1
|
Ebbisa AF, Dechassa N, Bekeko Z, Liben F. Residual effect of vermicompost and preceding groundnut on soil fertility and associated Striga density under sorghum cropping in Eastern Ethiopia. PLoS One 2025; 20:e0318057. [PMID: 40073327 PMCID: PMC11903043 DOI: 10.1371/journal.pone.0318057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/10/2025] [Indexed: 03/14/2025] Open
Abstract
Depletion of soil organic matter was found to be the primary biophysical factor causing declining per capita food production in sub-Saharan Africa. The magnitude of this problem was exacerbated by moisture-stress and imbalanced fertilizer application that caused Striga weed infestation. To address such confounded issues, two-year field experiments were conducted to evaluate the effect of residual vermicompost and preceding groundnut on soil fertility, sorghum yield, and Striga density. The first-year treatments contained two sowing methods (single and intercropped sorghum), two seedbed types (open-furrow and tied-ridge), and four vermicompost rates (0, 1.5, 3.0, and 4.5 t/ha) combined factorially in a randomized block design. In the second-year experiment, only monocropped sorghum with seedbed types was sown exactly on the same plot as the previous year's treatment combinations without fertilizer. The results disclosed that residual vermicompost at 4.5 t/ha in intercropped sorghum/groundnut significantly reduced soil pH (0.76%), bulk density (8.61%), electrical conductivity (38.78%), and Striga density (85.71%). In contrast, compared to unamended soil, the aforementioned treatment combined with tied-ridging increased soil moisture, organic matter, and sorghum yield by 16.67, 2.34, and 58%, respectively. Moreover, this treatment combination markedly increased post-harvest soil organic carbon (7.69%), total N (0.247%), available P (38.46%), exchangeable-Fe (27%), and exchangeable-Zn (40%) in the second year over control. Treatments previously amended with 4.5 t/ha of vermicompost under the sorghum-groundnut intercrop system resulted in the highest total N (0.242%) and available P (9.822 mg/Kg). Thus, the vermicompost and groundnut successfully improve soil fertility and sorghum yield for two cropping seasons.
Collapse
Affiliation(s)
- Addisu F. Ebbisa
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
| | | | - Zelalem Bekeko
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Feyera Liben
- Alliance of Biodiversity International and CIAT, ILRI, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Enebe MC, Erasmus M. Vermicomposting technology - A perspective on vermicompost production technologies, limitations and prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118585. [PMID: 37421723 DOI: 10.1016/j.jenvman.2023.118585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
The need for environmental sustainability while increasing the quantity, quality, and the rate of waste treatment to generate high-value environmental friendly fertilizer products is highly in demand. Vermicomposting is a good technology for the valorisation of industrial, domestic, municipal and agricultural wastes. Various vermicomposting technologies have been in use from time past to present. These technologies range from windrow, small - scale batch vermicomposting to large - scale continuous flow systems. Each of these processes has its own merits and demerits, necessitating advancement in the technology for efficient treatment of wastes. This work explores the hypothesis that the use of a continuous flow vermireactor system of a composite frame structure performs better than batch, windrow and other continuous systems operated in a single container. Following an in-depth review of the literature on vermicomposting technologies, treatment techniques, and reactor materials used, to explore the hypothesis, it was found that vermireactors operating in continuous flow fashion perform better in waste bioconversion than the batch and windrow techniques. Overall, the study concludes that batch techniques using plastic vermireactors predominate over the other reactor systems. However, the use of frame compartmentalized composite vermireactors performs considerably better in waste valorisation.
Collapse
Affiliation(s)
- Matthew Chekwube Enebe
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein, 9031, South Africa.
| | - Mariana Erasmus
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein, 9031, South Africa
| |
Collapse
|
3
|
Chowdhury SD, Hasim Suhaib K, Bhunia P, Surampalli RY. A Critical Review on the Vermicomposting of Organic Wastes as a Strategy in Circular Bioeconomy: Mechanism, Performance, and Future Perspectives. ENVIRONMENTAL TECHNOLOGY 2023:1-38. [PMID: 37192135 DOI: 10.1080/09593330.2023.2215458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
AbstractTo meet the current need for sustainable development, vermicomposting (VC), a natural, eco-friendly, and cost-effective technology, can be a wise selection for the bioconversion of organic wastes into value-added by-products. However, no one has tried to establish the VC technology as an economically sustainable technology by exploring its linkage to circular bioeconomy. Even, no researcher has made any effort to explore the usability of the earthworms (EWs) as a protein supplement while assessing the economic perspectives of VC technology. Very few studies are available on the greenhouse gas (GHG) emission potential of VC technology. Still, the contribution of VC technology towards the non-carbon waste management policy is not yet explored. In the current review, a genuine effort has been made to inspect the contribution of VC technology towards the circular bioeconomy, along with evaluating its capability to bioremediate the organic wastes generated from domestic, industrial, and agricultural premises. The potential of the EWs as a protein source has also been explored to strengthen the contribution of VC technology towards the circular bioeconomy. Moreover, the linkage of the VC technology to the non-carbon waste management policy has been comprehensively demonstrated by highlighting its carbon sequestration and GHG emission potentials during the treatment of organic wastes. It has been observed that the cost of food production was reduced by 60--70% by replacing chemical fertilizers with vermicompost. The implication of the vermicompost significantly lessened the harvesting period of the crops, thereby helping the farmers attain higher profits by cultivating more crops in a single calendar year on the same plot. Furthermore, the vermicompost could hold the soil moisture for a long time, lessening the water demand up to 30-40%, which, in turn, reduced the frequency of irrigation. Also, the replacement of the chemical fertilizers with vermicompost resulted in a 23% increment in the grapes' yield, engendering an extra profit of up to 110000 rupees/ha. In Nepal, vermicompost has been produced at a cost of 15.68 rupees/kg, whereas it has been sold to the local market at a rate of 25 rupees/kg as organic manure, ensuring a net profit of 9.32 rupees/kg of vermicompost. EWs embraced 63% crude protein, 5-21% carbohydrates, 6-11% fat, 1476 kJ/100 g of metabolizable energy, and a wide range of minerals and vitamins. EWs also contained 4.11, 2.04, 4.43, 2.83, 1.47, and 6.26 g/kg (on protein basis) of leucine, isoleucine, tryptophan, arginine, histidine, and phenylalanine, respectively, enhancing the acceptability of the EW meal (EWM) as the protein supplement. The inclusion of 3 and 5% EWM in the diet of broiler pullets resulted in a 12.6 and 22.5% increase in their feed conversion ratio (FCR), respectively after one month. Similarly, when a 100% fish meal was substituted by 50% EWM and 50% fish meal, the FCR and growth rate of Parachanna obscura were increased substantially. The VC of maize crop residues mixed with pig manure, cow dung, and biochar, in the presence of Eisenia fetida EWs, yielded only 0.003-0.081, 0-0.17, and 130.40-189.10 g CO2-eq.kg-1 emissions of CO2, CH4, and N2O, respectively. Similarly, the VC of tomato stems and cow dung ensured 2.28 and 5.76 g CO2-eq.kg-1 CO2 emissions of CH4 and N2O, respectively. Additionally, the application of vermicompost at a rate of 5 t/ha improved the soil organic carbon proportion and aggravated carbon sequestration. The land application of vermicompost improved micro-aggregation and cut down the tillage, reducing GHG emissions and triggering carbon sequestration. The significant findings of the current review suggest that VC technology potentially contributes to the concept of circular bioeconomy, substantially negotiates potential GHG emissions, and complies with the non-carbon waste management policy, reinforcing its acceptability as an economically sound and environmentally benevolent organic waste bioremediation alternative.
Collapse
Affiliation(s)
- Sanket Dey Chowdhury
- Research Scholar, Environmental Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar-752 050, Odisha, India, ,
| | - K Hasim Suhaib
- Research Scholar, Environmental Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar-752 050, Odisha, India, ,
| | - Puspendu Bhunia
- Research Scholar, Environmental Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar-752 050, Odisha, India, ,
| | - Rao Y Surampalli
- CEO and President, Global Institute for Energy, Environment, and Sustainability, P.O. Box 14354 Lenexa, Kansas 66285, USA,
| |
Collapse
|
4
|
Cui J, Cui J, Li J, Wang W, Xu B, Yang J, Li B, Chang Y, Liu X, Yao D. Improving earthworm quality and complex metal removal from water by adding aquatic plant residues to cattle manure. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130145. [PMID: 36368070 DOI: 10.1016/j.jhazmat.2022.130145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Vermicomposting is an economical and environmentally friendly process. However, related knowledge of vermicomposting aquatic plant residues (APRs), earthworm quality, and mechanisms for metal removal from water is still lacking. Nelumbo and Oenanthe javanica residues and their mixture were treated with Eisenia foetida and cattle manure for 45 days. Compared with the control comprising only cattle manure, addition of the APR mixture improved earthworm quality, mainly for low crude ash, high alkaloid compounds and different fat compositions in the Nelumbo residue and the balanced protein proportion of the APR mixture. All the vermicompost especial O. javanica residue added (VO) played efficient roles in removing metals from water initially containing 2.0 mg Cu L-1 and 8.0 mg Zn L-1. There were higher removal efficiencies (Ers) at the dosage of 4 g L-1 with a small microbial contribution. VO significantly increased Ers, which could be from the decrease of phylum Firmicutes (especial Bacteroides) abundance, stronger CH2, C = O, and CH, the addition of COOH groups, and higher organic matter and total phosphorus contents. The combination of VO and Hippuris vulgaris was optimized as an ecological and economical method for treating complex-metal polluted water. Moreover, our study widened the route for APR reuse.
Collapse
Affiliation(s)
- Jian Cui
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China.
| | - Jianwei Cui
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Jinfeng Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Wei Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - John Yang
- Department of Agriculture and Environmental Science & Cooperative Research, Lincoln University of Missouri, Jefferson City, MO 65201, USA
| | - Bei Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Yajun Chang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Xiaojing Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Dongrui Yao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China.
| |
Collapse
|
5
|
Bellitürk K, Fang L, Görres JH. Effect of post-production vermicompost and thermophilic compost blending on nutrient availability. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:146-152. [PMID: 36371848 DOI: 10.1016/j.wasman.2022.09.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Composting is a common waste management strategy for recycling nutrients from organic household or agricultural wastes. However, thermophilic (e.g. windrow) composting and vermicomposting (using earthworms) produce different nutrient and enzyme profiles. Vermicompost is purported to have greater fertility benefits, but is also more expensive than thermophilic compost. The objective of this study was to examine a novel approach to designing organic fertility amendments by blending mature vermicompost and thermophilic compost. To examine the effect of blending, vermicompost was admixed to thermophilic compost at 20, 50 and 70 % by mass, with and without the addition of coir (cocopeat). Electric conductivity, water-extractable, immediately available N, P and K were measured. Vermicompost and coir synergistically affected the availability of these nutrients. Synergistic effects were between 15 and 40 % for total inorganic N in blends with coir. Without coir, synergism occurred only at vermicompost additions ≥50 %. Synergism for available P and K was present in all blends and ranged from 10% to 35%. Electrical conductivity measurements suggest that blending affected compost within three days of starting the incubation. The activity of five of seven measured enzymes were linearly and positively related to the fraction of vermicompost in the blend. Blending mature composts with differing properties may be another tool, in addition to adjusting feedstock and process parameters, to affect positively the fertility properties of composts.
Collapse
Affiliation(s)
- Korkmaz Bellitürk
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Lynn Fang
- Department of Plant and Soil Science, 258, Jeffords Building, The University of Vermont, Burlington, VT, USA
| | - Josef H Görres
- Department of Plant and Soil Science, 258, Jeffords Building, The University of Vermont, Burlington, VT, USA.
| |
Collapse
|
6
|
Zhou Y, Xiao R, Klammsteiner T, Kong X, Yan B, Mihai FC, Liu T, Zhang Z, Kumar Awasthi M. Recent trends and advances in composting and vermicomposting technologies: A review. BIORESOURCE TECHNOLOGY 2022; 360:127591. [PMID: 35809873 DOI: 10.1016/j.biortech.2022.127591] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Composting technologies have come a long way, developing from static heaps and windrow composting to smart, artificial intelligence-assisted reactor composting. While in previous years, much attention has been paid to identifying ideal organic waste streams and suitable co-composting candidates, more recent efforts tried to determine novel process-enhancing supplements. These include various single and mixed microbial cultures, additives, bulking agents, or combinations thereof. However, there is still ample need to fine-tune the composting process in order to reduce its impact on the environment and streamline it with circular economy goals. In this review, we highlight recent advances in integrating mathematical modelling, novel supplements, and reactor designs with (vermi-) composting practices and provide an outlook for future developments. These results should serve as reference point to target adjusting screws for process improvement and provide a guideline for waste management officials and stakeholders.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Thomas Klammsteiner
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, 6020 Innsbruck, Austria
| | - Xiaoliang Kong
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Florin-Constantin Mihai
- CERNESIM Center, Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, "Alexandru Ioan Cuza" University of Iasi, 700506 Iasi, Romania
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
7
|
Evaluating the Conservation Status of a North-Western Iberian Earthworm (Compostelandrilus cyaneus) with Insight into Its Genetic Diversity and Ecological Preferences. Genes (Basel) 2022; 13:genes13020337. [PMID: 35205381 PMCID: PMC8871906 DOI: 10.3390/genes13020337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
In spite of the high conservation value of soil fauna, the evaluation of their conservation status has usually been neglected. This is more evident for earthworms, one of the most important ecosystem service providers in temperate habitats but rarely the subject of conservation research. These studies have not been developed in Western Europe, which comprises high diversity and several early-branching, relic genera. One potentially menaced representative of this fauna is Compostelandrilus cyaneus; this risk can be assessed by implementing potential distribution modeling and genetic diversity monitoring to their known populations. Genetic barcoding was performed in representatives of four populations (three of them newly sampled) in order to estimate genetic diversity and population genetics parameters. Ensemble species distribution models were built by combining several algorithms and using the five more relevant bioclimatic and soil variables as predictors. A large amount of genetic diversity was found in a small area of less than 20 km2, with populations located in less managed, better-preserved habitats showing higher genetic variability than populations isolated from natural habitats and surrounded by anthropic habitats. Potential distribution appears to be strongly restricted at a regional scale, and suitable habitats within the extent of occurrence appear fragmented and relatively limited. In addition, the main variables determining the ecological niche of C. cyaneus suggests a vulnerability to climate change and increasing soil compaction. Based on this knowledge, this species was assessed as Critically Endangered following the IUCN Red List of Threatened Species criteria, and some potential conservation actions are suggested.
Collapse
|
8
|
Ordoñez-Arévalo B, Huerta-Lwanga E, Calixto-Romo MDLÁ, Dunn MF, Guillén-Navarro K. Hemicellulolytic bacteria in the anterior intestine of the earthworm Eisenia fetida (Sav.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151221. [PMID: 34717991 DOI: 10.1016/j.scitotenv.2021.151221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Tropical agriculture produces large amounts of lignocellulosic residues that can potentially be used as a natural source of value-added products. The complexity of lignocellulose makes industrial-scale processing difficult. New processing techniques must be developed to improve the yield and avoid this valuable resource going to waste. Hemicelluloses comprise a variety of polysaccharides with different backbone compositions and decorations (such as methylations and acetylations), and form part of an intricate framework that confers structural stability to the plant cell wall. Organisms that are able to degrade these biopolymers include earthworms (Eisenia fetida), which can rapidly decompose a wide variety of lignocellulosic substrates. This ability probably derives from enzymes and symbiotic microorganisms in the earthworm gut. In this work, two substrates with similar C/N ratios but different hemicellulose content were selected. Palm fibre and coffee husk have relatively high (28%) and low (5%) hemicellulose contents, respectively. A vermicomposting mixture was prepared for the earthworms to feed on by mixing a hemicellulose substrate with organic market waste. Xylanase activity was determined in earthworm gut and used as a selection criterion for the isolation of hemicellulose-degrading bacteria. Xylanase activity was similar for both substrates, even though their physicochemical properties principally pH and electrical conductivity, as shown by the MANOVA analysis) were different for the total duration of the experiment (120 days). Xylanolytic strains isolated from earthworm gut were identified by sequence analysis of the 16S rRNA gene. Our results indicate that the four Actinobacteria, two Proteobacteria, and one Firmicutes isolated are active participants of the xylanolytic degradation by microbiota in the intestine of E. fetida. Most bacteria were more active at pH 7 and 28 °C, and those with higher activities are reported as being facultatively anaerobic, coinciding with the microenvironment reported for the earthworm gut. Each strain had a different degradative capacity.
Collapse
Affiliation(s)
- Berenice Ordoñez-Arévalo
- Grupo Académico de Biotecnología Ambiental, Unidad Tapachula, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km 2.5, C.P. 30700 Tapachula, Chiapas, Mexico
| | - Esperanza Huerta-Lwanga
- Grupo Académico de Agroecología, El Colegio de la Frontera Sur, Unidad Campeche, Av. Polígono s/n, Ciudad Industrial, C.P. 24500 Lerma, Campeche, Mexico; Soil Physics and Land Management Group, Wageningen University & Research, P.O. Box 47, 6700AA Wageningen, the Netherlands
| | - María de Los Ángeles Calixto-Romo
- Grupo Académico de Biotecnología Ambiental, Unidad Tapachula, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km 2.5, C.P. 30700 Tapachula, Chiapas, Mexico
| | - Michael Frederick Dunn
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos, Mexico
| | - Karina Guillén-Navarro
- Grupo Académico de Biotecnología Ambiental, Unidad Tapachula, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km 2.5, C.P. 30700 Tapachula, Chiapas, Mexico.
| |
Collapse
|
9
|
Kamar Zaman AM, Yaacob JS. Exploring the potential of vermicompost as a sustainable strategy in circular economy: improving plants' bioactive properties and boosting agricultural yield and quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12948-12964. [PMID: 35034296 DOI: 10.1007/s11356-021-18006-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Consumption of natural resources and waste generation continues to rise as the human population increases. Ever since the industrial revolution, consumers have been adopting a linear economy model based on the 'take-make-dispose' approach. Raw materials are extracted to be converted into products and finally discarded as wastes. Consequently, this practice is unsustainable because it causes a massive increase in waste production. The root problems of the linear system can be addressed by transitioning to a circular economy. Circular economy is an economic model in which wastes from one product are recycled and used as resources for other processes. This literature review discovers the potential of vermicompost as a sustainable strategy in circular economy and highlights the benefits of vermicompost in ensuring food security, particularly in improving agricultural yield and quality, as well as boosting crop's nutritional quality. Vermicompost has the potential to be used in a variety of ways in the circular economy, including for agricultural sustainability, managing waste, pollutant remediation, biogas production and animal feed production. The recycling of organic wastes to produce vermicompost can benefit both the consumers and environment, thus paving the way towards a more sustainable agriculture for the future.
Collapse
Affiliation(s)
| | - Jamilah Syafawati Yaacob
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Research in Biotechnology for Agriculture (CEBAR), Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Lirikum, Kakati LN, Thyug L, Mozhui L. Vermicomposting: an eco-friendly approach for waste management and nutrient enhancement. Trop Ecol 2022. [DOI: 10.1007/s42965-021-00212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Hao X, Ma X, Zeng B, Zhu L, Shen L, Yang M, Hu H, Jiang D, Bai L. Efficiency and mechanism of a vermicompost additive in enhancing composting of swine manure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65791-65801. [PMID: 34322803 DOI: 10.1007/s11356-021-14498-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Vermicompost was used as an additive in swine manure composting to investigate the expression of bacterial functional genes on nutrients biotransformation. Three treatments with vermicompost compositions of 10%, 20%, and 30% in swine manure were set up. Raw manure was used as the control. The thermophilic period increased to 12 days, the NH4+ -N/NO3- -N ratio decreased to 0.85, and the germination index (GI) increased to 166% after vermicompost addition. Furthermore, higher relative abundances of Firmicutes were observed in the substrate during the initial stages of experiment. The abundance of the dominant phylum Proteobacteria and its related pathogenic genera Acinetobacter and Stenotrophomonas decreased in the thermophilic stage while the potentially beneficial genera Actinomadura and Chryseolinea increased. The expression of primary functional genes associated with the metabolism of carbohydrates, amino acids, xenobiotics, and fatty acids was enhanced during the thermophilic phase. Besides, most dominant genera showed strengthened correlations with NO3--N and GI, which were the strongest environmental factors for bacterial communities. Network analysis revealed a new metabolic pathway associated with dominant genera Pseudomonas, Acinetobacter, Stenotrophomonas, and Oceanobacter, whose abundance increased with vermicompost addition. Collectively, the results of this study indicate that vermicompost can promote composting efficiency by increasing the potentially beneficial bacteria, decreasing pathogenic bacteria, and enhancing the metabolic capacity of bacterial communities.
Collapse
Affiliation(s)
- Xiaoxia Hao
- Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Huimin Road 211, Chengdu, 611130, Sichuan, China
| | - Xinyuan Ma
- Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Huimin Road 211, Chengdu, 611130, Sichuan, China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingxian Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hongwen Hu
- Neijiang Academy of Agricultural Sciences, Neijiang, 641000, Sichuan, China
| | - Dongmei Jiang
- Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Huimin Road 211, Chengdu, 611130, Sichuan, China
| | - Lin Bai
- Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Huimin Road 211, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
12
|
Ravindran B, Karmegam N, Yuvaraj A, Thangaraj R, Chang SW, Zhang Z, Kumar Awasthi M. Cleaner production of agriculturally valuable benignant materials from industry generated bio-wastes: A review. BIORESOURCE TECHNOLOGY 2021; 320:124281. [PMID: 33099155 DOI: 10.1016/j.biortech.2020.124281] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Bio-wastes from different agro-based industries are increasing at a rapid rate with the growing human population's demand for the products. The industries procure raw materials largely from agriculture, finish it with the required major product, and produce huge bio-wastes which are mostly disposed unscientifically. This creates serious environmental problems and loss of resources and nutrients. Traditional bio-wastes disposal possess several demerits which again return with negative impact over the eco-system. Anaerobic digestion, composting, co-composting, and vermicomposting are now-a-days given importance due to the improved and modified methods with enhanced transformation of bio-wastes into suitable soil amendments. The advanced and modified methods like biochar assisted composting and vermicomposting is highlighted with the updated knowledge in the field. Hence, the present study has been carried to compile the effective and efficient methods of utilizing industry generated bio-wastes for circularity between agriculture - industrial sectors to promote sustainability.
Collapse
Affiliation(s)
- Balasubramani Ravindran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon 16227, South Korea
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Ananthanarayanan Yuvaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Ramasundaram Thangaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem 636 011, Tamil Nadu, India
| | - S W Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon 16227, South Korea
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, China.
| |
Collapse
|
13
|
Effective Placement Methods of Vermicompost Application in Urban Tree Species: Implications for Sustainable Urban Afforestation. SUSTAINABILITY 2020. [DOI: 10.3390/su12145822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Knowledge on growth and nutrient uptake characteristics of urban trees and effective strategies to grow trees can help accomplish the goal of urban afforestation initiatives in a sustainable way. Thus, the study investigated the effects of different vermicompost (VC) application placements on the growth and nutrient uptake of three contrasting tree species (fast-growing Betula platyphylla and Larix kaempferi and slow-growing Chamaecyparis obtusa) to provide implications for growing tree stocks for sustainable urban afforestation programs. Five placement methods were used in the greenhouse trial: no fertilization (CON), surface placement (VCs), subsurface placement at 6-cm depth (VCc), bottom placement (35-cm depth (VCb)), and mixed with soil (VCm). We measured the growth parameters such as height, root collar diameter (RCD), and biomass and analyzed foliar nutrient concentrations in response to different placement treatments of VC. Relative height growth was the highest at VCc (132% (B. platyphylla), 114% (L. kaempferi)) and VCs ((57%) C. obtusa). Significant improvement in aboveground and belowground biomass growth of all species at VCs and VCc compared to the other treatments was also observed. Generally, VC treatments significantly increased N concentration compared to CON in all species. In conclusion, fertilizing the fast- and slow-growing urban tree species using VCs and/or VCc is relevant to growing high quality planting stocks for sustainable urban afforestation purposes.
Collapse
|
14
|
Singh A, Karmegam N, Singh GS, Bhadauria T, Chang SW, Awasthi MK, Sudhakar S, Arunachalam KD, Biruntha M, Ravindran B. Earthworms and vermicompost: an eco-friendly approach for repaying nature's debt. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1617-1642. [PMID: 31974693 DOI: 10.1007/s10653-019-00510-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
The steady increase in the world's population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.
Collapse
Affiliation(s)
- Archana Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 011, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, Tamil Nadu, 636 007, India
| | - Gopal Shankar Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 011, India.
| | - Tunira Bhadauria
- Department of Zoology, Feroze Gandhi College, Raebareli, Uttar Pradesh, 229 001, India
| | - Soon Woong Chang
- Department of Evironmental Energy and Engineering, Kyonggi University, Youngtong Gu, Suwon, 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Sivasubramaniam Sudhakar
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627 012, India
| | - Kantha Deivi Arunachalam
- Center for Environmental Nuclear Research, Directorate of Research, SRM institute of science and technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Muniyandi Biruntha
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Balasubramani Ravindran
- Department of Evironmental Energy and Engineering, Kyonggi University, Youngtong Gu, Suwon, 16227, South Korea.
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
15
|
Vermiremediation of Biomixtures from Biobed Systems Contaminated with Pesticides. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biobeds bioremediation systems are effectively used for minimizing pesticide point-source contamination. For keeping the biobed effectiveness, its biomixture needs to be replaced every so often. The exhausted biomixtures can contain pesticide residues and so they require a special treatment before being discharged into the environment. In this study, we explore the potential of vermiremediation for cleaning up biobed biomixtures contaminated with pesticides. Two biomixtures composed of soil:peat:straw (P) and soil:vermicompost of wet olive cake: olive tree pruning (O), contaminated with high loads of four pesticides, were used. Vermicomposting was carried out by Eisenia fetida earthworms for 12 weeks. Results showed that 50% and 70% of the earthworms colonized the contaminated P and O biomixtures, respectively, but the number of alive earthworms decreased with time just as their weight. The colonization of biomixtures did not significantly affect the dissipation of imidacloprid and tebuconazole, but increased 1.4 fold the dissipation of oxyfluorfen in both biomixtures and that of diuron in biomixture P. Although the presence of high loads of pesticides and the composition of the biomixtures limited the vermiremediation, satisfactory results were obtained for diuron and oxyfluorfen. Complementing vermiremediation with other remediation practices could improve the efficiency of this technology.
Collapse
|