1
|
Eissman JM, Qiao M, Kalia V, Zerlin-Esteves M, Reyes-Dumeyer D, Piriz A, Dubey S, Nandakumar R, Lee AJ, Lantigua RA, Medrano M, Mejia DR, Honig LS, Dalgard CL, Miller GW, Mayeux R, Vardarajan BN. Genetic Regulation of the Metabolome Differs by Sex, Alzheimer's Disease Stage, and Plasma Biomarker Status. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.26.25322932. [PMID: 40061336 PMCID: PMC11888523 DOI: 10.1101/2025.02.26.25322932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
We investigated genetic regulators of circulating plasma metabolites to identify pathways underlying biochemical changes in clinical and biomarker-assisted diagnosis of Alzheimer's disease (AD). We computed metabolite quantitative trait loci by using whole genome sequencing and small molecule plasma metabolites from 229 older adults with clinical AD and 322 age-matched healthy controls. Unbiased associations between 6,881 metabolites and 332,772 common genetic variants were tested, adjusted for age, sex, and both metabolomic and genomic principal components. We identified 72 novel and known SNP-metabolite associations spanning 66 genes and 12 metabolite classes, including PYROXD2 and N6-methyllysine, FAAH and myristoylglycine, as well as FADS2 and arachidonic acid. In addition, we found differences in genetic regulation of metabolites among individuals with clinically defined AD compared to AD defined by a published plasma P-tau181 level cut-off. We also found more SNP-metabolite associations among males compared to females. In summary, we identified sex- and disease-specific genetic regulators of plasma metabolites and unique biological mechanisms of genetic perturbations in AD.
Collapse
Affiliation(s)
- Jaclyn M. Eissman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, 10032, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, 10032, USA
| | - Min Qiao
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, 10032, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, 10032, USA
| | - Vrinda Kalia
- Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | | | - Dolly Reyes-Dumeyer
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, 10032, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, 10032, USA
| | - Angel Piriz
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, 10032, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, 10032, USA
| | - Saurabh Dubey
- Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Renu Nandakumar
- Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Annie J. Lee
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, 10032, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, 10032, USA
| | - Rafael A. Lantigua
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Martin Medrano
- Pontificia Universidad Católica Madre y Maestra, Santiago, Dominican Republic
| | - Diones Rivera Mejia
- CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
- Universidad Nacional Pedro Henriquez Ureña, Santo Domingo, Dominican Republic
| | - Lawrence S. Honig
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, 10032, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, 10032, USA
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Clifton L. Dalgard
- Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The American Genome Center, Center for Military Precision Health, Uniformed Services University of the Health Sciences, Bethesda, MD, 20894, USA
| | - Gary W Miller
- Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, 10032, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, 10032, USA
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Badri N. Vardarajan
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, 10032, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, 10032, USA
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
2
|
McGee EE, Zeleznik OA, Balasubramanian R, Hu J, Rosner BA, Wactawski-Wende J, Clish CB, Avila-Pacheco J, Willett WC, Rexrode KM, Tamimi RM, Eliassen AH. Differences in metabolomic profiles between Black and White women in the U.S.: Analyses from two prospective cohorts. Eur J Epidemiol 2024; 39:653-665. [PMID: 38703248 DOI: 10.1007/s10654-024-01111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/26/2024] [Indexed: 05/06/2024]
Abstract
There is growing interest in incorporating metabolomics into public health practice. However, Black women are under-represented in many metabolomics studies. If metabolomic profiles differ between Black and White women, this under-representation may exacerbate existing Black-White health disparities. We therefore aimed to estimate metabolomic differences between Black and White women in the U.S. We leveraged data from two prospective cohorts: the Nurses' Health Study (NHS; n = 2077) and Women's Health Initiative (WHI; n = 2128). The WHI served as the replication cohort. Plasma metabolites (n = 334) were measured via liquid chromatography-tandem mass spectrometry. Observed metabolomic differences were estimated using linear regression and metabolite set enrichment analyses. Residual metabolomic differences in a hypothetical population in which the distributions of 14 risk factors were equalized across racial groups were estimated using inverse odds ratio weighting. In the NHS, Black-White differences were observed for most metabolites (75 metabolites with observed differences ≥ |0.50| standard deviations). Black women had lower average levels than White women for most metabolites (e.g., for N6, N6-dimethlylysine, mean Black-White difference = - 0.98 standard deviations; 95% CI: - 1.11, - 0.84). In metabolite set enrichment analyses, Black women had lower levels of triglycerides, phosphatidylcholines, lysophosphatidylethanolamines, phosphatidylethanolamines, and organoheterocyclic compounds, but higher levels of phosphatidylethanolamine plasmalogens, phosphatidylcholine plasmalogens, cholesteryl esters, and carnitines. In a hypothetical population in which distributions of 14 risk factors were equalized, Black-White metabolomic differences persisted. Most results replicated in the WHI (88% of 272 metabolites available for replication). Substantial differences in metabolomic profiles exist between Black and White women. Future studies should prioritize racial representation.
Collapse
Affiliation(s)
- Emma E McGee
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| | - Oana A Zeleznik
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Raji Balasubramanian
- Division of Women's Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jie Hu
- Division of Women's Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bernard A Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Clary B Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Julian Avila-Pacheco
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Walter C Willett
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kathryn M Rexrode
- Division of Women's Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medical College, New York, USA
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
3
|
Vardarajan B, Kalia V, Reyes-Dumeyer D, Dubey S, Nandakumar R, Lee A, Lantigua R, Medrano M, Rivera D, Honig L, Mayeux R, Miller G. Lysophosphatidylcholines are associated with P-tau181 levels in early stages of Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-3346076. [PMID: 38260644 PMCID: PMC10802729 DOI: 10.21203/rs.3.rs-3346076/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background We profiled circulating plasma metabolites to identify systemic biochemical changes in clinical and biomarker-assisted diagnosis of Alzheimer's disease (AD). Methods We used an untargeted approach with liquid chromatography coupled to high-resolution mass spectrometry to measure small molecule plasma metabolites from 150 clinically diagnosed AD patients and 567 age-matched healthy elderly of Caribbean Hispanic ancestry. Plasma biomarkers of AD were measured including P-tau181, Aβ40, Aβ42, total-tau, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP). Association of individual and co-abundant modules of metabolites were tested with clinical diagnosis of AD, as well as biologically-defined AD pathological process based on P-tau181 and other biomarker levels. Results Over 6000 metabolomic features were measured with high accuracy. First principal component (PC) of lysophosphatidylcholines (lysoPC) that bind to or interact with docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (AHA) was associated with decreased risk of AD (OR = 0.91 [0.89-0.96], p = 2e-04). Association was restricted to individuals without an APOE ε4 allele (OR = 0.89 [0.84-0.94], p = 8.7e-05). Among individuals carrying at least one APOE ε4 allele, PC4 of lysoPCs moderately increased risk of AD (OR = 1.37 [1.16-1.6], p = 1e-04). Essential amino acids including tyrosine metabolism pathways were enriched among metabolites associated with P-tau181 levels and heparan and keratan sulfate degradation pathways were associated with Aβ42/Aβ40 ratio. Conclusions Unbiased metabolic profiling can identify critical metabolites and pathways associated with β-amyloid and phosphotau pathology. We also observed an APOE-ε4 dependent association of lysoPCs with AD and biologically based diagnostic criteria may aid in the identification of unique pathogenic mechanisms.
Collapse
Affiliation(s)
| | - Vrinda Kalia
- Columbia University Mailman School of Public Health
| | | | | | | | - Annie Lee
- Center for Translational & Computational Neuroimmunology
| | | | | | | | | | | | | |
Collapse
|
4
|
Ikanga J, Patel SS, Roberts BR, Schwinne M, Hickle S, Verberk IMW, Epenge E, Gikelekele G, Tshengele N, Kavugho I, Mampunza S, Yarasheski KE, Teunissen CE, Stringer A, Levey A, Alonso A. Association of plasma biomarkers with cognitive function in persons with dementia and cognitively healthy in the Democratic Republic of Congo. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12496. [PMID: 37954546 PMCID: PMC10632676 DOI: 10.1002/dad2.12496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023]
Abstract
Introduction This study investigates whether plasma biomarkers (Aβ42/40 and p-tau 181), APS, as well as apolipoprotein E (APOE) proteotype predict cognitive deficits in elderly adults from the Democratic Republic of Congo. Methods Forty-four with possible AD (pAD) and 41 healthy control (HC) subjects were screened using CSID and AQ, underwent cognitive assessment with the African Neuropsychology Battery (ANB), and provided blood samples for plasma Aβ42, Aβ40, Aβ42/40, and APOE proteotype. Linear and logistic regression were used to evaluate the associations of plasma biomarkers with ANB tests and the ability of biomarkers to predict cognitive status. Results Patients with pAD had significantly lower plasma Aβ42/40 levels, higher APS, and higher prevalence of APOE E4 allele compared to HC. Groups did not differ in levels of Aβ40, Aβ42, or P-tau 181. Results showed that Aβ42/40 ratio and APS were significantly associated with African Naming Test (ANT), African List Memory Test (ALMT), and African Visuospatial Memory Test (AVMT) scores, while the presence of APOE E4 allele was associated with ANT, ALMT, AVMT, and APT scores. P-tau 181 did not show any significant associations while adjusting for age, education, and gender. APS showed the highest area under the curve (AUC) value (AUC = 0.78, 95% confidence interval [CI]: 0.68-0.88) followed by Aβ42/40 (AUC = 0.75, 95% CI: 0.66-0.86) and APOE E4 (AUC = 0.69 (CI 0.57-0.81) in discriminating pAD from HC. Discussion These results demonstrate associations between select plasma biomarker of AD pathology (Aβ42/40), APS, and APOE E4 allele) and ANB test scores and the ability of these biomarkers to differentiate pAD from cognitively normal SSA individuals, consistent with findings reported in other settings.
Collapse
Affiliation(s)
- Jean Ikanga
- Department of Rehabilitation MedicineEmory University School of MedicineAtlantaGeorgiaUSA
- Department of PsychiatrySchool of MedicineUniversity of Kinshasa and Catholic University of CongoKinshasaDemocratic Republic of Congo
| | - Saranya Sundaram Patel
- Department of Rehabilitation MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Blaine R. Roberts
- Department of BiochemistryDepartment of neurologySchool of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Megan Schwinne
- Department of EpidemiologyRollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| | - Sabrina Hickle
- Department of Rehabilitation MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Inge M. W. Verberk
- Neurochemistry laboratoryDepartment of Clinical ChemistryAmsterdam Neuroscience, NeurodegenerationAmsterdam University Medical Centers, Vrije UniversitietAmsterdamThe Netherlands
| | - Emmanuel Epenge
- Department of neurologyUniversity of KinshasaKinshasaDemocratic Republic of Congo
| | - Guy Gikelekele
- Department of PsychiatrySchool of MedicineUniversity of Kinshasa and Catholic University of CongoKinshasaDemocratic Republic of Congo
| | - Nathan Tshengele
- Department of PsychiatrySchool of MedicineUniversity of Kinshasa and Catholic University of CongoKinshasaDemocratic Republic of Congo
| | | | - Samuel Mampunza
- Department of PsychiatrySchool of MedicineUniversity of Kinshasa and Catholic University of CongoKinshasaDemocratic Republic of Congo
| | | | - Charlotte E. Teunissen
- Neurochemistry laboratoryDepartment of Clinical ChemistryAmsterdam Neuroscience, NeurodegenerationAmsterdam University Medical Centers, Vrije UniversitietAmsterdamThe Netherlands
| | - Anthony Stringer
- Department of Rehabilitation MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Allan Levey
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Alvaro Alonso
- Department of EpidemiologyRollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
5
|
Kalia V, Kulick ER, Vardarajan B, Gu Y, Manly JJ, Elkind MS, Kaufman JD, Jones DP, Baccarelli AA, Mayeux R, Kioumourtzoglou MA, Miller GW. Linking Air Pollution Exposure to Blood-Based Metabolic Features in a Community-Based Aging Cohort with and without Dementia. J Alzheimers Dis 2023; 96:1025-1040. [PMID: 37927256 PMCID: PMC10741333 DOI: 10.3233/jad-230122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Long-term exposure to air pollution has been associated with changes in levels of metabolites measured in the peripheral blood. However, most research has been conducted in ethnically homogenous, young or middle-aged populations. OBJECTIVE To study the relationship between the plasma metabolome and long-term exposure to three air pollutants: particulate matter (PM) less than 2.5μm in aerodynamic diameter (PM2.5), PM less than 10μm in aerodynamic diameter (PM10), and nitrogen dioxide (NO2) in an ethnically diverse, older population. METHODS Plasma metabolomic profiles of 107 participants of the Washington Heights and Inwood Community Aging Project in New York City, collected from 1995-2015, including non-Hispanic white, Caribbean Hispanic, and non-Hispanic Black older adults were used. We estimated the association between each metabolic feature and predicted annual mean exposure to the air pollutants using three approaches: 1) A metabolome wide association study framework; 2) Feature selection using elastic net regression; and 3) A multivariate approach using partial-least squares discriminant analysis. RESULTS 79 features associated with exposure to PM2.5 but none associated with PM10 or NO2. PM2.5 exposure was associated with altered amino acid metabolism, energy production, and oxidative stress response, pathways also associated with Alzheimer's disease. Three metabolites were associated with PM2.5 exposure through all three approaches: cysteinylglycine disulfide, a diglyceride, and a dicarboxylic acid. The relationship between several features and PM2.5 exposure was modified by diet and metabolic diseases. CONCLUSIONS These relationships uncover the mechanisms through which PM2.5 exposure can lead to altered metabolic outcomes in an older population.
Collapse
Affiliation(s)
- Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Erin R. Kulick
- Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, USA
| | - Badri Vardarajan
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- The Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY, USA
| | - Yian Gu
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- The Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jennifer J. Manly
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY, USA
| | - Mitchell S.V. Elkind
- The Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Joel D. Kaufman
- Departments of Environmental and Occupational Health Sciences, Medicine, and Epidemiology, University of Washington, Seattle, WA, USA
| | - Dean P. Jones
- Department of Medicine, Clinical Biomarkers Laboratory, Emory University, Atlanta, GA, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- The Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
6
|
Wang J, Wang Y, Zeng Y, Huang D. Feature selection approaches identify potential plasma metabolites in postmenopausal osteoporosis patients. Metabolomics 2022; 18:86. [PMID: 36318345 DOI: 10.1007/s11306-022-01937-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Postmenopausal women with osteoporosis (PMOP) are prone to fragility fractures. Osteoporosis is associated with alterations in the levels of specific circulating metabolites. OBJECTIVES To analyze the metabolic profile of individuals with PMOP and identify novel metabolites associated with bone mineral density (BMD). METHODS We performed an unsupervised metabolomics analysis of plasma samples from participants with PMOP and of normal controls (NC) with normal bone mass. BMD values for the lumber spine and the proximal femur were determined using dual-energy X-ray absorptiometry. Principal component analysis (PCA) and supervised partial least squares discriminant analysis (PLS-DA) were performed for metabolomic profile analyses. Metabolites with P < 0.05 in the t-test, VIP > 1 in the PLS-DA model, and SNR > 0.3 between the PMOP and NC groups were defined as differential abundant metabolites (DAMs). The SHapley additive explanations (SHAP) method was utilized to determine the importance of permutation of each DAM in the predictive model between the two groups. ROC analysis and correlation analysis of metabolite relative abundance and BMD/T-scores were conducted. KEGG pathway analysis was used for functional annotation of the candidate metabolites. RESULTS Overall, 527 annotated molecular markers were extracted in the positive and negative total ion chromatogram (TIC) of each sample. The PMOP and NC groups could be differentiated using the PLS-DA model. Sixty-eight DAMs were identified, with most relative abundances decreasing in the PMOP samples. SHAP was used to identify 9 DAM metabolites as factors distinguishing PMOP from NC. The logistic regression model including Triethanolamine, Linoleic acid, and PC(18:1(9Z)/18:1(9Z)) metabolites demonstrated excellent discrimination performance (sensitivity = 97.0, specificity = 96.6, AUC = 0.993). The correlation analysis revealed that the abundances of Triethanolamine, PC(18:1(9Z)/18:1(9Z)), 16-Hydroxypalmitic acid, and Palmitic acid were significantly positively correlated with the BMD/T score (Pearson correlation coefficients > 0.5, P < 0.05). Most candidate metabolites were involved in lipid metabolism based on KEGG functional annotations. CONCLUSION The plasma metabolomic signature of PMOP patients differed from that of healthy controls. Marker metabolites may help provide information for the diagnosis, therapy, and prevention of PMOP. We highlight the application of feature selection approaches in the analysis of high-dimensional biological data.
Collapse
Affiliation(s)
- Jihan Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Yangyang Wang
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
| | - Yuhong Zeng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Dageng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
7
|
François M, Karpe AV, Liu JW, Beale DJ, Hor M, Hecker J, Faunt J, Maddison J, Johns S, Doecke JD, Rose S, Leifert WR. Multi-Omics, an Integrated Approach to Identify Novel Blood Biomarkers of Alzheimer's Disease. Metabolites 2022; 12:949. [PMID: 36295851 PMCID: PMC9610280 DOI: 10.3390/metabo12100949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The metabolomic and proteomic basis of mild cognitive impairment (MCI) and Alzheimer's disease (AD) is poorly understood, and the relationships between systemic abnormalities in metabolism and AD/MCI pathogenesis is unclear. This study compared the metabolomic and proteomic signature of plasma from cognitively normal (CN) and dementia patients diagnosed with MCI or AD, to identify specific cellular pathways and new biomarkers altered with the progression of the disease. We analysed 80 plasma samples from individuals with MCI or AD, as well as age- and gender-matched CN individuals, by utilising mass spectrometry methods and data analyses that included combined pathway analysis and model predictions. Several proteins clearly identified AD from the MCI and CN groups and included plasma actins, mannan-binding lectin serine protease 1, serum amyloid A2, fibronectin and extracellular matrix protein 1 and Keratin 9. The integrated pathway analysis showed various metabolic pathways were affected in AD, such as the arginine, alanine, aspartate, glutamate and pyruvate metabolism pathways. Therefore, our multi-omics approach identified novel plasma biomarkers for the MCI and AD groups, identified changes in metabolic processes, and may form the basis of a biomarker panel for stratifying dementia participants in future clinical trials.
Collapse
Affiliation(s)
- Maxime François
- CSIRO Health & Biosecurity, Human Health Program, Molecular Diagnostic Solutions Group, Adelaide, SA 5000, Australia
| | - Avinash V. Karpe
- CSIRO Land & Water, Metabolomics Unit, Ecosciences Precinct, Dutton Park, QLD 4001, Australia
| | - Jian-Wei Liu
- CSIRO Land & Water, Agricultural and Environmental Sciences Precinct, Acton, Canberra, ACT 2601, Australia
| | - David J. Beale
- CSIRO Land & Water, Metabolomics Unit, Ecosciences Precinct, Dutton Park, QLD 4001, Australia
| | - Maryam Hor
- CSIRO Health & Biosecurity, Human Health Program, Molecular Diagnostic Solutions Group, Adelaide, SA 5000, Australia
| | - Jane Hecker
- Department of Internal Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Jeff Faunt
- Department of General Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - John Maddison
- Aged Care Rehabilitation & Palliative Care, SA Health, Modbury Hospital, Modbury, SA 5092, Australia
| | - Sally Johns
- Aged Care Rehabilitation & Palliative Care, SA Health, Modbury Hospital, Modbury, SA 5092, Australia
| | - James D. Doecke
- Australian e-Health Research Centre, CSIRO, Level 7, Surgical Treatment and Rehabilitation Service—STARS, Herston, QLD 4029, Australia
| | - Stephen Rose
- Australian e-Health Research Centre, CSIRO, Level 7, Surgical Treatment and Rehabilitation Service—STARS, Herston, QLD 4029, Australia
| | - Wayne R. Leifert
- CSIRO Health & Biosecurity, Human Health Program, Molecular Diagnostic Solutions Group, Adelaide, SA 5000, Australia
| |
Collapse
|
8
|
Saiyasit N, Butlig EAR, Chaney SD, Traylor MK, Hawley NA, Randall RB, Bobinger HV, Frizell CA, Trimm F, Crook ED, Lin M, Hill BD, Keller JL, Nelson AR. Neurovascular Dysfunction in Diverse Communities With Health Disparities-Contributions to Dementia and Alzheimer's Disease. Front Neurosci 2022; 16:915405. [PMID: 35844216 PMCID: PMC9279126 DOI: 10.3389/fnins.2022.915405] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease and related dementias (ADRD) are an expanding worldwide crisis. In the absence of scientific breakthroughs, the global prevalence of ADRD will continue to increase as more people are living longer. Racial or ethnic minority groups have an increased risk and incidence of ADRD and have often been neglected by the scientific research community. There is mounting evidence that vascular insults in the brain can initiate a series of biological events leading to neurodegeneration, cognitive impairment, and ADRD. We are a group of researchers interested in developing and expanding ADRD research, with an emphasis on vascular contributions to dementia, to serve our local diverse community. Toward this goal, the primary objective of this review was to investigate and better understand health disparities in Alabama and the contributions of the social determinants of health to those disparities, particularly in the context of vascular dysfunction in ADRD. Here, we explain the neurovascular dysfunction associated with Alzheimer's disease (AD) as well as the intrinsic and extrinsic risk factors contributing to dysfunction of the neurovascular unit (NVU). Next, we ascertain ethnoregional health disparities of individuals living in Alabama, as well as relevant vascular risk factors linked to AD. We also discuss current pharmaceutical and non-pharmaceutical treatment options for neurovascular dysfunction, mild cognitive impairment (MCI) and AD, including relevant studies and ongoing clinical trials. Overall, individuals in Alabama are adversely affected by social and structural determinants of health leading to health disparities, driven by rurality, ethnic minority status, and lower socioeconomic status (SES). In general, these communities have limited access to healthcare and healthy food and other amenities resulting in decreased opportunities for early diagnosis of and pharmaceutical treatments for ADRD. Although this review is focused on the current state of health disparities of ADRD patients in Alabama, future studies must include diversity of race, ethnicity, and region to best be able to treat all individuals affected by ADRD.
Collapse
Affiliation(s)
- Napatsorn Saiyasit
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Evan-Angelo R. Butlig
- Department of Neurology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Samantha D. Chaney
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Miranda K. Traylor
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, United States
| | - Nanako A. Hawley
- Department of Psychology, University of South Alabama, Mobile, AL, United States
| | - Ryleigh B. Randall
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Hanna V. Bobinger
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Carl A. Frizell
- Department of Physician Assistant Studies, University of South Alabama, Mobile, AL, United States
| | - Franklin Trimm
- College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Errol D. Crook
- Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Mike Lin
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Benjamin D. Hill
- Department of Psychology, University of South Alabama, Mobile, AL, United States
| | - Joshua L. Keller
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, United States
| | - Amy R. Nelson
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
9
|
Kalia V, Niedzwiecki MM, Bradner JM, Lau FK, Anderson FL, Bucher ML, Manz KE, Schlotter AP, Fuentes ZC, Pennell KD, Picard M, Walker DI, Hu WT, Jones DP, Miller GW. Cross-species metabolomic analysis of tau- and DDT-related toxicity. PNAS NEXUS 2022; 1:pgac050. [PMID: 35707205 PMCID: PMC9186048 DOI: 10.1093/pnasnexus/pgac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/28/2022] [Indexed: 01/29/2023]
Abstract
Exposure to the pesticide dichlorodiphenyltrichloroethane (DDT) has been associated with increased risk of Alzheimer's disease (AD), a disease also associated with hyperphosphorylated tau (p-tau) protein aggregation. We investigated whether exposure to DDT can exacerbate tau protein toxicity in Caenorhabditiselegans using a transgenic strain that expresses human tau protein prone to aggregation by measuring changes in size, swim behavior, respiration, lifespan, learning, and metabolism. In addition, we examined the association between cerebrospinal fluid (CSF) p-tau protein-as a marker of postmortem tau burden-and global metabolism in both a human population study and in C. elegans, using the same p-tau transgenic strain. From the human population study, plasma and CSF-derived metabolic features associated with p-tau levels were related to drug, amino acid, fatty acid, and mitochondrial metabolism pathways. A total of five metabolites overlapped between plasma and C. elegans, and four between CSF and C. elegans. DDT exacerbated the inhibitory effect of p-tau protein on growth and basal respiration. In the presence of p-tau protein, DDT induced more curling and was associated with reduced levels of amino acids but increased levels of uric acid and adenosylselenohomocysteine. Our findings in C. elegans indicate that DDT exposure and p-tau aggregation both inhibit mitochondrial function and DDT exposure can exacerbate the mitochondrial inhibitory effects of p-tau aggregation. Further, biological pathways associated with exposure to DDT and p-tau protein appear to be conserved between species.
Collapse
Affiliation(s)
- Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Megan M Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA
| | - Joshua M Bradner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Fion K Lau
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Faith L Anderson
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Katherine E Manz
- School of Engineering, Brown University, Providence, RI, 02912 USA
| | - Alexa Puri Schlotter
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Zoe Coates Fuentes
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, 02912 USA
| | - Martin Picard
- Department of Neurology, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032 USA
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA
| | - William T Hu
- Department of Neurology, Rutgers Biomedical and Health Sciences, New Brunswick, NJ, 08901 USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, 30322 USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| |
Collapse
|
10
|
Plasma Oxylipin Profile Discriminates Ethnicities in Subjects with Non-Alcoholic Steatohepatitis: An Exploratory Analysis. Metabolites 2022; 12:metabo12020192. [PMID: 35208265 PMCID: PMC8875408 DOI: 10.3390/metabo12020192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver pathology that includes steatosis, or non-alcoholic fatty liver (NAFL), and non-alcoholic steatohepatitis (NASH). Without a clear pathophysiological mechanism, it affects Hispanics disproportionately compared to other ethnicities. Polyunsaturated fatty acids (PUFAs) and inflammatory lipid mediators including oxylipin (OXL) and endocannabinoid (eCB) are altered in NAFLD and thought to contribute to its pathogenesis. However, the existence of ethnicity-related differences is not clear. We employed targeted lipidomic profiling for plasma PUFAs, non-esterified OXLs and eCBs in White Hispanics (HIS, n = 10) and Caucasians (CAU, n = 8) with biopsy-confirmed NAFL, compared with healthy control subjects (HC; n = 14 HIS; n = 8 CAU). NAFLD was associated with diminished long chain PUFA in HIS, independent of histological severity. Differences in plasma OXLs and eCBs characterized ethnicities in NASH, with lower arachidonic acid derived OXLs observed in HIS. The secondary analysis comparing ethnicities within NASH (n = 12 HIS; n = 17 CAU), confirms these ethnicity-related differences and suggests lower lipoxygenase(s) and higher soluble epoxide hydrolase(s) activities in HIS compared to CAU. While causes are not clear, these lipidomic differences might be with implications for NAFLD severity and are worth further investigation. We provide preliminary data indicating ethnicity-specific lipidomic signature characterizes NASH which requires further validation.
Collapse
|
11
|
Bradner JM, Kalia V, Lau FK, Sharma M, Bucher ML, Johnson M, Chen M, Walker DI, Jones DP, Miller GW. Genetic or Toxicant-Induced Disruption of Vesicular Monoamine Storage and Global Metabolic Profiling in Caenorhabditis elegans. Toxicol Sci 2021; 180:313-324. [PMID: 33538833 PMCID: PMC8041460 DOI: 10.1093/toxsci/kfab011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The proper storage and release of monoamines contributes to a wide range of neuronal activity. Here, we examine the effects of altered vesicular monoamine transport in the nematode Caenorhabditis elegans. The gene cat-1 is responsible for the encoding of the vesicular monoamine transporter (VMAT) in C. elegans and is analogous to the mammalian vesicular monoamine transporter 2 (VMAT2). Our laboratory has previously shown that reduced VMAT2 activity confers vulnerability on catecholamine neurons in mice. The purpose of this article was to determine whether this function is conserved and to determine the impact of reduced VMAT activity in C. elegans. Here we show that deletion of cat-1/VMAT increases sensitivity to the neurotoxicant 1-methyl-4-phenylpyridinium (MPP+) as measured by enhanced degeneration of dopamine neurons. Reduced cat-1/VMAT also induces changes in dopamine-mediated behaviors. High-resolution mass spectrometry-based metabolomics in the whole organism reveals changes in amino acid metabolism, including tyrosine metabolism in the cat-1/VMAT mutants. Treatment with MPP+ disrupted tryptophan metabolism. Both conditions altered glycerophospholipid metabolism, suggesting a convergent pathway of neuronal dysfunction. Our results demonstrate the evolutionarily conserved nature of monoamine function in C. elegans and further suggest that high-resolution mass spectrometry-based metabolomics can be used in this model to study environmental and genetic contributors to complex human disease.
Collapse
Affiliation(s)
- Joshua M Bradner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Fion K Lau
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Monica Sharma
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Michelle Johnson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA
| | - Merry Chen
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia 30303, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| |
Collapse
|