebanon
| | - Surendra Barpete
- International Center for Agricultural Research in the Dry Areas (ICARDA), Amlaha 466113, India
| | - Priyanka Gupta
- Département de Phytologie, Institut de Biologie Intégrative et des Systèmes Pavillons Charles-Eugène Marchant, Université Laval, Québec, QC G1V 4G2, Canada
| | - Outmane Bouhlal
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco
| | - Sawsan Tawkaz
- International Center for Agricultural Research in the Dry Areas (ICARDA), 2 Port Said, Victoria Square, Maadi, Cairo 11140, Egypt
| | - Smita Kaul
- International Center for Agricultural Research in the Dry Areas (ICARDA), New Delhi 110012, India
| | - Kuldeep Tripathi
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Ahmed Amri
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco
| | - Fouad Maalouf
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol 1108-2010, Lebanon
| | - Sanjeev Gupta
- Crop Science Division, Indian Council of Agricultural Research, Krishi Bhawan, New Delhi 110001, India
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), New Delhi 110012, India
| |
Collapse
|
2
|
Martínez-de la Parte E, Pérez-Vicente L, Torres DE, van Westerhoven A, Meijer HJG, Seidl MF, Kema GHJ. Genetic diversity of the banana Fusarium wilt pathogen in Cuba and across Latin America and the Caribbean. Environ Microbiol 2024; 26:e16636. [PMID: 38783572 DOI: 10.1111/1462-2920.16636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Fusarium wilt of bananas (FWB) is a severe plant disease that leads to substantial losses in banana production worldwide. It remains a major concern for Cuban banana cultivation. The disease is caused by members of the soil-borne Fusarium oxysporum species complex. However, the genetic diversity among Fusarium species infecting bananas in Cuba has remained largely unexplored. In our comprehensive survey, we examined symptomatic banana plants across all production zones in the country, collecting 170 Fusarium isolates. Leveraging genotyping-by-sequencing and whole-genome comparisons, we investigated the genetic diversity within these isolates and compared it with a global Fusarium panel. Notably, typical FWB symptoms were observed in Bluggoe cooking bananas and Pisang Awak subgroups across 14 provinces. Our phylogenetic analysis revealed that F. purpurascens, F. phialophorum, and F. tardichlamydosporum are responsible for FWB in Cuba, with F. tardichlamydosporum dominating the population. Furthermore, we identified between five and seven distinct genetic clusters, with F. tardichlamydosporum isolates forming at least two subgroups. This finding underscores the high genetic diversity of Fusarium spp. contributing to FWB in the Americas. Our study sheds light on the population genetic structure and diversity of the FWB pathogen in Cuba and the broader Latin American and Caribbean regions.
Collapse
Affiliation(s)
- Einar Martínez-de la Parte
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
- Instituto de Investigaciones de Sanidad Vegetal (INISAV), Ministry of Agriculture, Havana, Cuba
| | - Luis Pérez-Vicente
- Instituto de Investigaciones de Sanidad Vegetal (INISAV), Ministry of Agriculture, Havana, Cuba
| | - David E Torres
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
- Theoretical Biology and Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Anouk van Westerhoven
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
- Theoretical Biology and Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Harold J G Meijer
- BU Biointeractions and Plant Health, Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Gert H J Kema
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Wohor OZ, Rispail N, Ojiewo CO, Rubiales D. Pea Breeding for Resistance to Rhizospheric Pathogens. PLANTS (BASEL, SWITZERLAND) 2022; 11:2664. [PMID: 36235530 PMCID: PMC9572552 DOI: 10.3390/plants11192664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Pea (Pisum sativum L.) is a grain legume widely cultivated in temperate climates. It is important in the race for food security owing to its multipurpose low-input requirement and environmental promoting traits. Pea is key in nitrogen fixation, biodiversity preservation, and nutritional functions as food and feed. Unfortunately, like most crops, pea production is constrained by several pests and diseases, of which rhizosphere disease dwellers are the most critical due to their long-term persistence in the soil and difficulty to manage. Understanding the rhizosphere environment can improve host plant root microbial association to increase yield stability and facilitate improved crop performance through breeding. Thus, the use of various germplasm and genomic resources combined with scientific collaborative efforts has contributed to improving pea resistance/cultivation against rhizospheric diseases. This improvement has been achieved through robust phenotyping, genotyping, agronomic practices, and resistance breeding. Nonetheless, resistance to rhizospheric diseases is still limited, while biological and chemical-based control strategies are unrealistic and unfavourable to the environment, respectively. Hence, there is a need to consistently scout for host plant resistance to resolve these bottlenecks. Herein, in view of these challenges, we reflect on pea breeding for resistance to diseases caused by rhizospheric pathogens, including fusarium wilt, root rots, nematode complex, and parasitic broomrape. Here, we will attempt to appraise and harmonise historical and contemporary knowledge that contributes to pea resistance breeding for soilborne disease management and discuss the way forward.
Collapse
Affiliation(s)
- Osman Z. Wohor
- Instituto de Agricultura Sostenible, CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
- Savanna Agriculture Research Institute, CSIR, Nyankpala, Tamale Post TL52, Ghana
| | - Nicolas Rispail
- Instituto de Agricultura Sostenible, CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Chris O. Ojiewo
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, United Nations Avenue—Gigiri, Nairobi P.O. Box 1041-00621, Kenya
| | - Diego Rubiales
- Instituto de Agricultura Sostenible, CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|
4
|
Martins DC, Rubiales D, Vaz Patto MC. Association Mapping of Lathyrus sativus Disease Response to Uromyces pisi Reveals Novel Loci Underlying Partial Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:842545. [PMID: 35401593 PMCID: PMC8988034 DOI: 10.3389/fpls.2022.842545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 05/17/2023]
Abstract
Uromyces pisi ([Pers.] D.C.) Wint. is an important foliar biotrophic pathogen infecting grass pea (Lathyrus sativus L.), compromising their yield stability. To date, few efforts have been made to assess the natural variation in grass pea resistance and to identify the resistance loci operating against this pathogen, limiting its efficient breeding exploitation. To overcome this knowledge gap, the genetic architecture of grass pea resistance to U. pisi was investigated using a worldwide collection of 182 accessions through a genome-wide association approach. The response of the grass pea collection to rust infection under controlled conditions and at the seedling stage did not reveal any hypersensitive response but a continuous variation for disease severity, with the identification of promising sources of partial resistance. A panel of 5,651 high-quality single-nucleotide polymorphism (SNP) markers previously generated was used to test for SNP-trait associations, based on a mixed linear model accounting for population structure. We detected seven SNP markers significantly associated with U. pisi disease severity, suggesting that partial resistance is oligogenic. Six of the associated SNP markers were located in chromosomes 4 and 6, while the remaining SNP markers had no known chromosomal position. Through comparative mapping with the pea reference genome, a total of 19 candidate genes were proposed, encoding for leucine-rich repeat, NB-ARC domain, and TGA transcription factor family, among others. Results presented in this study provided information on the availability of partial resistance in grass pea germplasm and advanced our understanding of the molecular mechanisms of quantitative resistance to rust in grass pea. Moreover, the detected associated SNP markers constitute promising genomic targets for the development of molecular tools to assist disease resistance precision breeding.
Collapse
Affiliation(s)
- Davide Coelho Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- *Correspondence: Davide Coelho Martins,
| | - Diego Rubiales
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|